Uniform estimation of some random graph parameters

Ismaël Castillo
LPMA - Université Paris VI
joint work with Peter Orbanz (Columbia)
Mathematical Methods of Statistics
July 10th, 2017

Random graph models

Graph samples with $n=30$ nodes

Random graph models

Graph samples with $n=30$ nodes

How does the information grow with n ?

Random graph models

- Given a probability model for the random graph [next slides]

$$
\mathcal{P}=\left\{P_{\eta}^{(n)}, \eta \in H\right\}
$$

Collection of possible distributions for $\left(X_{i j}\right)_{1 \leq i<j \leq n}$, where

- $X_{i j} \in\{0,1\}$ tells whether an edge is present or not between nodes i and j
- One may be interested in estimation of
- the 'parameters' η
- and/or of functionals $\psi\left(P_{\eta}\right)$ of those
- Example: edge density $E_{P_{\eta}}\left[X_{i j}\right]$
- Possible estimator

$$
\frac{1}{\binom{n}{2}} \sum_{i<j} X_{i j}
$$

Random graph models: SBM

The stochastic block model SBM with K classes

- Parameters
- $p=\left(p_{1}, \ldots, p_{K}\right)$
prob. of classes
- $Q=\left(Q_{k l}\right)$ symmetric $K \times K$ matrix prob. of connection between classes
- Notation: labels
- $\varphi:\{1, \ldots, n\} \rightarrow\{1, \ldots, K\}$
assigns a class to each vertex
- Observations: $\left(X_{i j}\right)_{i<j}$
[the labelling map φ is not observed]
Let $\pi=p_{1} \delta_{1}+\ldots+p_{K} \delta_{K}$. The data distribution is

$$
\begin{aligned}
(\varphi(1), \ldots, \varphi(n)) & \sim \pi^{\otimes n} \\
\left(X_{i j}\right)_{i<j} \mid \varphi & \sim \bigotimes_{i<j} \operatorname{Be}\left(Q_{\varphi(i) \varphi(j)}\right)
\end{aligned}
$$

Random graph models: SBM

- $K=5$
- $p=\left(p_{1}, \ldots, p_{5}\right)$ probabilities of classes
- Q a 5×5 matrix of connectivities

Random graph models: graphon model

The graphon model

- Parameter
- $f:[0,1]^{2} \rightarrow[0,1]$ measurable symmetric
- Observations: $\left(X_{i j}\right)_{i<j}$
[the design variables U_{i} are not observed]

$$
\begin{aligned}
\left(U_{i}\right)_{i} & \sim \operatorname{Unif[0,1]^{\otimes n}} \\
\left(X_{i j}\right)_{i<j} \mid\left(U_{i}\right)_{i} & \sim \bigotimes_{i<j} \operatorname{Be}\left(f\left(U_{i}, U_{j}\right)\right)
\end{aligned}
$$

Random graph models

- The SBM model as a graphon model

Random graph models

- The SBM model as a graphon model

- Matrix $Q=\left(Q_{i j}\right)$ of SBM model can be read as heights of histogram with partition on $[0,1]$ given by proportions vector p

SBM: estimation of parameters

[Bickel et al 2013] [here in case $\mathbb{P}\left[X_{i j}=1\right]=: \rho \sim$ cst.]

SBM: estimation of parameters

[Bickel et al 2013] [here in case $\mathbb{P}\left[X_{i j}=1\right]=: \rho \sim$ cst.]

- Assume that
- $K=K_{0}$ is known and fixed
- no two lines of matrix Q_{0} are the same and $\min _{k} p_{0, k} \neq 0$
- First, what happens if labels $\varphi(\cdot)$ would be observed?

SBM: estimation of parameters

[Bickel et al 2013] [here in case $\mathbb{P}\left[X_{i j}=1\right]=: \rho \sim$ cst.]

- Assume that
- $K=K_{0}$ is known and fixed
- no two lines of matrix Q_{0} are the same and $\min _{k} p_{0, k} \neq 0$
- First, what happens if labels $\varphi(\cdot)$ would be observed?
- the MLE $\left(\tilde{p}^{M L}, \tilde{Q}^{M L}\right)$ is asymptotically normal

$$
\begin{aligned}
& \sqrt{n}\left(\tilde{p}^{M L}-p_{0}\right) \mid \varphi \rightarrow \mathcal{N}\left(0, T_{1}\right) \\
& n\left(\tilde{Q}^{M L}-Q_{0}\right) \mid \varphi \rightarrow \mathcal{N}\left(0, T_{2}\right) \\
& \tilde{p}_{a}^{M L}=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\varphi(i)=a}, \quad \tilde{Q}_{a b}^{M L}=\frac{\sum_{i<j} x_{i j 1} \mathbb{1}_{\varphi(i)=a, \varphi(j)=b}}{\sum_{i<j} \mathbb{1}_{\varphi(i)=a, \varphi(j)=b}}
\end{aligned}
$$

SBM: estimation of parameters

[Bickel et al 2013]

- Theorem. If labels are unknown, under the previous assumptions
- the MLE $\left(\hat{p}^{M L}, \hat{Q}^{M L}\right)$ is asymptotically normal

$$
\begin{aligned}
\sqrt{n}\left(\hat{p}^{M L *}-p_{0}\right) & \rightarrow \mathcal{N}\left(0, T_{1}\right) \\
n\left(\hat{Q}^{M L *}-Q_{0}\right) & \rightarrow \mathcal{N}\left(0, T_{2}\right)
\end{aligned}
$$

where $\left(p^{*}, Q^{*}\right)$ denotes a label switched-version of (p, Q)

SBM: estimation of parameters

[Bickel et al 2013]

- Theorem. If labels are unknown, under the previous assumptions
- the MLE $\left(\hat{p}^{M L}, \hat{Q}^{M L}\right)$ is asymptotically normal

$$
\begin{aligned}
\sqrt{n}\left(\hat{p}^{M L *}-p_{0}\right) & \rightarrow \mathcal{N}\left(0, T_{1}\right) \\
n\left(\hat{Q}^{M L *}-Q_{0}\right) & \rightarrow \mathcal{N}\left(0, T_{2}\right)
\end{aligned}
$$

where $\left(p^{*}, Q^{*}\right)$ denotes a label switched-version of (p, Q)

- Pointwise inference is asymptotically equivalent to given φ case
- Idea : ML 'profiles out' the unknown φ
\rightarrow proof based on $\hat{\varphi}$ that consistently estimates φ asymptotically

SBM: estimation of parameters

[Bickel et al 2013]

- Theorem. If labels are unknown, under the previous assumptions
- the MLE $\left(\hat{p}^{M L}, \hat{Q}^{M L}\right)$ is asymptotically normal

$$
\begin{aligned}
\sqrt{n}\left(\hat{p}^{M L *}-p_{0}\right) & \rightarrow \mathcal{N}\left(0, T_{1}\right) \\
n\left(\hat{Q}^{M L *}-Q_{0}\right) & \rightarrow \mathcal{N}\left(0, T_{2}\right)
\end{aligned}
$$

where $\left(p^{*}, Q^{*}\right)$ denotes a label switched-version of (p, Q)

- Pointwise inference is asymptotically equivalent to given φ case
- Idea : ML 'profiles out' the unknown φ
\rightarrow proof based on $\hat{\varphi}$ that consistently estimates φ asymptotically
- Note that
- p_{0} estimated at 'slow' rate $\frac{1}{\sqrt{n}} \rightarrow \frac{1}{n}$ in terms of quadratic risk
- Q_{0} estimated at 'fast' rate $\frac{1}{n} \rightarrow \frac{1}{n^{2}}$ in terms of quadratic risk

Some questions

The previous results are asymptotic and pointwise at (p_{0}, Q_{0})
Some questions

- uniform estimation of parameters?
\rightarrow say of the connectivity parameters $=$ the matrix Q
- in practice n and K are free
\rightarrow non-asymptotic results where K is possibly 'large'?

Framework: SBM (to start with)

Related topics

- Testing and 'community' detection
[Arias-Castro, Candès and Durand 2011]
[Butucea and Ingster 2013]
[Arias-Castro and Verzelen 2014-15]
- Estimation of the graphon function f [wrt squared L^{2}-type risk]
[Olhede and Wolfe 2013]
[Gao, Lu and Zhou 2015]
[Klopp, Tsybakov and Verzelen 2015]
- Other random graph models 'sparsified' graphon model, preferential attachment, graphex model, ...

A first result $K=2$

For simplicity assume equiproportions $p_{1}=p_{2}=\frac{1}{2}$

- Consider the SBM submodel $p=\left[\frac{1}{2}, \frac{1}{2}\right], Q=Q^{\theta}, K=2$, with

$$
Q^{\theta}=\left[\begin{array}{ll}
\frac{1}{2}+\theta & \frac{1}{2}-\theta \\
\frac{1}{2}-\theta & \frac{1}{2}+\theta
\end{array}\right]
$$

A first result $K=2$

For simplicity assume equiproportions $p_{1}=p_{2}=\frac{1}{2}$

- Consider the SBM submodel $p=\left[\frac{1}{2}, \frac{1}{2}\right], Q=Q^{\theta}, K=2$, with

$$
Q^{\theta}=\left[\begin{array}{ll}
\frac{1}{2}+\theta & \frac{1}{2}-\theta \\
\frac{1}{2}-\theta & \frac{1}{2}+\theta
\end{array}\right]
$$

- Theorem 1 [minimax lower bound]. For some $c_{0}>0$,

$$
\inf _{\hat{\theta}} \sup _{|\theta| \leq \frac{1}{2}} E_{\theta}\left[(\hat{\theta}-\theta)^{2}\right] \geq \frac{c_{0}}{n} .
$$

A first result $K=2$

For simplicity assume equiproportions $p_{1}=p_{2}=\frac{1}{2}$

- Consider the SBM submodel $p=\left[\frac{1}{2}, \frac{1}{2}\right], Q=Q^{\theta}, K=2$, with

$$
Q^{\theta}=\left[\begin{array}{ll}
\frac{1}{2}+\theta & \frac{1}{2}-\theta \\
\frac{1}{2}-\theta & \frac{1}{2}+\theta
\end{array}\right]
$$

- Theorem 1 [minimax lower bound]. For some $c_{0}>0$,

$$
\inf _{\hat{\theta}} \sup _{|\theta|<\frac{\delta_{0}}{n}} E_{\theta}\left[(\hat{\theta}-\theta)^{2}\right] \geq \frac{c_{0}}{n} .
$$

A first result $K=2$

For simplicity assume equiproportions $p_{1}=p_{2}=\frac{1}{2}$

- Consider the SBM submodel $p=\left[\frac{1}{2}, \frac{1}{2}\right], Q=Q^{\theta}, K=2$, with

$$
Q^{\theta}=\left[\begin{array}{ll}
\frac{1}{2}+\theta & \frac{1}{2}-\theta \\
\frac{1}{2}-\theta & \frac{1}{2}+\theta
\end{array}\right]
$$

- Theorem 1 [minimax lower bound]. For some $c_{0}>0$,

$$
\inf _{\hat{\theta}} \sup _{|\theta|<\frac{\delta_{0}}{n}} E_{\theta}\left[(\hat{\theta}-\theta)^{2}\right] \geq \frac{c_{0}}{n} .
$$

- minimax local lower bound, relevant not only at $\theta=0$, but also locally

$$
\text { can show that if } t=\frac{\delta_{0}}{2 n}, \quad \inf _{\hat{\theta}} \sup _{|\theta-t|<\frac{\delta_{0}}{2 n}} E_{\theta}\left[(\hat{\theta}-\theta)^{2}\right] \geq \frac{c_{0}}{n} \text {. }
$$

A first result $K=2$

- Consider the submodel

$$
Q^{\theta}=\left[\begin{array}{ll}
\frac{1}{2}+\theta & \frac{1}{2}-\theta \\
\frac{1}{2}-\theta & \frac{1}{2}+\theta
\end{array}\right]
$$

One observes SBM-data with $p=\left[\frac{1}{2}, \frac{1}{2}\right], Q=Q^{\theta}, K=2$

- Let $\hat{\theta}^{M L}$ be the MLE in the above submodel
- Theorem 1 (bis) [minimax upper bound]. For some $d_{0}>0$,

$$
\sup _{|\theta| \leq \frac{1}{2}} E_{\theta}\left[\left(\hat{\theta}^{M L}-\theta\right)^{2}\right] \leq \frac{d_{0}}{n}
$$

Proof: profile (pseudo)-maximum likelihood

Main result for $K=k$ classes, motivation

An example with $n=30, K=5$ and a 'difficult' matrix Q

$$
\left[\begin{array}{lllll}
.55 & .45 & .4 & .1 & .7 \\
.45 & .55 & .4 & .1 & .7 \\
.4 & .4 & .6 & .2 & .1 \\
.1 & .1 & .2 & .1 & .4 \\
.7 & .7 & .4 & .4 & .2
\end{array}\right]
$$

Main result for $K=k$ classes, motivation

An example with $n=30, K=5$ and a 'difficult' matrix Q

$$
\left[\begin{array}{lllll}
.55 & .45 & .4 & .1 & .7 \\
.45 & .55 & .4 & .1 & .7 \\
.4 & .4 & .6 & .2 & .1 \\
.1 & .1 & .2 & .1 & .4 \\
.7 & .7 & .4 & .4 & .2
\end{array}\right]
$$

Local uniform estimation rate of elements of this submatrix will be 'slow'

SBM result $K=k$ classes

Suppose equiproportions for simplicity [balanced proportions would work]
Let us consider estimation along the submodel

$$
\left[\begin{array}{cccc}
a_{0} & a_{1} & \ldots & a_{k-2} \\
a_{1} & & & \\
\vdots & & B & \\
a_{k-2} & & &
\end{array}\right]
$$

SBM result $K=k$ classes

Suppose equiproportions for simplicity [balanced proportions would work]
Let us consider estimation along the submodel

$$
\left[\begin{array}{cccc}
a_{0} & a_{1} & \ldots & a_{k-2} \\
a_{1} & & & \\
\vdots & & B & \\
a_{k-2} & & &
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
a_{0}+\theta & a_{0}-\theta & a_{1} & \ldots & a_{k-2} \\
a_{0}-\theta & a_{0}+\theta & a_{1} & \ldots & a_{k-2} \\
a_{1} & a_{1} & & & \\
\vdots & \vdots & & B & \\
a_{k-2} & a_{k-2} & &
\end{array}\right]=Q^{\theta}
$$

Set $A=\left[\begin{array}{llll}a_{0} & a_{1} & \cdots & a_{k-2}\end{array}\right]$ and $B=\left(b_{i j}\right)$

SBM result $K=k$ classes

Suppose proportions are equidistributed [extends to 'balanced proportions']

- main message of Theorem 2 below

Around any point in the interior of the $K=k-1$ classes model, there is a direction coming from the $K=k$ classes model such that rate of estimation of matrix parameter along this direction no better than $\frac{k}{n}$

SBM result $K=k$ classes

Suppose proportions are equidistributed [extends to 'balanced proportions']

- main message of Theorem 2 below

Around any point in the interior of the $K=k-1$ classes model, there is a direction coming from the $K=k$ classes model such that rate of estimation of matrix parameter along this direction no better than $\frac{k}{n}$

- One observes SBM-data with law E_{θ} specified by

$$
K=k, p=\left[\frac{1}{K}, \cdots \frac{1}{K}\right], Q=Q^{\theta} \text { the previous } K \times K \text { matrix }
$$

- Theorem 2 [minimax lower bound]. For some $c_{1}>0$, for any A and B,

$$
\inf _{\hat{\theta}} \sup _{|\theta| \leq \frac{1}{2}} E_{\theta}\left[(\hat{\theta}-\theta)^{2}\right] \geq c_{1} \frac{k}{n}
$$

Comments on the lower bound

- The bound is minimax local
- Idea of proof of lower bound
a 'mixture vs mixture' lower bound argument
more involved than before, as 'null hypothesis' is a mixture

SBM result $K=k$ classes

Implications

- The 'boundary' of SBM model with $K=k$ moves with k and n
- If one is interested in estimating (some of the) heights $=$ elements of the Q matrix, one should take this moving boundary into account to determine precisely the accuracy of estimation
- The rate along constructed submodel deteriorates with k.

The lower bound is non-asymptotic.
For many k, n, the boundary area, of size at least $\frac{k}{n}$, can be 'large'

Upper-bound result
Recall $\quad Q^{\theta}=\left[\begin{array}{ccccc}a_{0}+\theta & a_{0}-\theta & a_{1} & \ldots & a_{k-2} \\ a_{0}-\theta & a_{0}+\theta & a_{1} & \ldots & a_{k-2} \\ a_{1} & a_{1} & & & \\ \vdots & \vdots & & B=\left(b_{i j}\right) & \\ a_{k-2} & a_{k-2} & & & \end{array}\right]$

- Require, for $\mathcal{C}:=\left\{a_{i}, b_{i j}, 1 \leq i, j \leq k-2\right\}$,

$$
\begin{gather*}
\min _{c \in \mathcal{C}}\left\{\left|c-a_{0}\right|\right\} \geq \kappa>0 \tag{C}\\
k^{3} \log k \lesssim \kappa^{4} n \tag{D}
\end{gather*}
$$

Upper-bound result

$$
\text { Recall } \quad Q^{\theta}=\left[\begin{array}{ccccc}
a_{0}+\theta & a_{0}-\theta & a_{1} & \ldots & a_{k-2} \\
a_{0}-\theta & a_{0}+\theta & a_{1} & \ldots & a_{k-2} \\
a_{1} & a_{1} & & & \\
\vdots & \vdots & & B=\left(b_{i j}\right) & \\
a_{k-2} & a_{k-2} & & &
\end{array}\right]
$$

- Require, for $\mathcal{C}:=\left\{a_{i}, b_{i j}, 1 \leq i, j \leq k-2\right\}$,

$$
\begin{gather*}
\min _{c \in \mathcal{C}}\left\{\left|c-a_{0}\right|\right\} \geq \kappa>0 \tag{C}\\
k^{3} \log k \lesssim \kappa^{4} n \tag{D}
\end{gather*}
$$

- Theorem 3 [upper bound]. For some $C_{1}>0$, for any A, B such that conditions (C)-(D) hold, for $\hat{\theta}$ a profile-MLE estimate,

$$
\sup _{|\theta| \leq \kappa} E_{\theta}\left[(\hat{\theta}-\theta)^{2}\right] \leq C_{1} \frac{k}{n}
$$

Upper-bound result - checking (C) and (D)

Conditions (C) and (D) are satisfied in the following settings

- Example 1 (well-separated block)

If κ is a given positive constant e.g. $\kappa=1 / 4$, then (C) means that the coefficients of A, B are fairly different from a_{0}

- Example 2 (randomly sampled matrices A, B)

If the vector defining A and the upper half of the matrix B are sampled iid $\mathcal{U}[0,1]$, then $(C)-(D)$ is satisfied with high probability if

$$
k \lesssim n^{1 / 7}
$$

Dependence on the 'environment' A and B

Consider a 'least-favorable case"

$$
Z^{\theta}=\left[\begin{array}{ccccc}
\frac{1}{2}+\theta & \frac{1}{2}-\theta & \frac{1}{2} & \cdots & \frac{1}{2} \\
\frac{1}{2}-\theta & \frac{1}{2}+\theta & \frac{1}{2} & \cdots & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \cdots & \frac{1}{2} \\
\vdots & \vdots & \vdots & & \vdots \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \cdots & \frac{1}{2}
\end{array}\right]
$$

[or a perturbation thereof]
Observe data from the corresponding SBM model with equiproportions

- Theorem 4. There exists $c_{2}>0$ such that

$$
\inf _{\hat{\theta}} \sup _{\theta \in(-1 / 2,1 / 2)} E_{\theta}(\hat{\theta}-\theta)^{2} \geq c_{2} \frac{k^{2}}{n}
$$

Functionals of graphon model

In the more general graphon model, consider the functional

$$
\psi(\langle f\rangle)=\left[\int_{[0,1]^{2}}\left(f(x, y)-\int_{[0,1]^{2}} f\right)^{2} d x d y\right]^{1 / 2}
$$

[Continuous 'graphon-analogue' of previous parameter θ]

- Theorem 5. For \mathcal{P} a $\mathcal{C}^{1}(M)$-class of graphons, for some $c_{3}, c_{4}>0$,

$$
\frac{c_{3}}{n} \leq \inf _{\hat{\psi}} \sup _{f \in \mathcal{P}} E_{f}\left[(\hat{\psi}-\psi(f))^{2}\right] \leq \frac{c_{4}}{n} .
$$

Functionals of graphon model

- Lower bound also holds for other functionals such as

$$
\psi\left(P_{w}\right)=\int_{[0,1]^{2}}\left|f(x, y)-\int_{[0,1]^{2}}\right| f(x, y)|d x d y| d x d y
$$

- The quadratic 'slow rate' $1 / n$ [or $1 / \sqrt{n}$ non-quadratic] appears to be quite universal for uniform estimation of many functionals

Conclusion

Previously known results for $\operatorname{SBMs}(K, p, Q)$: given fixed $K=k$,
\rightarrow proportions p estimated at 'slow' rate $\frac{1}{n}$ asymptotically
\rightarrow connectivities Q estimated at 'fast' rate $\frac{1}{n^{2}}$ asymptotically, pointwise, in the interior of set of SBMs with k classes

Conclusions

- Fast rate for connectivities Q not achievable uniformly

Uniform rates are at most k / n [=generic lower bound if k not too large] and can be as slow as k^{2} / n, from a non-asymptotic perspective in n and k

- This phenomenom happens close to any $k-1$ classes model, not only around a 'least favorable one' \rightarrow local lower bound

Open questions

- SBM: 'Continuum' of rates inbetween k / n and k^{2} / n depending on A, B ?
- More general estimation theory of graphon functionals?

