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Random graph models

Graph samples with n = 30 nodes

How does the information grow with n?
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Random graph models

Given a probability model for the random graph [next slides]

P = {P(n)
η , η ∈ H}

Collection of possible distributions for (Xij)1≤i<j≤n, where

I Xij ∈ {0, 1} tells whether an edge is present or not between nodes i and j

One may be interested in estimation of
I the ‘parameters’ η
I and/or of functionals ψ(Pη) of those

Example: edge density EPη
[Xij ]

I Possible estimator
1(
n
2

) ∑
i<j

Xij
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Random graph models: SBM

The stochastic block model SBM with K classes

Parameters
I p = (p1, . . . , pK ) prob. of classes
I Q = (Qkl) symmetric K × K matrix prob. of connection between classes

Notation: labels
I ϕ : {1, . . . , n} → {1, . . . ,K} assigns a class to each vertex

Observations: (Xij)i<j [the labelling map ϕ is not observed]

Let π = p1δ1 + . . .+ pKδK . The data distribution is

(ϕ(1), . . . , ϕ(n)) ∼ π⊗n,

(Xij)i<j | ϕ ∼
⊗
i<j

Be(Qϕ(i)ϕ(j))
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Random graph models: SBM

Network Analysis and Modeling, CSCI 5352
Lecture 16

Prof. Aaron Clauset
5 November 2013

stochastic block matrix assortative communities

stochastic block matrix disassortative communities

Core-periphery and ordered communities.
In an ordered network, communities connect to each other according to a latent sequence.

Physical proximity networks exhibit this kind of structure with age acting as a latent ordering
variable. That is, individuals tend to associate physically with others who are close to them-
selves in age, so that children tend to be physically proximate to other children, teenagers with
teenagers, 20-somethings with 20-somethings, etc. This induces a strong diagonal component in
the stochastic block matrix, as in assortative communities, plus a strong first-o↵-diagonal compo-
nent, i.e., communities connect to those just above and below themselves in the latent ordering
Mii ⇡ Mi,i+1 ⇡ Mi,i�1. In social networks, an exception to this pattern occurs during the child-
bearing years, so that individuals split their time between their peers and their children (who are
generally 20-30 years younger).2

2This fact was demonstrated nicely in a longitudinal study in Scandinavia, in which individuals were asked to

4

K = 5
p = (p1, . . . , p5)
probabilities of classes
Q a 5× 5 matrix of
connectivities
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Random graph models: graphon model

The graphon model

Parameter
I f : [0, 1]2 → [0, 1] measurable symmetric

Observations: (Xij)i<j [the design variables Ui are not observed]

(Ui )i ∼ Unif[0, 1]⊗n

(Xij)i<j | (Ui )i ∼
⊗
i<j

Be(f (Ui ,Uj))
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Random graph models

The SBM model as a graphon model

1
2 − θ

1
2 − θ1

2 + θ

1
2 + θ

Matrix Q = (Qij) of SBM model can be read as heights of histogram with
partition on [0, 1] given by proportions vector p
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SBM: estimation of parameters

[Bickel et al 2013] [here in case P[Xij = 1] =: ρ ∼ cst.]

Assume that
I K = K0 is known and fixed
I no two lines of matrix Q0 are the same and mink p0,k 6= 0

First, what happens if labels ϕ(·) would be observed?
I the MLE (p̃ML, Q̃ML) is asymptotically normal

√
n(p̃ML − p0) | ϕ→ N (0,T1)

n(Q̃ML − Q0) | ϕ→ N (0,T2)

p̃ML
a =

1
n

n∑
i=1

1lϕ(i)=a, Q̃ML
ab =

∑
i<j Xij1lϕ(i)=a , ϕ(j)=b∑
i<j 1lϕ(i)=a , ϕ(j)=b
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SBM: estimation of parameters

[Bickel et al 2013]

Theorem. If labels are unknown, under the previous assumptions

I the MLE (p̂ML, Q̂ML) is asymptotically normal
√
n(p̂ML∗ − p0) → N (0,T1)

n(Q̂ML∗ − Q0) → N (0,T2)

where (p∗,Q∗) denotes a label switched-version of (p,Q)

Pointwise inference is asymptotically equivalent to given ϕ case
I Idea : ML ‘profiles out’ the unknown ϕ
→ proof based on ϕ̂ that consistently estimates ϕ asymptotically

Note that
I p0 estimated at ‘slow’ rate 1√

n
→ 1

n
in terms of quadratic risk

I Q0 estimated at ‘fast’ rate 1
n
→ 1

n2 in terms of quadratic risk
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Some questions

The previous results are asymptotic and pointwise at (p0,Q0)

Some questions

uniform estimation of parameters?
→ say of the connectivity parameters = the matrix Q

in practice n and K are free
→ non-asymptotic results where K is possibly ‘large’?

Framework : SBM (to start with)
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Related topics

Testing and ‘community’ detection

[Arias-Castro, Candès and Durand 2011]

[Butucea and Ingster 2013]

[Arias-Castro and Verzelen 2014-15]

Estimation of the graphon function f [wrt squared L2-type risk]

[Olhede and Wolfe 2013]

[Gao, Lu and Zhou 2015]

[Klopp, Tsybakov and Verzelen 2015]

Other random graph models
‘sparsified’ graphon model, preferential attachment, graphex model, ...
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A first result K = 2
For simplicity assume equiproportions p1 = p2 =

1
2

Consider the SBM submodel p = [ 12 ,
1
2 ], Q = Qθ, K = 2, with

Qθ =

[ 1
2 + θ 1

2 − θ
1
2 − θ 1

2 + θ

]

Theorem 1 [minimax lower bound]. For some c0 > 0,

inf
θ̂

sup
|θ|< δ0

n

Eθ
[
(θ̂ − θ)2

]
≥ c0

n
.

I minimax local lower bound, relevant not only at θ = 0, but also locally

can show that if t =
δ0
2n
, inf

θ̂
sup

|θ−t|< δ0
2n

Eθ
[
(θ̂ − θ)2

]
≥ c0

n
.

Ismaël Castillo (LPMA – Paris VI) Luminy - MMS Conference July 10th, 2017 12 / 24



A first result K = 2
For simplicity assume equiproportions p1 = p2 =

1
2

Consider the SBM submodel p = [ 12 ,
1
2 ], Q = Qθ, K = 2, with

Qθ =

[ 1
2 + θ 1

2 − θ
1
2 − θ 1

2 + θ

]

Theorem 1 [minimax lower bound]. For some c0 > 0,

inf
θ̂

sup
|θ|≤ 1

2

Eθ
[
(θ̂ − θ)2

]
≥ c0

n
.

Theorem 1 [minimax lower bound]. For some c0 > 0,

inf
θ̂

sup
|θ|< δ0

n

Eθ
[
(θ̂ − θ)2

]
≥ c0

n
.

I minimax local lower bound, relevant not only at θ = 0, but also locally

can show that if t =
δ0
2n
, inf

θ̂
sup

|θ−t|< δ0
2n

Eθ
[
(θ̂ − θ)2

]
≥ c0

n
.

Ismaël Castillo (LPMA – Paris VI) Luminy - MMS Conference July 10th, 2017 12 / 24



A first result K = 2
For simplicity assume equiproportions p1 = p2 =

1
2

Consider the SBM submodel p = [ 12 ,
1
2 ], Q = Qθ, K = 2, with

Qθ =

[ 1
2 + θ 1

2 − θ
1
2 − θ 1

2 + θ

]

Theorem 1 [minimax lower bound]. For some c0 > 0,

inf
θ̂

sup
|θ|< δ0

n

Eθ
[
(θ̂ − θ)2

]
≥ c0

n
.

I minimax local lower bound, relevant not only at θ = 0, but also locally

can show that if t =
δ0
2n
, inf

θ̂
sup

|θ−t|< δ0
2n

Eθ
[
(θ̂ − θ)2

]
≥ c0

n
.

Ismaël Castillo (LPMA – Paris VI) Luminy - MMS Conference July 10th, 2017 12 / 24



A first result K = 2
For simplicity assume equiproportions p1 = p2 =

1
2

Consider the SBM submodel p = [ 12 ,
1
2 ], Q = Qθ, K = 2, with

Qθ =

[ 1
2 + θ 1

2 − θ
1
2 − θ 1

2 + θ

]

Theorem 1 [minimax lower bound]. For some c0 > 0,

inf
θ̂

sup
|θ|< δ0

n

Eθ
[
(θ̂ − θ)2

]
≥ c0

n
.

I minimax local lower bound, relevant not only at θ = 0, but also locally

can show that if t =
δ0
2n
, inf

θ̂
sup

|θ−t|< δ0
2n

Eθ
[
(θ̂ − θ)2

]
≥ c0

n
.

Ismaël Castillo (LPMA – Paris VI) Luminy - MMS Conference July 10th, 2017 12 / 24



A first result K=2

Consider the submodel

Qθ =

[ 1
2 + θ 1

2 − θ
1
2 − θ 1

2 + θ

]
One observes SBM-data with p = [ 12 ,

1
2 ], Q = Qθ, K = 2

Let θ̂ML be the MLE in the above submodel

Theorem 1 (bis) [minimax upper bound]. For some d0 > 0,

sup
|θ|≤ 1

2

Eθ
[
(θ̂ML − θ)2

]
≤ d0

n

Proof: profile (pseudo)-maximum likelihood
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Main result for K = k classes, motivation

An example with n = 30, K = 5 and a ‘difficult’ matrix Q


.55 .45 .4 .1 .7
.45 .55 .4 .1 .7
.4 .4 .6 .2 .1
.1 .1 .2 .1 .4
.7 .7 .4 .4 .2




.55 .45 .4 .1 .7
.45 .55 .4 .1 .7
.4 .4 .6 .2 .1
.1 .1 .2 .1 .4
.7 .7 .4 .4 .2



Local uniform estimation rate of elements of this submatrix will be ‘slow’
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SBM result K = k classes

Suppose equiproportions for simplicity [balanced proportions would work]

Let us consider estimation along the submodel


a0 a1 . . . ak−2
a1
... B

ak−2



→


a0 + θ a0 − θ a1 . . . ak−2
a0 − θ a0 + θ a1 . . . ak−2
a1 a1
...

... B
ak−2 ak−2

 = Qθ

Set A = [a0 a1 · · · ak−2] and B = (bij)
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SBM result K = k classes

Suppose proportions are equidistributed [extends to ‘balanced proportions’]
main message of Theorem 2 below

Around any point in the interior of the K = k − 1 classes model,

there is a direction coming from the K = k classes model such that

rate of estimation of matrix parameter along this direction no better than k
n

One observes SBM-data with law Eθ specified by

K = k, p = [
1
K
, . . .

1
K
], Q = Qθ the previous K × K matrix

Theorem 2 [minimax lower bound]. For some c1 > 0, for any A and B,

inf
θ̂

sup
|θ|≤ 1

2

Eθ
[
(θ̂ − θ)2

]
≥ c1

k

n
.
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Comments on the lower bound

The bound is minimax local

Idea of proof of lower bound

a ‘mixture vs mixture’ lower bound argument

more involved than before, as ‘null hypothesis’ is a mixture
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SBM result K = k classes

Implications

The ‘boundary’ of SBM model with K = k moves with k and n

If one is interested in estimating (some of the) heights = elements of the Q
matrix, one should take this moving boundary into account to determine
precisely the accuracy of estimation

The rate along constructed submodel deteriorates with k .

The lower bound is non-asymptotic.

For many k , n, the boundary area, of size at least k
n , can be ‘large’
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Upper-bound result

Recall Qθ =


a0 + θ a0 − θ a1 . . . ak−2

a0 − θ a0 + θ a1 . . . ak−2

a1 a1
...

... B = (bij)
ak−2 ak−2



Require, for C := {ai , bij , 1 ≤ i , j ≤ k − 2},

min
c∈C
{|c − a0|} ≥ κ > 0 (C )

k3 log k . κ4n (D)

Theorem 3 [upper bound]. For some C1 > 0, for any A,B such that
conditions (C)–(D) hold, for θ̂ a profile-MLE estimate,

sup
|θ|≤κ

Eθ
[
(θ̂ − θ)2

]
≤ C1

k

n
.
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Upper-bound result – checking (C) and (D)

Conditions (C) and (D) are satisfied in the following settings

Example 1 (well-separated block)

If κ is a given positive constant e.g. κ = 1/4, then (C) means that the
coefficients of A,B are fairly different from a0

Example 2 (randomly sampled matrices A,B)

If the vector defining A and the upper half of the matrix B are sampled iid
U [0, 1], then (C)-(D) is satisfied with high probability if

k . n1/7
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Dependence on the ‘environment’ A and B

Consider a ‘least-favorable case"

Z θ =


1
2 + θ 1

2 − θ 1
2 · · · 1

2
1
2 − θ 1

2 + θ 1
2 · · · 1

2
1
2

1
2

1
2 · · · 1

2
...

...
...

...
1
2

1
2

1
2 · · · 1

2

 .
[or a perturbation thereof]

Observe data from the corresponding SBM model with equiproportions

Theorem 4. There exists c2 > 0 such that

inf
θ̂

sup
θ∈(−1/2,1/2)

Eθ(θ̂ − θ)2 ≥ c2
k2

n
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Functionals of graphon model

In the more general graphon model, consider the functional

ψ(〈f 〉) =
[∫

[0,1]2

(
f (x , y)−

∫
[0,1]2

f
)2

dxdy

]1/2
[Continuous ‘graphon-analogue’ of previous parameter θ]

Theorem 5. For P a C1(M)-class of graphons, for some c3, c4 > 0,

c3
n
≤ inf

ψ̂
sup
f∈P

Ef

[
(ψ̂ − ψ(f ))2

]
≤ c4

n
.
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Functionals of graphon model

Lower bound also holds for other functionals such as

ψ(Pw ) =

∫
[0,1]2

∣∣∣f (x , y)− ∫
[0,1]2

|f (x , y)|dxdy
∣∣∣dxdy

The quadratic ‘slow rate’ 1/n [or 1/
√
n non-quadratic] appears to be quite

universal for uniform estimation of many functionals
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Conclusion
Previously known results for SBMs (K , p,Q): given fixed K = k,

→ proportions p estimated at ‘slow’ rate 1
n
asymptotically

→ connectivities Q estimated at ‘fast’ rate 1
n2 asymptotically,

pointwise, in the interior of set of SBMs with k classes

Conclusions

Fast rate for connectivities Q not achievable uniformly

Uniform rates are at most k/n [=generic lower bound if k not too large] and can be
as slow as k2/n, from a non-asymptotic perspective in n and k

This phenomenom happens close to any k − 1 classes model, not only around a
‘least favorable one’ → local lower bound

Open questions

SBM: ‘Continuum’ of rates inbetween k/n and k2/n depending on A,B?

More general estimation theory of graphon functionals?
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