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NEF versus CSK families
Two examples of “kernel families” k(x , θ)µ(dx)

K = {Pθ(dx) : θ ∈ Θ}

I Natural exponential families (NEF) :

Pθ(dx) =
1

Zθ
eθxµ(dx)

where µ is a (probability) measure with (some) exponential
moments, Θ = (θ−, θ+).

I Cauchy-Stieltjes kernel families (CSK):

Pθ(dx) =
1

Zθ

1

1− θx
µ(dx)

where µ is a probability measure with support bounded from
above. The ”generic choice” for Θ is Θ = (0, θ+), or (θ−, θ+)
if µ is compactly supported...



A specific example of CSK
Noncanonical parameterizations

Let µ = 1
2δ0 + 1

2δ1 be the Bernoulli measure.

Zθ =
∫

1
1−θxµ(dx) = 1/2 + 1/2

1−θ = 2−θ
2(1−θ)

I ”Noncanonical” parametrization:

I Pθ = 1−θ
2−θδ0 + 1

2−θδ1, θ ∈ (−∞, 1).

I ”Canonical” parametrization: p = 1
2−θ

I Qp := P2− 1
p

= (1− p)δ0 + pδ1, p ∈ (0, 1)

I Bernoulli family parameterized by probability of success p.

I p =
∫
xQp(dx) (parametrization by the mean)



Parametrization by the mean

m(θ) =

∫
xPθ(dx) =


1
Zθ

d
dθZθ NEF

1
Zθ

Zθ−1
θ CSK

I For non-degenerate measure µ, function θ 7→ m(θ) is strictly
increasing and has inverse θ = θ(m).

I θ 7→ m(θ) maps (0, θ+) onto (m0,m+), ”the domain of
means”.

I Parameterizations by the mean:

{Qm(dx) : m ∈ (m0,m+)}

where Qm(dx) = Pθ(m)(dx)



Variances for NEF or CSK

V (m) =

∫
(x −m)2Qm(dx)

I Variance function m 7→ V (m)

always exists for NEF.

exists for CSK when µ(dx) has the first moment.

I Variance function V (m) together with the domain of means
m ∈ (m−,m+) determines NEF uniquely (Morris (1982)).

I Variance function V (m) of CSK family together with
m0 = m(0) ∈ R, the mean of µ, determines measure µ
uniquely

Hence V (m) determines CSK uniquely



CSK/NEF are determined uniquely by V (m)
(some details are left out!)

Qm(dx) = f (x ,m)µ(dx)

I NEF: (Wedderburn (1974))

∂

∂m
f (x ,m) =

x −m

V (m)
f (x ,m) (1)

I CSK when m0 =
∫
xµ(dx) = 0:

f (x ,m)− f (x , 0)

m
=

x −m

V (m)
f (x ,m); f (x , 0) = 1, (2)

I In particular, (2) has solution f (x ,m) = V (m)
V (m)+m(m−x) .

I When f (x ,m)µ(dx) is a probability measure?

8m Skip free cumulants



CSK is determined uniquely by the variance function

More precisely, by V (·) and m0 =
∫
xµ(dx)

Theorem (WB-Ismail(2005))

The free cumulants of compactly supported µ are

I c1 = m0,

I for n ≥ 1,

cn+1 =
1

n!

dn−1

dxn−1
(V (x))n

∣∣∣∣
x=m0

.

Recall that free cumulants ck(µ) are polynomials in the moments∫
xdµ,

∫
x2dµ,· · ·

∫
xkdµ, . . . which linearize free convolution:

ck(µ� ν) = ck(µ) + ck(ν).



All NEF with quadratic variance functions are known
Morris class. Meixner laws

I The NEF with the variance function V (m) = 1 + am + bm2

was described by Morris (1982), Ismail-May (1978). Eg:

1. K is the family of Gaussian laws (of unit variance) iff
V (m) = 1

2. K is the family Poisson-type laws iff V (m) = 1 + am with
a 6= 0

3. K is the family of binomial type laws (affine transformations of
the convolution powers of a Bernoulli law) iff
V (m) = 1 + am + bm2 with −1 ≤ b = −1/n < 0

I Letac-Mora (1990): cubic V (m)

Eg., V (m) = m3 corresponds to the family of 1/2-stable laws

I Various other classes Kokonendji, Letac, ...



All CSK with quadratic variance functions are known

Suppose m0 = 0, V (m) = 1 + am + bm2 .

Theorem (WB-Ismail (2005))

Examples of quadratic variance functions (3 of 6 cases):

1. µ is the Wigner’s semicircle (free Gaussian) law iff V (m) = 1

K(µ) are the (atomless) Marchenko-Pastur (free Poisson)
type laws

2. µ is the Marchenko-Pastur (free Poisson) type law iff
V (m) = 1 + am with a 6= 0

3. µ is the free binomial type law (Kesten law, McKay law) iff
V (m) = 1 + am + bm2 with −1 ≤ b < 0

18m Skip to cubic (part II) 25m End now



Cubic variance functions
part I

I In [WB-Hassairi (2011]) we consider f (x ,m) = V(m)
V(m)+m(m−x)

with
V(m) = m(am2 + bm + c)

I Probability measure µ which generates CSK family
Qm(dx) = f (x ,m)µ(dx) has no mean, so the variance of Qm

is infinite!

I This difficulty does not arise for NEF!

16 Skip pseudo Variance functions 19 m Go to cubic (part II) 25 m End now



Pseudo-Variance function for CSK

I The variance

V (m) =
1

Zθ(m)

∫
(x −m)2

1− θ(m)x
µ(dx)

is undefined if m0 =
∫
xµ(dx) = −∞.

I Consider

V(m) = m

(
1

θ(m)
−m

)
(3)

where θ(·) is the inverse of θ 7→ m(θ) =
∫
xPθ(dx) on (0, θ+).

I This defines a ”pseudo-variance” function V(m) that is well
defined for all non-degenerate probability measures µ with
support bounded from above.

I When V (m) exists, then

V(m) =
m

m −m0
V (m)



Example: CSK family with cubic pseudo-variance
function

Measure µ generating CSK with V(m) = m3 has density

µ(dx) =

√
−1− 4x

2πx2
1(−∞,−1/4)(x)dx (4)

Measure µ is 1/2-stable with respect to �, a fact already noted
before: [Bercovici and Pata, 1999, page 1054],

[Pérez-Abreu and Sakuma, 2008]

{
Qm(dx) =

m2
√
−1− 4x

2π(m2 + m − x)x2
1(−∞,−1/4)(x)dx : m ∈ (−∞,m+)

}
What is m+? 19m Skip domain of means 25m End now



Domain of means: {Qm : m ∈ (−∞,m+)}
Answers for V(m) = m3 (WB-Fakhfakh-Hassairi -2014)

1. m ∈ (−∞,−1), because limθ↗θmax m(θ) = −1.

2. m ∈ (−∞,−1/2), because 1
1−θx 1(−∞,−1/4)(x) is positive for

θ ∈ (0,∞) ∪ (−∞,−4), and limθ↗−4 m(θ) = −1/2.

3. m ∈ (−∞,−1/2) ∪ (−1/2,∞), because

f (x ,m) = m2

m2+m−x 1(−∞,−1/4)(x) ≥ 0 for all m 6= −1/2.

I Unfortunately,
∫
Qm(dx) < 1 for m > −1/2.

I But Qm(dx) := m2

(m2+m−x)µ(dx) + (1+2m)+

(m+1)2 δm+m2 is well defined

and parameterized by the mean for all m ∈ (−∞,∞).

Similar situation arises for V (m) = 1, where Qm(dx) is a

Marchenko-Pastur law. By adding an atom at m + V (m)
m we can

extend the domain of means to (−∞,∞).
25 m End now



Polynomial variance functions
Part II: finite mean m0 = 0, V (0) = 1

Theorem (WB-Fakhfakh-2017)

V (m) = 1 + am + bm2 + cm3 is a variance functions for any real c
and a if b3 = 27c2 .

Remark
V (m) = 1 + m2 + m3 is not a variance function.
V (m) = m + m2 + m3 is a pseudo-variance function but measure µ
has infinite mean.

This is p = 3 of the following more general result.

Theorem (WB-Fakhfakh-2017)

Fix real p ≥ 1, and real a, c . Then for m close enought to 0,
function V (m) = (1 + cm)p + am is a variance function of a CSK
family generated by a compactly supported centered (�-infinitely
divisible) probability measure.



A lemma on variance functions

The following seems to have no analogue for NEFs.

Theorem (WB-Fakhfakh-2017)

If V (m) is a variance function corresponding to a compactly
supported centered probability measure µ0, then for any real a
function

Va(m) := am + V (m)

for m close enough to 0 is a variance function for a CSK family
generated by some (uniquely determined) compactly supported
centered probability measure µa.



Polynomial variance functions
Part II: finite mean m0 = 0, V (0) = 1

The density of Qm has series expansion

f (x ,m) =
V (m)

V (m) + m(m − x)
=
∞∑
n=0

Pn(x)mn.

Polynomials {Pn(x)} are monic and solve the recursion

xPn(x) = Pn+1(x) + Pn−1(x) +
n∑

k=1

V (k)(0)

k!
Pn+1−k(x), n ≥ 0

with P−1(x) = 0 and P0(x) = 1.



Theorem (WB-Fakhfakh-2017)

Suppose V is a variance function for CSK family generated by
centered compactly supported measure µ, with V (0) > 0. Then
the following are equivalent.

1. V (m) is a polynomial of degree at most d + 1;

2. There exist constants {bk : k = 0, 1, . . . , d + 1} with b0 > 0
such that polynomials {Pn} satisfy finite recursion

xPn(x) =

(d+1)∧n∑
k=0

bkPn+1−k(x), n ≥ 2 (5)

with initial conditions P0(x) = 1, P1(x) = x .

3. Polynomials Pn(x),Pk(x) are orthogonal in L2(dµ) for
n ≥ 2 + (k − 1)d .

4. Polynomial P2(x) is orthogonal in L2(dµ) to all polynomials
{Pn(x) : n ≥ 2 + d}.



Summary
Kernels eθx and 1/(1− θx) generate NEF and CSK families

Similarities

I parameterizations by the mean

I Quadratic variance functions determine interesting laws

I Convolution/free convolutuion affects (pseudo) variance
functions for NEF/CSK in a similar way. Eg. V(m) = m3 is
1/2-stable with respect to ∗/�.

I When V is cubic, polynomials from expansions of the density
are related to ”generalized orthogonality”.

Differences

I The generating measure of a NEF is not unique.

I The variance function of CSK family may be undefined.

I A CSK family may be well defined beyond the “domain of
means”.



Thank you



Thank you
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