Cauchy-Stieltjes families with polynomial variance functions

Wlodek Bryc University of Cincinnati

Luminy, July 10-14, 2017

NEF versus CSK families

Two examples of "kernel families" $k(x, \theta)\mu(dx)$

$$\mathcal{K} = \{ P_{\theta}(dx) : \theta \in \Theta \}$$

Natural exponential families (NEF) :

$$P_{ heta}(dx) = rac{1}{Z_{ heta}} e^{ heta x} \mu(dx)$$

where μ is a (probability) measure with (some) exponential moments, $\Theta = (\theta_-, \theta_+)$.

Cauchy-Stieltjes kernel families (CSK):

$$P_{\theta}(dx) = \frac{1}{Z_{\theta}} \frac{1}{1 - \theta x} \mu(dx)$$

where μ is a probability measure with support bounded from above. The "generic choice" for Θ is $\Theta = (0, \theta_+)$, or (θ_-, θ_+) if μ is compactly supported...

A specific example of CSK

Noncanonical parameterizations

Let
$$\mu = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_1$$
 be the Bernoulli measure.
 $Z_{\theta} = \int \frac{1}{1-\theta x} \mu(dx) = 1/2 + \frac{1/2}{1-\theta} = \frac{2-\theta}{2(1-\theta)}$

"Noncanonical" parametrization:

$$\blacktriangleright P_{\theta} = \frac{1-\theta}{2-\theta}\delta_0 + \frac{1}{2-\theta}\delta_1, \ \theta \in (-\infty, 1).$$

• "Canonical" parametrization: $p = \frac{1}{2-\theta}$

•
$$Q_p := P_{2-rac{1}{p}} = (1-p)\delta_0 + p\delta_1, \ p \in (0,1)$$

Bernoulli family parameterized by probability of success p.

•
$$p = \int x Q_p(dx)$$
 (parametrization by the mean)

Parametrization by the mean

$$m(\theta) = \int x P_{\theta}(dx) = \begin{cases} \frac{1}{Z_{\theta}} \frac{d}{d\theta} Z_{\theta} & \text{NEF} \\ \\ \frac{1}{Z_{\theta}} \frac{Z_{\theta} - 1}{\theta} & \text{CSK} \end{cases}$$

- For non-degenerate measure μ, function θ → m(θ) is strictly increasing and has inverse θ = θ(m).
- ▶ $\theta \mapsto m(\theta)$ maps $(0, \theta_+)$ onto (m_0, m_+) , "the domain of means".
- Parameterizations by the mean:

$$\{Q_m(dx):m\in(m_0,m_+)\}$$

where $Q_m(dx) = P_{\theta(m)}(dx)$

Variances for NEF or CSK

$$V(m) = \int (x-m)^2 Q_m(dx)$$

Variance function m → V(m) always exists for NEF.

exists for CSK when $\mu(dx)$ has the first moment.

- Variance function V(m) together with the domain of means m ∈ (m_−, m₊) determines NEF uniquely (Morris (1982)).
- Variance function V(m) of CSK family together with m₀ = m(0) ∈ ℝ, the mean of µ, determines measure µ uniquely

Hence V(m) determines CSK uniquely

CSK/NEF are determined uniquely by V(m) (some details are left out!)

(some details are left out!)

$$Q_m(dx) = f(x, m)\mu(dx)$$

• NEF: (Wedderburn (1974))

$$\frac{\partial}{\partial m}f(x,m) = \frac{x-m}{V(m)}f(x,m) \tag{1}$$

• CSK when
$$m_0 = \int x \mu(dx) = 0$$
:
 $\frac{f(x,m) - f(x,0)}{m} = \frac{x - m}{V(m)} f(x,m); \quad f(x,0) = 1,$ (2)

▶ In particular, (2) has solution $f(x, m) = \frac{V(m)}{V(m)+m(m-x)}$.

• When $f(x, m)\mu(dx)$ is a probability measure?

8m (>> Skip free cumulants

CSK is determined uniquely by the variance function

More precisely, by $V(\cdot)$ and $m_0 = \int x \mu(dx)$

Theorem (WB-Ismail(2005))

The free cumulants of compactly supported μ are

Recall that free cumulants $c_k(\mu)$ are polynomials in the moments $\int x d\mu$, $\int x^2 d\mu$, $\cdots \int x^k d\mu$, \ldots which linearize free convolution: $c_k(\mu \boxplus \nu) = c_k(\mu) + c_k(\nu)$.

All NEF with quadratic variance functions are known

Morris class. Meixner laws

- ► The NEF with the variance function V(m) = 1 + am + bm² was described by Morris (1982), Ismail-May (1978). Eg:
 - 1. \mathcal{K} is the family of Gaussian laws (of unit variance) iff V(m) = 1
 - 2. \mathcal{K} is the family Poisson-type laws iff V(m) = 1 + am with $a \neq 0$
 - 3. \mathcal{K} is the family of binomial type laws (affine transformations of the convolution powers of a Bernoulli law) iff $V(m) = 1 + am + bm^2$ with $-1 \le b = -1/n < 0$
- Letac-Mora (1990): cubic V(m)
 Eg., V(m) = m³ corresponds to the family of 1/2-stable laws
- Various other classes Kokonendji, Letac, ...

All CSK with quadratic variance functions are known

Suppose
$$m_0=0,\;V(m)=1+am+bm^2$$
 .

Theorem (WB-Ismail (2005))

Examples of quadratic variance functions (3 of 6 cases):

- **1.** μ is the Wigner's semicircle (free Gaussian) law iff V(m) = 1 $\mathcal{K}(\mu)$ are the (atomless) Marchenko-Pastur (free Poisson) type laws
- **2.** μ is the Marchenko-Pastur (free Poisson) type law iff V(m) = 1 + am with $a \neq 0$
- 3. μ is the free binomial type law (Kesten law, McKay law) iff $V(m) = 1 + am + bm^2$ with $-1 \le b < 0$

18m (Skip to cubic (part II) 25m (End now

Cubic variance functions

▶ In [WB-Hassairi (2011]) we consider $f(x, m) = \frac{\mathbb{V}(m)}{\mathbb{V}(m)+m(m-x)}$ with

$$\mathbb{V}(m) = m(am^2 + bm + c)$$

- ▶ Probability measure µ which generates CSK family Q_m(dx) = f(x, m)µ(dx) has no mean, so the variance of Q_m is infinite!
- This difficulty does not arise for NEF!

16 >> Skip pseudo Variance functions 19 m >> Go to cubic (part II) 25 m >> End now

Pseudo-Variance function for CSK

The variance

$$V(m) = \frac{1}{Z_{\theta(m)}} \int \frac{(x-m)^2}{1-\theta(m)x} \mu(dx)$$

is undefined if $m_0 = \int x \mu(dx) = -\infty$.

Consider

$$\mathbb{V}(m) = m\left(\frac{1}{\theta(m)} - m\right) \tag{3}$$

where $\theta(\cdot)$ is the inverse of $\theta \mapsto m(\theta) = \int x P_{\theta}(dx)$ on $(0, \theta_+)$.

- ► This defines a "pseudo-variance" function V(m) that is well defined for all non-degenerate probability measures µ with support bounded from above.
- When V(m) exists, then

$$\mathbb{V}(m) = \frac{m}{m - m_0} V(m)$$

Example: CSK family with cubic pseudo-variance function

Measure μ generating CSK with $\mathbb{V}(m) = m^3$ has density

$$\mu(dx) = \frac{\sqrt{-1-4x}}{2\pi x^2} \mathbb{1}_{(-\infty,-1/4)}(x) dx \tag{4}$$

Measure μ is 1/2-stable with respect to \boxplus , a fact already noted before: [Bercovici and Pata, 1999, page 1054], [Pérez-Abreu and Sakuma, 2008]

$$\left\{ Q_m(dx) = \frac{m^2 \sqrt{-1 - 4x}}{2\pi (m^2 + m - x)x^2} \mathbb{1}_{(-\infty, -1/4)}(x) dx : m \in (-\infty, m_+) \right\}$$

What is m_+ ? 19m (*) Skip domain of means 25m (*) End now

Domain of means: $\{Q_m : m \in (-\infty, m_+)\}$ Answers for $\mathbb{V}(m) = m^3$ (WB-Fakhfakh-Hassairi -2014)

1.
$$m \in (-\infty, -1)$$
, because $\lim_{\theta \nearrow \theta_{max}} m(\theta) = -1$.
2. $m \in (-\infty, -1/2)$, because $\frac{1}{1-\theta x} \mathbb{1}_{(-\infty, -1/4)}(x)$ is positive for $\theta \in (0, \infty) \cup (-\infty, -4)$, and $\lim_{\theta \nearrow -4} m(\theta) = -1/2$.
3. $m \in (-\infty, -1/2) \cup (-1/2, \infty)$, because $f(x, m) = \frac{m^2}{m^2 + m - x} \mathbb{1}_{(-\infty, -1/4)}(x) \ge 0$ for all $m \ne -1/2$.
• Unfortunately, $\int Q_m(dx) < 1$ for $m > -1/2$.
• But $Q_m(dx) := \frac{m^2}{(m^2 + m - x)} \mu(dx) + \frac{(1+2m)_+}{(m+1)^2} \delta_{m+m^2}$ is well defined and parameterized by the mean for all $m \in (-\infty, \infty)$.
Similar situation arises for $V(m) = 1$, where $Q_m(dx)$ is a

Similar situation arises for V(m) = 1, where $Q_m(dx)$ is a Marchenko-Pastur law. By adding an atom at $m + \frac{V(m)}{m}$ we can extend the domain of means to $(-\infty, \infty)$.

25 m > End now

Polynomial variance functions

Part II: finite mean $m_0 = 0$, V(0) = 1

Theorem (WB-Fakhfakh-2017)

 $V(m)=1+am+bm^2+cm^3$ is a variance functions for any real c and a if $b^3=27c^2$.

Remark

 $V(m) = 1 + m^2 + m^3$ is not a variance function. $V(m) = m + m^2 + m^3$ is a pseudo-variance function but measure μ has infinite mean.

This is p = 3 of the following more general result.

Theorem (WB-Fakhfakh-2017)

Fix real $p \ge 1$, and real a, c. Then for m close enought to 0, function $V(m) = (1 + cm)^p + am$ is a variance function of a CSK family generated by a compactly supported centered (\boxplus -infinitely divisible) probability measure.

A lemma on variance functions

The following seems to have no analogue for NEFs.

Theorem (WB-Fakhfakh-2017)

If V(m) is a variance function corresponding to a compactly supported centered probability measure μ_0 , then for any real a function

$$V_a(m) := am + V(m)$$

for m close enough to 0 is a variance function for a CSK family generated by some (uniquely determined) compactly supported centered probability measure μ_a .

Polynomial variance functions

Part II: finite mean $m_0 = 0$, V(0) = 1

The density of Q_m has series expansion

$$f(x,m)=\frac{V(m)}{V(m)+m(m-x)}=\sum_{n=0}^{\infty}P_n(x)m^n.$$

Polynomials $\{P_n(x)\}$ are monic and solve the recursion

$$xP_n(x) = P_{n+1}(x) + P_{n-1}(x) + \sum_{k=1}^n \frac{V^{(k)}(0)}{k!} P_{n+1-k}(x), \ n \ge 0$$

with $P_{-1}(x) = 0$ and $P_0(x) = 1$.

Theorem (WB-Fakhfakh-2017)

Suppose V is a variance function for CSK family generated by centered compactly supported measure μ , with V(0) > 0. Then the following are equivalent.

- **1**. V(m) is a polynomial of degree at most d + 1;
- **2.** There exist constants $\{b_k : k = 0, 1, ..., d + 1\}$ with $b_0 > 0$ such that polynomials $\{P_n\}$ satisfy finite recursion

$$xP_n(x) = \sum_{k=0}^{(d+1)\wedge n} b_k P_{n+1-k}(x), n \ge 2$$
 (5)

with initial conditions $P_0(x) = 1$, $P_1(x) = x$.

- Polynomials P_n(x), P_k(x) are orthogonal in L₂(dµ) for n ≥ 2 + (k − 1)d.
- **4.** Polynomial $P_2(x)$ is orthogonal in $L_2(d\mu)$ to all polynomials $\{P_n(x) : n \ge 2 + d\}.$

Summary

Kernels $e^{\theta x}$ and $1/(1 - \theta x)$ generate NEF and CSK families Similarities

- parameterizations by the mean
- Quadratic variance functions determine interesting laws
- Convolution/free convolutuion affects (pseudo) variance functions for NEF/CSK in a similar way. Eg. V(m) = m³ is 1/2-stable with respect to */⊞.
- ► When V is cubic, polynomials from expansions of the density are related to "generalized orthogonality".

Differences

- The generating measure of a NEF is not unique.
- The variance function of CSK family may be undefined.
- A CSK family may be well defined beyond the "domain of means".

Thank you

Thank you

▲ Back

References

Bercovici, H. and Pata, V. (1999).

Stable laws and domains of attraction in free probability theory. Ann. of Math. (2), 149(3):1023-1060. With an appendix by Philippe Biane.

Pérez-Abreu, V. and Sakuma, N. (2008).

Free generalized gamma convolutions.

Electron. Commun. Probab., 13:526-539.