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Density estimation from k-nn graphs.

Thomas Bonis
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Graphs for non-linear data analysis

K-means fails as it produces convex clusters

⇒ need a non-linear algorithm.



2

Graphs for non-linear data analysis

Non-linear data analysis in two steps:



2

Graphs for non-linear data analysis

Non-linear data analysis in two steps:

1) Build a neighborhood graph on the data.



2

Graphs for non-linear data analysis

Non-linear data analysis in two steps:

1) Build a neighborhood graph on the data.

2) Use a graph analysis algorithm.
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• Dimensionality reduction (Isomap, diffusion maps, etc.)
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• Manifold learning
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Graphs for non-linear data analysis

Graph-based approach is at the center of many non-linear algorithms:

• (Spectral) Clustering

• Dimensionality reduction (Isomap, diffusion maps, etc.)

• Semi supervised learning

• Manifold learning

Von Luxburg and Alamgir (2013): are we sure the graph contains all the
relevant information?
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X1, . . . , Xn ∈ (R/Z)d i.i.d ∼ µ with density f > 0.

Gk,n is a k-nearest neighbors graph on X1, . . . , Xn.

Vertices: X1, . . . , Xn

Edges: (Xi, Xj) where Xj is one of the k-nearest neighbor of Xi.
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The Problem

Question: can we estimate f from Gk,n?

Hashimoto et al. (2016): yes, but no quantitative guarantee.

X1, . . . , Xn ∈ (R/Z)d i.i.d ∼ µ with density f > 0.

Gk,n is a k-nearest neighbors graph on X1, . . . , Xn.
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X1, . . . , Xn ∈ (R/Z)d i.i.d ∼ µ with density f .

Gk,n is a k-nearest neighbors graph on X1, . . . , Xn.

Ting et al. (2010): a random walk on Gk,n is an approximation of a
diffusion process with generator:

Lµ̃ = f−2/d
(
∇ log f.∇+ 1

2∆
)

and reversible measure µ̃ with density proportional to f2+2/d.
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Random walks on k-nn graphs

X1, . . . , Xn ∈ (R/Z)d i.i.d ∼ µ with density f .

Gk,n is a k-nearest neighbors graph on X1, . . . , Xn.

Ting et al. (2010): a random walk on Gk,n is an approximation of a
diffusion process with generator:

Lµ̃ = f−2/d
(
∇ log f.∇+ 1

2∆
)

and reversible measure µ̃ with density proportional to f2+2/d.

Problem: invariant measures of random walks on directed graphs are com-
plex objects.

Idea: if the invariant measure of a random walk on Gk,n πk,n ≈ µ̃ then it
can be used to estimate f .

πk,n := invariant measure of a random walk on Gk,n (measure on (R/Z)d).
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Convergence result

Proposition
There exists C > 0 such that with probability 1− C

n ,

W2(ν, µ̃) ≤ C

(
n1/d
√

log n

k1/2+1/d
+

(
k

n

)1/d
)
.

.
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Convergence result

Proposition
There exists C > 0 such that with probability 1− C

n ,

W2(ν, µ̃) ≤ C

n1/d√log n

k1/2+1/d︸ ︷︷ ︸+

(
k

n

)1/d

︸ ︷︷ ︸
 .

. BiasVariance

Idea behind the proof: show the measures of (Yt)t≥0, diffusion process with
generator Lµ and Y0 ∼ πk,n does not change much as t goes to infinity.

Hashmioto et al. (2016): πk,n converges weakly to µ̃ when n→∞, k/n→
0, k >> n2/d+2 log(n)d/d+2

Can we obtain a quantitative version of this result?
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Open questions

• Variance term n1/d√logn
k1/2+1/d is suboptimal, we expect

√
logn
k .

k >> nα k >> log n

The smaller k, the sparse the graph.

Rate appearing in the convergence of other important quantities
(spectra of graph Laplacians).

• Pointwise convergence of πk,n (we only have measure convergence)

Invariant measure of random walks are used by graph algorithms such
as PageRank.

Obtain an actual density estimator which can be used in algorithms
(e.g. graph embedding)
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Central Limit Theorem

The Gaussian measure γ is the invariant measure of the diffusion process

Lγ = −x.∇+ ∆

X1, . . . , Xn i.i.d. with E[X1] = 0 and E[XXT ] = Id.

Sn := 1√
n

∑n
i=1Xi ∼ νn

Replacing one Xi at random with an independent copy X ′i we obtain a
discrete process.

• νn is an invariant measure of this discrete process.

• this process approximates the diffusion process with generator
Lγ .

⇒ νn ≈ γ.
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Central Limit Theorem

Theorem
If E[‖X1‖4] <∞, there exists C > 0 s.t.

W2(νn, γ) ≤ n−1/2d1/4E[X1X
T
1 ‖X1‖2]1/2.

X1, . . . , Xn i.i.d. with E[X1] = 0 and E[XXT ] = Id.
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Central Limit Theorem

Theorem
Let p ≥ 2. If E[‖X1‖p+2] <∞, there exists Cp > 0 s.t.

W2(νn, γ) ≤ Cpn−1/2
(
E[‖X‖p+2] + d1/4E[X1X

T
1 ‖X1‖2]1/2

)
.

X1, . . . , Xn i.i.d. with E[X1] = 0 and E[XXT ] = Id.
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Central Limit Theorem

Theorem
Let p ≥ 2. If E[‖X1‖p+q] < ∞, q ∈ [0, q], there exists Cp > 0 s.t., taking
m = min(2, q),

W2(νn, γ) ≤ Cp

(
n−1/2+(2−q)/2pE[‖X1‖p+q]1/p

+

{
n−m/4E[‖X1‖2+m]1/2 + o(n−m/4) if m < 2

n−1/2d1/4‖E[X1X
T
1 ‖X1‖2]‖1/2 if m = 2

)

X1, . . . , Xn i.i.d. with E[X1] = 0 and E[XXT ] = Id.

Probably (close to) optimal as it generalizes rates obtained in dimension 1.


