Sorted L-One Penalized Estimation (SLOPE)

Malgorzata Bogdan
University of Wroclaw
Luminy, 12 July 2017

Outline

- Genetic motivation

Outline

- Genetic motivation
- Multiple Testing

Outline

- Genetic motivation
- Multiple Testing
- Model selection in multiple regression
- Noiseless case - Linear programming - transition curve
- Noisy case - LASSO, SLOPE
- groupSLOPE
- further extensions

Genetic variability

- About $99,9 \%$ of genetic information is the same for all people.
- A polymorphism is a difference in DNA structure, which is present in at least 1\% of population
- A Single Nucleotide Polymorphism(SNP) is a polymorphism with the difference in the single base:
- A typical SNP: a position in DNA in which
- 85% of population has Cytosine(C)
- 15% has a Thymine(T).
- There are usually two forms of a SNP at a given locus
- three genotypes: AA, Aa, aa.

Main purpose

MAIN PURPOSE: finding the mutations in DNA sequence, that influence the trait of interest.

Main purpose

MAIN PURPOSE: finding the mutations in DNA sequence, that influence the trait of interest.

Y - quantitative trait

Main purpose

MAIN PURPOSE: finding the mutations in DNA sequence, that influence the trait of interest.

Y - quantitative trait
Examples: blood pressure, cholesterol level, gene expression level, response to the treatment

Data structure

$$
Y=\left(Y_{1}, \ldots, Y_{n}\right)^{T} \text { - vector of trait values for } n \text { individuals }
$$

Data structure

$Y=\left(Y_{1}, \ldots, Y_{n}\right)^{T}$ - vector of trait values for n individuals $G_{n \times p}$ - matrix of SNP genotypes

Data structure

$Y=\left(Y_{1}, \ldots, Y_{n}\right)^{T}$ - vector of trait values for n individuals
$G_{n \times p}$ - matrix of SNP genotypes
Usual coding for additive effects:

$$
X_{i j}=\left\{\begin{array}{lll}
0 & \text { if } & G_{i j}=a a \\
1 & \text { if } & G_{i j}=A a \\
2 & \text { if } & G_{i j}=A A
\end{array}\right.
$$

Data structure

$Y=\left(Y_{1}, \ldots, Y_{n}\right)^{T}$ - vector of trait values for n individuals
$G_{n \times p}$ - matrix of SNP genotypes
Usual coding for additive effects:

$$
X_{i j}=\left\{\begin{array}{lll}
0 & \text { if } & G_{i j}=a a \\
1 & \text { if } & G_{i j}=A a \\
2 & \text { if } & G_{i j}=A A
\end{array}\right.
$$

Usually $n \approx k \times 100$ or $k \times 1000, p \approx k \times 10,000$ or $p \approx k \times 100,000$

Data structure

$Y=\left(Y_{1}, \ldots, Y_{n}\right)^{T}$ - vector of trait values for n individuals
$G_{n \times p}$ - matrix of SNP genotypes
Usual coding for additive effects:

$$
X_{i j}=\left\{\begin{array}{lll}
0 & \text { if } & G_{i j}=a a \\
1 & \text { if } & G_{i j}=A a \\
2 & \text { if } & G_{i j}=A A
\end{array}\right.
$$

Usually $n \approx k \times 100$ or $k \times 1000, p \approx k \times 10,000$ or $p \approx k \times 100,000$
The dependency between SNPs is of a short range - even relatively close SNPs can be modeled as independent random variables.

Multiple testing (1)

Simple regression model for i-th gene:

$$
Y_{j}=\beta_{0}+\beta_{i} X_{i j}+\epsilon_{j}, \quad \epsilon_{j} \sim N\left(0, \tau^{2}\right)
$$

Multiple testing (1)

Simple regression model for i-th gene:

$$
Y_{j}=\beta_{0}+\beta_{i} X_{i j}+\epsilon_{j}, \quad \epsilon_{j} \sim N\left(0, \tau^{2}\right)
$$

$\hat{\beta}_{i}$ - estimated $\beta_{i}, \hat{\beta}_{i} \sim N\left(\beta_{i}, \sigma_{i}^{2}\right), \quad i=1, \ldots, p$

$$
H_{0 i}: \beta_{i}=0 \quad \text { vs } \quad \beta_{i} \neq 0
$$

Multiple testing (1)

Simple regression model for i-th gene:

$$
Y_{j}=\beta_{0}+\beta_{i} X_{i j}+\epsilon_{j}, \quad \epsilon_{j} \sim N\left(0, \tau^{2}\right)
$$

$\hat{\beta}_{i}$ - estimated $\beta_{i}, \hat{\beta}_{i} \sim N\left(\beta_{i}, \sigma_{i}^{2}\right), \quad i=1, \ldots, p$
$H_{0 i}: \beta_{i}=0$ vs $\beta_{i} \neq 0$
Reject $H_{0 i}$ when $\left|\hat{\beta}_{i}\right|>c_{i}$

Multiple testing (1)

Simple regression model for i-th gene:

$$
Y_{j}=\beta_{0}+\beta_{i} X_{i j}+\epsilon_{j}, \quad \epsilon_{j} \sim N\left(0, \tau^{2}\right)
$$

$\hat{\beta}_{i}$ - estimated $\beta_{i}, \hat{\beta}_{i} \sim N\left(\beta_{i}, \sigma_{i}^{2}\right), \quad i=1, \ldots, p$

$$
H_{0 i}: \beta_{i}=0 \quad \text { vs } \quad \beta_{i} \neq 0
$$

Reject $H_{0 i}$ when $\left|\hat{\beta}_{i}\right|>c_{i}$
Significance level: $\alpha=P_{H_{0 i}}\left(\left|T_{i}\right|>c\right)$

Multiple testing (1)

Simple regression model for i-th gene:

$$
Y_{j}=\beta_{0}+\beta_{i} X_{i j}+\epsilon_{j}, \quad \epsilon_{j} \sim N\left(0, \tau^{2}\right)
$$

$\hat{\beta}_{i}$ - estimated $\beta_{i}, \hat{\beta}_{i} \sim N\left(\beta_{i}, \sigma_{i}^{2}\right), \quad i=1, \ldots, p$

$$
H_{0 i}: \beta_{i}=0 \quad \text { vs } \quad \beta_{i} \neq 0
$$

Reject $H_{0 i}$ when $\left|\hat{\beta}_{i}\right|>c_{i}$
Significance level: $\alpha=P_{H_{0 i}}\left(\left|T_{i}\right|>c\right)$

	H_{0} accepted	H_{0} rejected	
H_{0} true	U	V	p_{0}
H_{0} false	T	S	p_{1}
	W	R	m

Multiple testing (1)

Simple regression model for i-th gene:

$$
Y_{j}=\beta_{0}+\beta_{i} X_{i j}+\epsilon_{j}, \quad \epsilon_{j} \sim N\left(0, \tau^{2}\right)
$$

$\hat{\beta}_{i}$ - estimated $\beta_{i}, \hat{\beta}_{i} \sim N\left(\beta_{i}, \sigma_{i}^{2}\right), \quad i=1, \ldots, p$

$$
H_{0 i}: \beta_{i}=0 \quad \text { vs } \quad \beta_{i} \neq 0
$$

Reject $H_{0 i}$ when $\left|\hat{\beta}_{i}\right|>c_{i}$
Significance level: $\alpha=P_{H_{0 i}}\left(\left|T_{i}\right|>c\right)$

	H_{0} accepted	H_{0} rejected	
H_{0} true	U	V	p_{0}
H_{0} false	T	S	p_{1}
	W	R	m
$F W E R=P(V>0), \quad F D R=E\left(\frac{V}{R \vee 1}\right)$			

Multiple testing (1)

Simple regression model for i-th gene:

$$
Y_{j}=\beta_{0}+\beta_{i} X_{i j}+\epsilon_{j}, \quad \epsilon_{j} \sim N\left(0, \tau^{2}\right)
$$

$\hat{\beta}_{i}$ - estimated $\beta_{i}, \hat{\beta}_{i} \sim N\left(\beta_{i}, \sigma_{i}^{2}\right), \quad i=1, \ldots, p$

$$
H_{0 i}: \beta_{i}=0 \quad \text { vs } \quad \beta_{i} \neq 0
$$

Reject $H_{0 i}$ when $\left|\hat{\beta}_{i}\right|>c_{i}$
Significance level: $\alpha=P_{H_{0 i}}\left(\left|T_{i}\right|>c\right)$

	H_{0} accepted	H_{0} rejected	
H_{0} true	U	V	p_{0}
H_{0} false	T	S	p_{1}
	W	R	m
$F W E R=P(V>0), \quad F D R=E\left(\frac{V}{R \vee 1}\right)$			
$E(V)=\alpha p_{0}$			

Multiple testing (1)

Simple regression model for i-th gene:

$$
Y_{j}=\beta_{0}+\beta_{i} X_{i j}+\epsilon_{j}, \quad \epsilon_{j} \sim N\left(0, \tau^{2}\right)
$$

$\hat{\beta}_{i}$ - estimated $\beta_{i}, \hat{\beta}_{i} \sim N\left(\beta_{i}, \sigma_{i}^{2}\right), \quad i=1, \ldots, p$

$$
H_{0 i}: \beta_{i}=0 \quad \text { vs } \quad \beta_{i} \neq 0
$$

Reject $H_{0 i}$ when $\left|\hat{\beta}_{i}\right|>c_{i}$
Significance level: $\alpha=P_{H_{0 i}}\left(\left|T_{i}\right|>c\right)$

	H_{0} accepted	H_{0} rejected	
H_{0} true	U	V	p_{0}
H_{0} false	T	S	p_{1}
	W	R	m

$F W E R=P(V>0), \quad F D R=E\left(\frac{V}{R \vee 1}\right)$

$$
E(V)=\alpha p_{0}
$$

$$
\alpha=0.05, p_{0}=5000 \rightarrow E(V)=250
$$

Multiple testing procedures

T_{1}, \ldots, T_{n} independent $T_{i} \sim N\left(\mu_{i}, 1\right), H_{0 i}: \mu_{i}=0$ vs $\mu_{i} \neq 0$ Bonferroni correction: Use significance level $\frac{\alpha}{p}$.

Multiple testing procedures

T_{1}, \ldots, T_{n} independent $T_{i} \sim N\left(\mu_{i}, 1\right), H_{0 i}: \mu_{i}=0$ vs $\mu_{i} \neq 0$ Bonferroni correction: Use significance level $\frac{\alpha}{p}$.
Reject $H_{0 ;}$ if $\left|T_{i}\right| \geq \Phi^{-1}\left(1-\frac{\alpha}{2 p}\right)=\sqrt{2 \log p}(1+o(1)$

Multiple testing procedures

T_{1}, \ldots, T_{n} independent $T_{i} \sim N\left(\mu_{i}, 1\right), H_{0 i}: \mu_{i}=0$ vs $\mu_{i} \neq 0$ Bonferroni correction: Use significance level $\frac{\alpha}{p}$.
Reject H_{0} if $\left|T_{i}\right| \geq \Phi^{-1}\left(1-\frac{\alpha}{2 p}\right)=\sqrt{2 \log p}(1+o(1)$
Benjamini-Hochberg procedure:
(1) $|T|_{(1)} \geq|T|_{(2)} \geq \ldots \geq|T|_{(p)}$
(2) Find the largest index i such that

$$
\begin{equation*}
|T|_{(i)} \geq \Phi^{-1}\left(1-\alpha_{i}\right), \quad \alpha_{i}=\alpha \frac{i}{2 p} \tag{1}
\end{equation*}
$$

Call this index isu.
(3) Reject all $H_{(i)}$'s for which $i \leq$ isu

Bonferroni correction

Benjamini and Hochberg correction

FWER and FDR control

For Bonferroni correction FWER $\leq \alpha$

FWER and FDR control

For Bonferroni correction FWER $\leq \alpha$
(Benjamini,Hochberg, 1995) If T_{1}, \ldots, T_{p} are independent then BH controls FDR at:

FWER and FDR control

For Bonferroni correction FWER $\leq \alpha$
(Benjamini,Hochberg, 1995) If T_{1}, \ldots, T_{p} are independent then BH controls FDR at:

$$
\begin{equation*}
\mathrm{FDR}=\mathbb{E}\left[\frac{V}{R \vee 1}\right]=\alpha \frac{p_{0}}{p}, \tag{2}
\end{equation*}
$$

where p_{0} is the number of true null hypotheses, $p_{0}=\left|\left\{i: \mu_{i}=0\right\}\right|$

FWER and FDR control

For Bonferroni correction FWER $\leq \alpha$
(Benjamini,Hochberg, 1995) If T_{1}, \ldots, T_{p} are independent then BH controls FDR at:

$$
\begin{equation*}
\mathrm{FDR}=\mathbb{E}\left[\frac{V}{R \vee 1}\right]=\alpha \frac{p_{0}}{p}, \tag{2}
\end{equation*}
$$

where p_{0} is the number of true null hypotheses, $p_{0}=\left|\left\{i: \mu_{i}=0\right\}\right|$
(Benjamini, Yekutieli, 2001) If test statistics are dependent then BH controls FDR at the level $\alpha \frac{p_{0}}{p}$ if $|T|_{(i)}$ is compared with $\sigma \Phi^{-1}\left(1-\frac{i \alpha}{p \sum_{i=1}^{p} \frac{1}{i}}\right)$.

Asymptotic optimality (1)
Abramovich, Benjamini, Donoho and Johnstone, Ann.Statist. 2006

Asymptotic optimality (1)

Abramovich, Benjamini, Donoho and Johnstone, Ann.Statist. 2006

$$
T_{i} \sim N\left(\beta_{i}, 1\right), \text { independent for } i=1, \ldots, p
$$

Asymptotic optimality (1)

Abramovich, Benjamini, Donoho and Johnstone, Ann.Statist. 2006

$$
T_{i} \sim N\left(\beta_{i}, 1\right), \quad \text { independent for } i=1, \ldots, p
$$

Goal - estimation of $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right)$

Asymptotic optimality (1)

Abramovich, Benjamini, Donoho and Johnstone, Ann.Statist. 2006

$$
T_{i} \sim N\left(\beta_{i}, 1\right), \quad \text { independent for } i=1, \ldots, p
$$

Goal - estimation of $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right)$

$$
\tilde{\beta}_{i}=T_{i} \text { if } \mathrm{BH} \text { rejects } H_{0 i}: \beta_{i}=0
$$

Asymptotic optimality (1)

Abramovich, Benjamini, Donoho and Johnstone, Ann.Statist. 2006

$$
T_{i} \sim N\left(\beta_{i}, 1\right), \quad \text { independent for } i=1, \ldots, p
$$

Goal - estimation of $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right)$

$$
\begin{gathered}
\tilde{\beta}_{i}=T_{i} \text { if } \mathrm{BH} \text { rejects } H_{0 i}: \beta_{i}=0 \\
\tilde{\beta}_{i}=0 \text { otherwise }
\end{gathered}
$$

Optimality (2)

$$
\theta=\frac{p-p_{0}}{p} \text { - proportion of alternative hypotheses, }
$$

Optimality (2)

$$
\theta=\frac{p-p_{0}}{p} \text { - proportion of alternative hypotheses, }
$$

q_{p} - nominal FDR level

Optimality (2)

$$
\theta=\frac{p-p_{0}}{p} \text { - proportion of alternative hypotheses, }
$$

q_{p} - nominal FDR level

$$
R_{p}=\inf _{\hat{\beta}} \sup _{\beta: \theta<\eta_{p}} E\|\hat{\beta}-\beta\|^{r}
$$

Optimality (2)

$$
\theta=\frac{p-p_{0}}{p} \text { - proportion of alternative hypotheses, }
$$

$q_{p}-$ nominal FDR level

$$
R_{p}=\inf _{\hat{\beta}} \sup _{\beta: \theta<\eta_{p}} E\|\hat{\beta}-\beta\|^{r}
$$

Theorem
Assumptions:

- $q_{p} \rightarrow c \in[0,1 / 2]$ and $q_{p}>\gamma / \log (p)$ for some $\gamma>0$
- $\eta_{p} \in\left[p^{-1} \log ^{5} p, p^{-\delta}\right], \quad \delta>0$
- $r \in(0,2]$

$$
\sup _{\beta: \theta<\eta_{p}} E\|\tilde{\beta}-\beta\|^{r}=R_{p}(1+o(1))
$$

Classification risk

Bogdan, Chakrabarti, Frommlet, Ghosh, Ann.Statist. 2011 Neuvial, Roquain, Ann. Statist. 2012

Classification risk

Bogdan, Chakrabarti, Frommlet, Ghosh, Ann.Statist. 2011 Neuvial, Roquain, Ann. Statist. 2012
Bayes risk, γ_{0} - loss for type I error, γ_{A} - loss for type II error

Classification risk

Bogdan, Chakrabarti, Frommlet, Ghosh, Ann.Statist. 2011 Neuvial, Roquain, Ann. Statist. 2012
Bayes risk, γ_{0} - loss for type I error, γ_{A} - loss for type II error $\beta_{i} \sim(1-\theta) \delta_{0}+\theta N\left(0, \tau^{2}\right)$

Classification risk

Bogdan, Chakrabarti, Frommlet, Ghosh, Ann.Statist. 2011 Neuvial, Roquain, Ann. Statist. 2012
Bayes risk, γ_{0} - loss for type I error, γ_{A} - loss for type II error $\beta_{i} \sim(1-\theta) \delta_{0}+\theta N\left(0, \tau^{2}\right)$ $T_{i} \sim(1-\theta) N(0,1)+\theta N\left(0,1+\tau^{2}\right)$

Classification risk

Bogdan, Chakrabarti, Frommlet, Ghosh, Ann.Statist. 2011 Neuvial, Roquain, Ann. Statist. 2012
Bayes risk, γ_{0} - loss for type I error, γ_{A} - loss for type II error $\beta_{i} \sim(1-\theta) \delta_{0}+\theta N\left(0, \tau^{2}\right)$ $T_{i} \sim(1-\theta) N(0,1)+\theta N\left(0,1+\tau^{2}\right)$
Bayes oracle \rightarrow Bayes classifier

Classification risk

Bogdan, Chakrabarti, Frommlet, Ghosh, Ann.Statist. 2011 Neuvial, Roquain, Ann. Statist. 2012
Bayes risk, γ_{0} - loss for type I error, γ_{A} - loss for type II error $\beta_{i} \sim(1-\theta) \delta_{0}+\theta N\left(0, \tau^{2}\right)$ $T_{i} \sim(1-\theta) N(0,1)+\theta N\left(0,1+\tau^{2}\right)$
Bayes oracle \rightarrow Bayes classifier
The rule is Asymptotically Bayes Optimal under Sparsity (ABOS) if $\lim \frac{R}{R_{\text {opt }}} \rightarrow 1($ as $p \rightarrow \infty)$

Classification risk

Bogdan, Chakrabarti, Frommlet, Ghosh, Ann.Statist. 2011 Neuvial, Roquain, Ann. Statist. 2012
Bayes risk, γ_{0} - loss for type I error, γ_{A} - loss for type II error $\beta_{i} \sim(1-\theta) \delta_{0}+\theta N\left(0, \tau^{2}\right)$ $T_{i} \sim(1-\theta) N(0,1)+\theta N\left(0,1+\tau^{2}\right)$
Bayes oracle \rightarrow Bayes classifier
The rule is Asymptotically Bayes Optimal under Sparsity (ABOS) if $\lim \frac{R}{R_{\text {opt }}} \rightarrow 1$ (as $p \rightarrow \infty$)
BH is ABOS if $\theta \propto p^{-\beta}, \beta \in(0,1], \tau \propto \sqrt{2 \beta \log p}$

Classification risk

Bogdan, Chakrabarti, Frommlet, Ghosh, Ann.Statist. 2011 Neuvial, Roquain, Ann. Statist. 2012
Bayes risk, γ_{0} - loss for type I error, γ_{A} - loss for type II error $\beta_{i} \sim(1-\theta) \delta_{0}+\theta N\left(0, \tau^{2}\right)$
$T_{i} \sim(1-\theta) N(0,1)+\theta N\left(0,1+\tau^{2}\right)$
Bayes oracle \rightarrow Bayes classifier
The rule is Asymptotically Bayes Optimal under Sparsity (ABOS) if $\lim \frac{R}{R_{\text {opt }}} \rightarrow 1$ (as $p \rightarrow \infty$)
BH is ABOS if $\theta \propto p^{-\beta}, \beta \in(0,1], \tau \propto \sqrt{2 \beta \log p}$
Bonferroni correction is ABOS if $\beta=1$

Multiple regression model - Noisless case - Transition curve of Donoho and Tanner (2005)

$$
Y=X_{n \times p} \beta
$$

Multiple regression model - Noisless case - Transition curve of Donoho and Tanner (2005)

$$
Y=X_{n \times p} \beta
$$

$k=\|\beta\|_{0} \leq \min (n, p)-$ number of nonzero elements in β

Multiple regression model - Noisless case - Transition curve of Donoho and Tanner (2005)

$$
Y=X_{n \times p} \beta
$$

$k=\|\beta\|_{0} \leq \min (n, p)-$ number of nonzero elements in β
If $p>n$ minimize $\|\beta\|_{0}$ subject to $Y=X \beta$ - problem NP hard

Multiple regression model - Noisless case - Transition curve of Donoho and Tanner (2005)

$$
Y=X_{n \times p} \beta
$$

$k=\|\beta\|_{0} \leq \min (n, p)-$ number of nonzero elements in β
If $p>n$ minimize $\|\beta\|_{0}$ subject to $Y=X \beta$ - problem NP hard
Convex relaxation: minimize $\|\beta\|_{1}=\sum_{i=1}^{n}\left|\beta_{i}\right|$ subject to $Y=X \beta$.

Multiple regression model - Noisless case - Transition curve of Donoho and Tanner (2005)

$$
Y=X_{n \times p} \beta
$$

$k=\|\beta\|_{0} \leq \min (n, p)-$ number of nonzero elements in β
If $p>n$ minimize $\|\beta\|_{0}$ subject to $Y=X \beta$ - problem NP hard
Convex relaxation: minimize $\|\beta\|_{1}=\sum_{i=1}^{n}\left|\beta_{i}\right|$ subject to $Y=X \beta$.

$$
\rho=k / p \text { and } \delta=n / p
$$

Multiple regression model - Noisless case - Transition curve of Donoho and Tanner (2005)

$$
Y=X_{n \times p} \beta
$$

$k=\|\beta\|_{0} \leq \min (n, p)$ - number of nonzero elements in β
If $p>n$ minimize $\|\beta\|_{0}$ subject to $Y=X \beta$ - problem NP hard
Convex relaxation: minimize $\|\beta\|_{1}=\sum_{i=1}^{n}\left|\beta_{i}\right|$ subject to $Y=X \beta$.

$$
\rho=k / p \text { and } \delta=n / p
$$

Theorem
If $X_{i j}$ are iid $N\left(0, \sigma^{2}\right)$ then with probability converging to 1 the linear program can identify the true solution if $\rho<\rho(\delta)$. If $\rho>\rho(\delta)$ then the probability of recovering the true solution converges to 0 .

Transition curve (2)

Phase Transition: (l_{1}, l_{0}) equivalence

$\rho=k / n l_{0}$

Noisy case - statistical problem

$$
Y_{n \times 1}=X_{n \times p} \beta_{p \times 1}+z_{n \times 1}, \quad z \sim N(0, \sigma l)
$$

Noisy case - statistical problem

$$
Y_{n \times 1}=X_{n \times p} \beta_{p \times 1}+z_{n \times 1}, \quad z \sim N(0, \sigma l)
$$

Convex program: Minimize $\|b\|_{1}$ subject to $\|Y-X b\|_{2}^{2} \leq \epsilon$
Or alternatively: $\min _{b \in R^{\rho}} \frac{1}{2}\|y-X b\|_{2}^{2}+\lambda\|b\|_{1}$

Noisy case - statistical problem

$$
Y_{n \times 1}=X_{n \times p} \beta_{p \times 1}+z_{n \times 1}, \quad z \sim N(0, \sigma l)
$$

Convex program: Minimize $\|b\|_{1}$ subject to $\|Y-X b\|_{2}^{2} \leq \epsilon$
Or alternatively: $\min _{b \in R^{\rho}} \frac{1}{2}\|y-X b\|_{2}^{2}+\lambda\|b\|_{1}$
In statistics this procedure is called LASSO (Tibshirani, 1996)

Selection of the tuning parameter for LASSO

- General rule: the reduction of λ_{L} results in identification of more elements from the true support (true discoveries) but at the same time it produces more falsely identified variables (false discoveries)
- The choice of λ_{L} is challenging- e.g. crossvalidation typically leads to many false discoveries
- When $X^{T} X=I$ Lasso selects X_{j} iff $\left|\hat{\beta}_{j}^{L S}\right|>\lambda$
- Selection $\lambda=\sigma \Phi^{-1}(1-\alpha /(2 p)) \approx \sigma \sqrt{2 \log p}$ corresponds to Bonferroni correction and controls FWER.

SLOPE (Bogdan,van den Berg, Sabatti, Su and Candès, AOAS, 2015)

SLOPE is an extension of LASSO aimed at control of FDR rather than FWER

- SLOPE is defined as solution to

$$
\begin{equation*}
\beta_{S L}=\operatorname{argmin}_{b}\left\{\frac{1}{2}\|y-X b\|_{2}^{2}+\sum_{i=1}^{p} \lambda_{i}|b|_{(i)}\right\} \tag{SLOPE}
\end{equation*}
$$

where $|b|_{(1)} \geq \ldots \geq|b|_{(p)}$ are ordered magnitudes of coefficients of b and $\lambda_{1} \geq \ldots \geq \lambda_{p} \geq 0$ is the sequence of tuning parameters

SLOPE (Bogdan,van den Berg, Sabatti, Su and Candès, AOAS, 2015)

SLOPE is an extension of LASSO aimed at control of FDR rather than FWER

- SLOPE is defined as solution to

$$
\begin{equation*}
\beta_{S L}=\operatorname{argmin}_{b}\left\{\frac{1}{2}\|y-X b\|_{2}^{2}+\sum_{i=1}^{p} \lambda_{i}|b|_{(i)}\right\}, \tag{SLOPE}
\end{equation*}
$$

where $|b|_{(1)} \geq \ldots \geq|b|_{(p)}$ are ordered magnitudes of coefficients of b and $\lambda_{1} \geq \ldots \geq \lambda_{p} \geq 0$ is the sequence of tuning parameters

- The above optimization problem is convex and can be efficiently solved even for large design matrices

SLOPE (Bogdan,van den Berg, Sabatti, Su and Candès, AOAS, 2015)

SLOPE is an extension of LASSO aimed at control of FDR rather than FWER

- SLOPE is defined as solution to

$$
\begin{equation*}
\beta_{S L}=\operatorname{argmin}_{b}\left\{\frac{1}{2}\|y-X b\|_{2}^{2}+\sum_{i=1}^{p} \lambda_{i}|b|_{(i)}\right\}, \tag{SLOPE}
\end{equation*}
$$

where $|b|_{(1)} \geq \ldots \geq|b|_{(p)}$ are ordered magnitudes of coefficients of b and $\lambda_{1} \geq \ldots \geq \lambda_{p} \geq 0$ is the sequence of tuning parameters

- The above optimization problem is convex and can be efficiently solved even for large design matrices
- Sorted L-One Norm: $J_{\lambda}(b)=\sum_{i=1}^{p} \lambda_{i}|b|_{(i)}$ reduces to $\|b\|_{1}$ if $\lambda_{1}=\ldots=\lambda_{p}$ and to $\|b\|_{\infty}$ if $\lambda_{1}>\lambda_{2}=\ldots=\lambda_{p}=0$

Unit balls for different SLOPE sequences by D.Brzyski

False discovery rate (FDR) control

- Let $\widetilde{\beta}$ be estimate of β

False discovery rate (FDR) control

- Let $\widetilde{\beta}$ be estimate of β
- We define:

False discovery rate (FDR) control

- Let $\widetilde{\beta}$ be estimate of β
- We define:
- the number of all discoveries, $R:=\left|\left\{i: \widetilde{\beta}_{i} \neq 0\right\}\right|$

False discovery rate (FDR) control

- Let $\widetilde{\beta}$ be estimate of β
- We define:
- the number of all discoveries, $R:=\left|\left\{i: \widetilde{\beta}_{i} \neq 0\right\}\right|$
- the number of false discoveries,

$$
V:=\left|\left\{i: \beta_{i}=0, \quad \widetilde{\beta}_{i} \neq 0\right\}\right|
$$

False discovery rate (FDR) control

- Let $\widetilde{\beta}$ be estimate of β
- We define:
- the number of all discoveries, $R:=\left|\left\{i: \widetilde{\beta}_{i} \neq 0\right\}\right|$
- the number of false discoveries,

$$
V:=\left|\left\{i: \beta_{i}=0, \quad \widetilde{\beta}_{i} \neq 0\right\}\right|
$$

- false discovery rate, $F D R:=\mathbb{E}\left[\frac{V}{\max \{R, 1\}}\right]$

FDR control with SLOPE

Theorem
When $X^{\top} X=I$ SLOPE with

$$
\lambda_{i}:=\sigma \Phi^{-1}\left(1-i \cdot \frac{q}{2 p}\right)
$$

controls FDR at the level $q \frac{p_{0}}{p}$.

Asymptotic optimality, Su and Candès (Annals of Statistics, 2016)

Theorem
Let $X_{i j} \sim N(0,1 / \sqrt{n})$. Fix $0<q<1$ and choose
$\lambda=\sigma(1+\epsilon) \lambda^{B H}(q)$ for some arbitrary constant $0<\epsilon<1$.
Suppose $k / p \rightarrow 0$ and $\frac{k \log p}{n} \rightarrow 0$. Then

$$
\begin{gathered}
\sup _{\left\|\beta_{0}\right\| \leq k} P\left(\frac{\left\|\hat{\beta}_{S L}-\beta\right\|^{2}}{2 \sigma^{2} k \log (p / k)}>1+3 \epsilon\right) \rightarrow 0 \\
\inf _{\hat{\beta}} \sup _{\left\|\beta_{0}\right\| \leq k} P\left(\frac{\|\hat{\beta}-\beta\|^{2}}{2 \sigma^{2} k \log (p / k)}>1-\epsilon\right) \rightarrow 1
\end{gathered}
$$

Random designs - problems with shrinkage

$$
\begin{gathered}
\hat{\beta}=\eta_{\lambda}\left(\beta_{i}+X_{i}^{\prime} z+v_{i}\right) \\
v_{i}=\left\langle X_{i}, \sum_{j \neq i} X_{j}\left(\beta_{j}-\hat{\beta}_{j}\right)\right\rangle
\end{gathered}
$$

$$
\eta_{\lambda}(t)=\operatorname{sgn}(t)(|t|-\lambda)_{+}, \quad \text { applied componentwise }
$$

Random designs - problems with shrinkage

$$
\begin{gathered}
\hat{\beta}=\eta_{\lambda}\left(\beta_{i}+X_{i}^{\prime} z+v_{i}\right) \\
v_{i}=\left\langle X_{i}, \sum_{j \neq i} X_{j}\left(\beta_{j}-\hat{\beta}_{j}\right)\right\rangle \\
\eta_{\lambda}(t)=\operatorname{sgn}(t)(|t|-\lambda)_{+}, \quad \text { applied componentwise }
\end{gathered}
$$

If $X^{T} X=I$ then $X_{i}^{\prime} z=Z_{i} \sim N(0,1), v_{i}=0$ and $H_{0 i}$ is rejected if $\beta_{i}+Z_{i}>\lambda$

Random designs - problems with shrinkage

$$
\begin{gathered}
\hat{\beta}=\eta_{\lambda}\left(\beta_{i}+X_{i}^{\prime} z+v_{i}\right) \\
v_{i}=\left\langle X_{i}, \sum_{j \neq i} X_{j}\left(\beta_{j}-\hat{\beta}_{j}\right)\right\rangle
\end{gathered}
$$

$$
\eta_{\lambda}(t)=\operatorname{sgn}(t)(|t|-\lambda)_{+}, \quad \text { applied componentwise }
$$

If $X^{\top} X=I$ then $X_{i}^{\prime} z=Z_{i} \sim N(0,1), v_{i}=0$ and $H_{0 i}$ is rejected if $\beta_{i}+Z_{i}>\lambda$
When the design is not orthogonal: $v_{i} \neq 0$ - additional noise, dependent on λ (level of shrinkage) and the level of sparsity

Random designs - problems with shrinkage

$$
\begin{gathered}
\hat{\beta}=\eta_{\lambda}\left(\beta_{i}+X_{i}^{\prime} z+v_{i}\right) \\
v_{i}=\left\langle X_{i}, \sum_{j \neq i} X_{j}\left(\beta_{j}-\hat{\beta}_{j}\right)\right\rangle
\end{gathered}
$$

$$
\eta_{\lambda}(t)=\operatorname{sgn}(t)(|t|-\lambda)_{+}, \quad \text { applied componentwise }
$$

If $X^{\top} X=I$ then $X_{i}^{\prime} z=Z_{i} \sim N(0,1), v_{i}=0$ and $H_{0 i}$ is rejected if $\beta_{i}+Z_{i}>\lambda$
When the design is not orthogonal: $v_{i} \neq 0$ - additional noise, dependent on λ (level of shrinkage) and the level of sparsity Quantification for LASSO using AMP theory - Bayati and Montanari (IEEE Trans. Infom. Theory, 2011)

Limits on FDR control

- Bogdan, van den Berg, Su and Candes (2013, arxive)
- Bogdan, Su and Candes (2017, to appear in Ann. Statist)

Thresholds, $q=0.2, p=5000$ (1)

Thresholds, $q=0.05, p=5000$ (2)

FDR, $p=n=5000$, Gaussian design

MSE, $p=262144, n=p / 2, k=10$, Gaussian design

MSE, $p=262144, n=p / 2, k=1000$, Gaussian design

geneSLOPE - application for full GWAS data

Brzyski, Peterson, Sobczyk, Bogdan, Candés, Sabatti (Genetics, 2017)

Power

Group SLOPE

Identification of groups of predictors (Brzyski, Gossmann, Su, Bogdan, arxiv 2016, under revision for JASA, ENAR Young Researcher Award for Damian Brzyski, March 2017):

$$
\begin{gathered}
{[[\beta]]_{I}:=\left(\left\|X_{l_{1}} \beta_{l_{1}}\right\|_{2}, \ldots,\left\|X_{I_{m}} \beta_{l_{m}}\right\|_{2}\right)^{\top} .} \\
\beta^{g S}:=\operatorname{argmin}_{b}\left\{\frac{1}{2}\|y-X b\|_{2}^{2}+\sigma J_{\lambda}\left(W[[b]]_{l}\right)\right\},
\end{gathered}
$$

where W is a diagonal matrix with $W_{i, i}:=w_{i}$, for $i=1, \ldots, m$.

Group FDR

$$
\begin{gathered}
R g:=\left|\left\{i:\left\|X_{l_{i}} \beta_{l_{i}}^{g S}\right\|_{2} \neq 0\right\}\right| \\
V g:=\left|\left\{i:\left\|X_{l_{i}} \beta_{l_{i}}\right\|_{2}=0,\left\|X_{l_{i}} \beta_{l_{i}}^{g S}\right\|_{2} \neq 0\right\}\right|
\end{gathered}
$$

We define the false discovery rate for groups (gFDR) as

$$
g F D R:=\mathbb{E}\left[\frac{V g}{\max \{R g, 1\}}\right]
$$

gFDR control

Theorem
Let the design matrix X satisfy $X_{l_{i}}^{\top} X_{l_{j}}=0$, for any $i \neq j$. Denote the number of zero coefficients in $[[\beta]]$, by m_{0} and let w_{1}, \ldots, w_{m} be positive numbers. Moreover, define the sequence of regularizing parameters $\lambda^{\max }=\left(\lambda_{1}^{\max }, \ldots, \lambda_{m}^{\max }\right)^{\top}$, with

$$
\begin{equation*}
\lambda_{i}^{\max }:=\max _{j=1, \ldots, m}\left\{\frac{1}{w_{j}} F_{\chi_{l_{j}}}^{-1}\left(1-\frac{q \cdot i}{m}\right)\right\} \tag{3}
\end{equation*}
$$

where $F_{\chi_{I_{j}}}$ is a cumulative distribution function of χ distribution with l_{j} degrees of freedom. Then any solution, $\beta^{\mathrm{ES}(g S)}$, to $g S L O P E$ generates the same vector $\left[\left[\beta^{g S}\right]\right]$, and it holds

$$
g F D R=\mathbb{E}\left[\frac{V g}{\max \{R g, 1\}}\right] \leq q \cdot \frac{m_{0}}{m}
$$

(a) equal sizes $\lambda^{\max }$

(c) different sizes $\lambda^{\text {mean }}$

(b) different sizes $\lambda^{\text {max }}$

(d) different sizes

Averaged λ

$$
\begin{equation*}
\lambda_{r}^{\text {mean }}:=\bar{F}^{-1}\left(1-\frac{q r}{m}\right) \quad \text { for } \quad \bar{F}(x):=\frac{1}{m} \sum_{i=1}^{m} F_{w_{i}^{-1} \chi_{i}}(x) \tag{4}
\end{equation*}
$$

where $F_{w_{i}^{-1} \chi_{i}}$ is the cumulative distribution function of scaled chi distribution with I_{i} degrees of freedom and scale $\mathcal{S}=w_{i}^{-1}$. Gossmann, Brzyski et al. (2017) - Proof of FDR control in case when averaging is with respect to the distribution generating groups of different sizes and the signal is randomly placed between groups.

Simulations under Gaussian design, $n=5000, m=1000$, $p=7917$

Applications for GWAS

$$
n=5402, p=26233 \text { - roughly independent SNPs }
$$

Applications for GWAS

$n=5402, p=26233$ - roughly independent SNPs
Scenario 1: $Y=X \beta+z$ - additive model

Applications for GWAS

$n=5402, p=26233$ - roughly independent SNPs
Scenario 1: $Y=X \beta+z$ - additive model
Scenario 2: modeling dominance

$$
\begin{gather*}
\tilde{z}_{i j}=\left\{\begin{array}{rrr}
-1 & \text { for } a, A A, \\
1 & \text { for } a A
\end{array},\right. \tag{5}\\
y=[X, Z]\left[\beta_{X}^{\prime}, \beta_{Z}^{\prime}\right]^{\prime}+\epsilon .
\end{gather*}
$$

Simulation results for, aditive

FDR, dominance

Power, additive

Power, dominance

Genes Influencing Level of Triglicerides

5 new discoveries with group SLOPE - recessive rare genetic variants. Discovery 5-37 rare homozygotes

Logistic SLOPE (Michal Kos, Sangkyun Lee, M.Bogdan

I(b) - log-likelihood

$$
\min _{b}\left(-I(b)+\sum \lambda_{i}\left|b_{(i)}\right|\right)
$$

$\lambda_{i}=0.5 \Phi^{-1}\left(1-\frac{q i}{2 p}\right)$
Asymptotic FDR control when X is a random design such that

- for all $i, j: x_{i j}$ are independent and $E x_{i j}=0$
- elements in each column of design matrix X are i.i.d.
- $\mathbb{E}\left[X^{\top} X\right]=I\left(\Rightarrow \operatorname{var}\left(x_{i j}\right)=n^{-1}\right)$
- there exist constant M that for all i and j :

$$
\frac{\left|x_{i j}\right|}{\sqrt{\operatorname{var}\left(x_{i j}\right)}}=x_{i j} \sqrt{n} \leqslant M
$$

- p and β are fixed, $n \rightarrow \infty$

FDR

Power

MSE

Portfolio Optimization, (Philipp Kremmer, Sangkyun Lee, M. Bogdan, Sandra Paterlini)

$$
\begin{aligned}
& R_{t \times k}=\left(R_{1}, \ldots, R_{k}\right) \text { - asset returns, } \\
& E(R)=\mu, R=F_{t \times r} B_{r \times k}, r \ll k
\end{aligned}
$$

$$
\begin{gather*}
\min _{w \in \mathbb{R}^{k}} \frac{\phi}{2} w^{\prime} \sum w-\mu^{\prime} w+J_{\lambda}(w) \tag{6}\\
\text { s.t. } \sum_{i=1}^{k} w_{i}=1 \tag{7}
\end{gather*}
$$

Evolution of Portfolio

Other results/current work

1. Brzyski, Gossmann, Su, Bogdan - Group SLOPE, under revision for JASA
2. Lee, Brzyski, Bogdan - Ordered Dantzig Selector, AISTAT 2016
3. Kos, Lee, Bogdan - Logistic regression - asymptotic FDR control under random designs (p fixed, $n \rightarrow \infty$).
4. Lee, Sobczyk, Bogdan - Graphical models - FDR control at the block level
5. Kremmer, Lee, Bogdan, Paterlini - Portfolio optimization prediction under factorial (correlated) designs
