
A review of challenges in high 
dimensional multiple inferences

Yoav Benjamini 
Tel Aviv University, Israel

Mathematical Methods in Modern Statistics 
Luminy, 2017 

 
www.replicability.tau.ac.il  



Collaborative research with many
 
Ruth Heller, Dani Yekutieli, Tzviel Frostig, Tel Aviv U 
Marina Bogomolov, Technion 
Jonathan Rosenblatt, Ben Gurion U 
 
Philip Stark, Will Fithian, UC Berkeley 
Chiara Sabatti,  Assaf Weinstein, Stanford 
Yotam Hechtlinger, Carnegie Mellon 
Christine Peterson, AMC, Texas  
 
ERC – Advanced Research Grant 
Practical Statistical Approaches to Replicability Problems in 
Life Sciences (PSARPS) 

      



The Replicability Problems in Science 



•  Reproduce the study: from the original data, through 
analysis, to get same figures and conclusions 

•  Replicability of results: replicate the entire study, from 
enlisting subjects through collecting data, and analyzing 
the results, in a similar but not necessarily identical way, 
yet get essentially the same results. 

            (Biostatistics, Editorial 2010, Nature Editorial 2013, NSF 2015) 

•  A confusion about terminology: 
  “ reproducibilty is the ability to replicate the results…” 
    in a paper on “reproducibility is not replicability” 
 
We can therefore assure reproducibility of a single study 

    but only enhance its replicability 
 

Reproducibility/Replicability 



At the level of the single study? 
All agree 
1.  Well and transparently designed experiment  
2.  Reproducible data analysis and computation 

 (Nature ’13, NIH in Nature ’14, Science ’14) 
Also 
3.  Statistical methodology that enhances replicability 

 But what is it?  
 What problems should it address? 

Enhancing Replicability 



•  Psychological Science “… seeks to aid researchers in 
shifting from reliance on NHST …    we have published a 
tutorial by Cumming (‘14), a leader in the new-statistics 
movement…” 

•  9. Do not trust any p value. 
•  10. Whenever possible, avoid using statistical significance 

or p-values; simply omit any mention of null hypothesis 
significance testing (NHST). 

•  14. Prefer 95% CIs to SE bars. Routinely report 95% CIs… 
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It’s the p-values’ fault 



Ban them!  

Basic and Applied Social Psychology 
Editorial by Trafimow & Marks Feb 24, 2015 
•  “From now on, BASP is banning the NHSTP…prior to 

publication, authors will have to remove all vestiges of the 
NHSTP (p -values, t -values, F –values, statements about 
‘‘significant’’ differences or lack thereof, and so on). 



Given the the attack on the p-value, a year long process started 
by American Statistical Association (ASA). 
ASA Board’s statement about p-values (Am. Stat. 2016):  
•  Opens: The p-value “can be useful” 

•  Then comes: a list of “do not” ”is not” and “should not” “leads 
to distortion” – all warnings phrased about the p-value. 

•  It concludes: “In view of the prevalent misuses of and 
misconceptions concerning p-values, some statisticians 
prefer to supplement or even replace p-values with other 
approaches. “ 

It’s the p-values’ fault! 

 “We’re finally starting to get rid of the p-value tyranny” 
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Is it the p-values’ fault? 



Replicability with significance 

  
“We may say that a phenomenon is experimentally 

demonstrable when we know how to conduct an 
experiment which will rarely fail to give us statistically 
significant results.” 
              Fisher (1935) “The Design of Experiments”.

 
 



 
What other approaches were mentioned?  

 Confidence intervals 

 Prediction intervals 

 Estimation    

 Likelihood ratios 

 Bayesian methods 

 Bayes factor 

 Credibility intervals,  
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What other approaches were mentioned?  

 Confidence intervals 

 Prediction intervals 

 Estimation    

 Likelihood ratios 

 Bayesian methods 

 Bayes factor 

 Credibility intervals,  
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Epidemiology: a p-values free zone 



•  Giovannucci et al. (1995) look for relationships 
between more than a hundred types of food intakes 
and the risk of prostate cancer 

•  The abstract reports only three (marginal) 95% 
confidence intervals (CIs), apparently only for those 
relative risks whose CIs do not cover 1.  

“Eat Ketchup and Pizza and avoid Prostate Cancer” 
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Epidemiology: a p-values free zone 



 Using false coverage rate controlling CIs,  
 which addresses selection by constructing  
 ( 1-α[#selected / # in pool ])100% CIs     –   all three cover 0. 
 
This is not unusual across science: 
Our analysis of the 100 in the Psychology reproducibility project: 

 # of inferences per study (4-700, average 72);  
  Only 11 (very very partially) addressed selection 



Two main statistical obstacles to replicability  
 are relevant to all statistical methods 
 

 Addressing selective Inference 
 

 Addressing the relevant variability 
  

  



Inference on a selected subset of the parameters that turned 
out to be of interest 

         after viewing the data! 

Worry about the effect of selection on properties of inference 

How is selection manifested?  

In-study selection - evident in the published work: 

 Selection by the Abstract, a Table, a Figure  

 Selection by highlighting those passing a threshold 

 Selection by modeling: AIC, Cp, BIC, FDR, LASSO,… 

 

Selective inference 



Out-of-study selection - not evident in the published work 

  File drawer problem / publication bias 

 The garden of forking path 

 p-hacking 

 Taylor’s “Inferactive Data Analysis” – confession   

 

My goal: to review the area only as needed to present    
     the challenges (so biased & not complete): 

 Well formulated (Math) challenges 

 Conceptual challenges       

Selective inference 



In Medicine (not for registering drugs) 

We conducted an in deep analysis of 100 papers from the 
NEJM 2002-2010. All had multiple endpoints 

•  # of endpoints in a paper 4-167  ; mean=27 

•  In 80% the issue of multiplicity was entirely ignored (in 
none fully addressed) 

Psychology 

Our analysis of the 100 in the reproducibility project: 

•  # of inferences per study (4-700, average 72);  

    Only 11 (partially) addressed selection 

YB 

What goes on in research? 



Defending the p-value 

•  It’s the first defense line against being fooled by randomness 
– needs minimal modeling assumptions 

•  Significant difference gives sign determination (the null need 
not be precisely true) 

•  Threshold for decision (selection) –  
 essential in modern science  

     (likelihood ratio, posterior odds,…, are all subject to selection) 
•  In some emerging branches of science it’s the only way to 

compare across conditions: GWAS, fMRI, Microbiom, Brain 
Networks.  



Framework 

Observe                   Y=(Y1,Y2,…,Ym)        
where Yi ~ Fµ   with E(Yi)=µi ; H0i : µi =τi  ; i=1,2,…,𝑚 

                           or    i=1,2,…  or  𝑖∈𝐴 

Regular (marginal) test 
  Pr( reject H0i when it is true )≤ α

Regular (marginal) confidence interval CIi(Y):  
  Pr(   𝜇↓𝑖  ∉  CIi(Y)) ≤ α

Data dependent selection rule 
  S(Y)  ∁  {1,2,…m) 

Four approaches to address the effect of selection 
 



Error-rates 

A.  Simultaneous over all possible selection rules  (SoP) 

B.  Simultaneous over the selected                  (SoS)          

C.  On the average over the selected                  (FDR/FCR) 

D.  Conditional over the selected                             (CoS) 



A. Simultaneous over all selection rules 

The  FamilyWise error-rate (FWER) : 

For testing: R=ΣRi is number rejected V=ΣVi rejected in error 

                        Pr(V ≥ 1) ≤ α 

For CIs      Pr(   ∃  𝑖,    𝜇↓𝑖  ∉  CIi(Y)) ≤ α 

Now, for any S(Y)  ∁  {1,2,…m) the same properties hold 
Methods:    Bonferroni: work at       α/m 

Sidak:  Under independence work at 1-(1-α)1/m 

Royen: N(µ,Σ) work also at 1-(1-α)1/m  (convex & symmetric region) 

POst Selection Inference on any linear model selected estimated 

          Berk et al ’15 (U of Penn  team) 



Challenge 1 
     Y~N(0, Σ)              𝑇=max( |𝑌↓1 |, ( |𝑌↓2 |,…, ( |𝑌↓𝑚 |) 

Use average correlation and be conservative (less than under ind.) 
 
      
Proof for m=3 ρi,j ≥ 0  done ; for m>3  (done?) (Cohen & Krieger)                             “ 
      
      For any ρi,j as long as average ≥ 0 
      For ri,j   (estimated)             ?  Better than exact for m > n(?) 
      For Yi ~tν                            ? 
           
Currently calculation for large m infeasible! “Bonferroni” in GWAS 



    
Natalizumab, was examined by Ghosh et al (NEJM, 2003) for the 
treatment of Crohn’s disease.  
Comparing 3 regimes with placebo; 4 measures of success;   
at 5 time points;   Total 51 endpoints 
1 primary endpoint:  Treatment by 2 infusions of 6mg/kg dose 

   remission measured at week 6 
Other 50 described as secondary endpoints  
The result for the primary endpoint was not significant (p= 0.533);  
27 secondary endpoints at p≤ 0.05 were considered as discoveries  

  Study reported as a success   
Would not have been reported as such using FWER control   

YB 

SoP often too harsh: Natalizumab study 



B. Simultaneous over selected (SoS) 

The selection rule S is determined before observing the 
data.  
e.g.: the largest; the five largest; forward selection with 
stopping rule 
 
For tests      Pr(∑𝑖𝜀𝑆(𝑌)↑▒𝑉↓𝑖    ≥  1)  ≤  𝑎  
 
For CIs     Pr(   ∃𝑖∈𝑺(𝒀),    𝜇↓𝑖 ↓ ∉  CIi(Y)  ) ≤ α

 
Obviously SoP => SoS 
 



Inference on being largest  

Example : Studying the effect of a pre-specified risk factor β:  
 By itself? Adjusted for Age and Gender? Best of them? 

The abstract carries merely the largest of the two β’s and its 
95% confidence interval  
     
 Goal:   Design a (single) Conf. Int. for the largest  
               Can we do better than βmax ±se(βmax)z1-α/4  ? 
 
Surprising result: c=z1-α/2  

Hence CI for max of two is like CI for one parameter! 
Holds for correlated bivariate normal as well 
              Hechtlinger Stark YB (‘15+) 
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Acceptance regions for µ   (non-equivariant) 

µ1>µ2 

Hechtlinger, Stark & YB 



Confidence intervals  for µi  (xi the largest) 

x1 > x2 

x1=3 and x2=2 

CI(x)= 3±c 

Hechtlinger, Stark & YB 

How large should c be? 



Acceptance regions for µ : How big should c be? 

µ1>µ2 

Hechtlinger, Stark & YB 



So c=z1-α/2  : CI for max of two is like CI for one 
parameter! 
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5
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x

y

Hechtlinger, Stark & YB 

Holds for correlated bivariate normal as well 



Hechtlinger, Stark & YB 

•  Result: c=z1-α/2  

•  Hence CI for max of two is like CI for one parameter! 
•  Holds for correlated bivariate normal as well 

                Hechtlinger, Stark & YB ‘17 
 



For maximum of m>2 

 
 
 
 
 
 
 
 
 
 
 
 
In general under independence:  

  one-sided maximum  modulus interval 
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Hechtlinger, Stark & YB 



When away from the origin, again no inflation is needed 

Hechtlinger, Stark & YB 



Conjectures:  
The least favorable situation for max k out of m is  

 (0,0,..,0, µ, µ,.., µ)  
          k-1 

Challenges 2:  
(i) The CI remains conservative under dependency 
(ii) How far can we go with this approach? 
Simultaneous over the Selected  when selecting by  

 max(abs), Forward Selection, Lasso, etc 
See Goeman & Solari (‘13); Next talk by Roquain (?) 
(iii) Point estimator 
 
Importance: Registering analysis plan for reproducibility  



C. On the average over the selected 

Rephrase the False Discovery Rate (FDR) for testing:  
 S(Y) selects the rejected hypotheses;      R= |S(Y)|  
 V is the number in S(Y) of type I errors 
 
So  FDP = V/R = (∑𝑖𝜀𝑆(𝑌)↑▒𝑉↓𝑖   / |S(Y)|        if 
R>0 

  = 0    if R=0 
And 
           FDR = E(FDP)   

FDR is the expected average # errors over the selected 

For Conf. Int. define False Coverage-statement Rate (FCR)  

as above by setting  𝑉↓𝑖 =1 for a non-covering interval 



A reminder of the BH 

Sort p(1)≤p(2)≤…≤p(m) ;     k=max( j | p(j) ≤ q j/m);   

     Reject H0j , for all  j ≤ k  (none if no j exists) 

 pBH 
(k)

 = min(p(j)m/j  | j≥k)  FDR-adjusted p-values (q-values) 

 

BH controls FDR at level q for (i) ind. test statistics,  

(ii) Positive Regression Dependent on a Subset (PRDS => 

MTP2), (iii) One-sided tests Gaussian with Σ ≥ 0. 

(iv)Two-sided studentized ind. Gaussian.  

Royen’s result does not yield more because 



Challenge 3:  
Prove that the BH is conservative for two-sided tests for 
Gaussian dist’d test statistics under any correlation structure 
 
Reiner showed by simulations that the worst case is ρij=1  
Cohen showed that if ρij=1 only for the m0<m true Hoi , then 
 
 
Hence conservative. 
Further Support: Candes (?) Heller (?) Roquain (?) 
 

Natalizumab study endpoints:  

Ingnoring selection 27; FWER None FDR 18  
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The use of weights 
Weighted False Discovery proportion 
 

 wFDP (= V/R) = (∑𝑖𝜀𝑆(𝑌)↑▒𝑤𝑖𝑉↓𝑖   ) / 
(∑𝑖𝜀𝑆(𝑌)↑▒𝑣𝑖𝑅↓𝑖      )     = 0  

  if R=0 
And 
           wFDR = E(wFDP) 
 
YB & Hochberg (’89) Genovese & Wasserman (‘03) Ramdas et al (17+)  
 
The current US practice for Primary & Secondary endpoints:   
well described by wi=vi=0 for secondary endpoints 

                  wi=vi=1 for the single primary endpoint. 
      YB & Cohen (‘16)  

Yet secondary advantages are allowed to be on the package 
Challenge 4: The use of weights in particular settings 
 



The hierarchical framework 
      (Yekutieli et al `06, Yekutieli ‘08) 

  

H5 

H3 

H11 H10 

H1 H2 

H6 H7 H8 H9 

H15 H14 H13 H12 

2. Test sub-family of a rejected parent  hypothesis by the procedure in BH at q 

H1 H2 H3 

H5 H6 H7 H8 H9 

H12 H13 H14 

Rejected Not rejected 

1. Arrange hypotheses in sub-families corresponding to a single parent hypotheses 

Meaningful concepts. Beautiful results, but they require independence  
between test statistics of a parent and its sub-family 
 



YB 

32,000 1 Voxels searched 

1 

448,000 

SNPs 

    Inference on selected families  

number of tests ~ 13,000,000,000 

41 

Goal: Association between volume changes at voxels with genotype (Stein et al.’10) 



Selection adjusted testing of families 
Let Hij be the the hypotheses in family Fi, j=1,..mi ; i=1,…,m 
       with Y ={ Yij} or with p-values P={ pij} ) 
S(P) is a selection procedure of families.  
|S(P)| the (random) number of families selected. 
 
The  control of error E(C) (FDR, FWER, False Exceedance 

rate and others) on the average over the selected families 
means 

 
 
 
 BH over all hypotheses may be too liberal on the family level!  
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YB @ Dave’s 60 



(BH-q, BH-Rq/m) - hierarchical testing   

Get p-value for the intersection hypothesis ⋂𝑗↑▒𝐻↓𝑖𝑗    in Fi , 

  pi=min( pi(j)mi / j) 

Test the families using BH-q with pi; select the rejected R. 

Within each selected family use BH at level q*( R / m)  
    

(1)    
          YB & Bogomolov ‘14 

(2) FDR  ≤ q across families; 
(3) FDR  ≤ q overall. 
         More general selection rules; Multi-level structures 

𝐸(∑𝑖∈𝑆(𝑃)↑▒𝑄↓𝑖  /|𝑆(𝑃)| )=𝑞/𝑚 
∑𝑖↑▒𝑚↓0𝑖 /𝑚↓𝑖  ≤𝑞  

YB @ Dave’s 60 



Develop methods that address such complex structures 
 Tree structured families  

Heller’s talk, Sabatti’s talk, Foygel-Barber & Ramadas (’16)  
 
But much more to be done:   

  
 Addressing dependency 
 Topological features (peaks in level sets, cusps)  
      Siegmund’s talk? 
 Graphs 
 Adaptive methods 

 
 One more example and a challenge: 

 

Challenge 5: 



Association of gut microbiome with Colon Cancer 

•  # microorganisms 496 
•  N= 177 (86 tumors) 
•  Abundance determined 
by rDNA & compared 
between cancer and normal 

•  4 were discovered by 
TreeFDR and not by BH 

•  14 were discovered by 
BH and not by TreeFDR, 13 
of which were of unknown 
type 



Beyond offering selective 
inference at the levels of 
Phylum, Class, Order, etc. 
which always result in the 
identification of at least one 
Species, 
 
There is interest in inference 
that stops at a family, genus 
etc. with no  particular 
species identified, namely the 
end-nodes family 
 
Challenge 6: Theory for 
inference on end-nodes 
(under dependency between 
parent and its children) is still 
lacking 
 

Association of gut microbiome with Colon Cancer 



Hence tests such as 
 
   Higher Criticism 
   Simes-Hotelling  
 
Can be very useful 
 
Offering more power at a 
node at the expense of no 
rejection of children 
hypotheses 
 
Theory for inference on end-
nodes (under dependency 
between parent and its 
children) is still lacking 

YB @ Dave’s 60 

Association of gut microbiome with Colon Cancer 



Challenge 7:  

Avoiding the use of p-values for testing 
 
Use of negative controls (fMRI, Genomics) 
Knockoff for testing (Candes Foygel-Barber) 
      A synthetic way of generating matched negative control 
 
Challenge 7: can it be used for selective CIs? Selective 
estimators? 



Testimation 
FDR thresholding has exact asymptotic minimaxity (including the 
constant) adaptively over bodies of sparse signals lr , 0≤ r <2,          

    ( Abramovich, YB, Donoho Johnstone ‘06) 

(i)  The usual average squared error over entire vector including 
those thresholden to 0 was considered  

(ii)  Independence assumed 
 
Challenge 8: What happens when we consider average squared 
error over the selected? 
Challenge 9: This testimator is a Penalized Model Selection for 
orthogonal X. How about its performance for non-orthogonal X?     
(hints in Gavrilov et al ‘13’ Bogdan et al ‘15 SLOPE) Abramovich’s talk? 
 



D. Conditional over selected 

Selecting from m features by a selection rule S(Y)  
 
For each of the selected ones, 
construct a marginal conditional confidence interval 
 
            Pr(   𝜇↓𝑖  ∉  CIi(Y) | i ∈S(Y)) ≤ α

 
E.g. Select the largest one; Bigger than 2; p-value ≤.01 ; 
Coefficients in the Lasso 

50 



     eQTL: The TreeQTL application  
 Peterson, C., M. Bogomolov, Y. Benjamini and C. Sabatti (2015, 2015), 

YB @ Dave’s 60 



Utilizing the selection procedure used 

   Select µι if its estimator is big enough 
          Xi =(Yi  |  |Yi| ≥ c), 

 where c is fixed      

 or (simple) data dependent c(Y). 

                                       

Conditional density -> Acceptance region for each parameter 
(non-equivariant) with short 0-crossing -> inverting to get 

Conditional CIs -> offer FCR 

52 

Hedges (’84) for meta-analysis, Zhong &Prentice (’08) asymptotic dist’n in 
GWAS, Weinstein Fithian YB (’13) 



Conditional MLE                          Cond. MLE and CI for correlation 

Hedges ‘84, Zhong and Prentice ’08, Fithian, Sun, Taylor (16) YB and Meir (16+) 

                            Can be used to address ‘publication bias’  



The complication: θ is no longer only a shift parameter 

54 YB, Hochberg, Stark JASA ‘98 
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•  Principle 6: “…a p-value near 0.05 taken by itself offers 
only weak evidence against the null hypothesis” 

 Based on Val Johnson’s ‘14 PNAS paper which 
 offers Bayesian argument for p ≤ 0.005 threshold 

 

  The problem though is being close to the threshold, 

  not to where the threshold is set 



  

Thresholding at 
p-value ≤ 0.005  
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J. Taylor with coauthors and students: 
 
•  P-values and CI post selection of a model using a Lasso 

Asymptotic p-values  Lockhart, Taylor, Tibshirani, J.Tibshirani (14) 
Exact post-selection inference Lee, Dennis Sun, Yuekai Sun,Taylor (13+ ) 

•  P-values & CIs post screening variables with marginal significance then 
fitting using some model selection (AIC, Lasso, …) Tian Lotfus, Reid, Choi 
(14+,14+,14+,15+) Fithian et al (’16+)  

•  Post selecting a parameter with  |estimator|  > threshold  Fithian, Sun, 
Taylor (14+) 

•  Inference on the average over a level set – YB Irizarri & Taylor (‘16+) 

•  Inferatory Data Analysis Talk 

Heller’s Talk 

More recent work on conditional inference 



Challenge 10 (mine) 

•  I feel more comfortable with conditional analysis when 

replication can be done while controlling the conditioning 

event    (p≤.05; expression ≥ two-fold; effect size ≥1/3) 

•  Should it bother me? Are there situations where the 

penance (power loss) of conditional analysis can be 

tolerated but it is less natural than other approaches?  



Challenge 11 

Addressing Exploratory Data Analysis  
 (the garden of forking path, p-value hacking,…) 

•  Let the researcher do exploratory data analysis in a free 
and uncommitted way. 

But 
•  Document in the analysis software the analysis path 

taken: do automatically reproducible computing (no 
confession needed). 

•  Offer conditional inference given the taken path 



1.The importance of selective inference 
•  The dangers of selective inference in testing are recognized 

even by the researchers, though usually when m > 1K  (4K) 
•  But it is a quite killer of replicability even when m>10.  
•  There is well developed practice to address testing 
•  Adjusting for selection in estimation and confidence intervals is 

rarely practiced, leading to dwindling results upon replication. 
2. There is more than one approach to selective inference 

SoP => SoS => FDR/FCR <= CoS 
3. This research area is active 
•  Some well formulated challenges 
•  Many conceptual challenges awaiting development 
   11 were presented; challenge 12 is left for you to formulate  

Summing up 



 Thanks! 
       www.replicability.tau.ac.il 

The industrialization of the scientific process 

1888     1999 

1950     2010 



Thanks 
 
 
 

www.replicability.tau.ac.il 



Source of the problems 

But notice: Replicability problems became more severe  
  only recently,  

 
In my opinion: because of  
         The industrialization of the scientific process



Industrialization of the scientific process 

•  Compare to changes in car manufacturing process 
•  Internal Combustion production started in 1888 by Benz 
•  5 cars per year separately and manually manufactured.



What about Confidence Intervals? 
 

The use of Marginal (standard) 95% Confidence Interval  

on the selected few may be deceivingly optimistic. 

 

Indeed,  

on the average over all parameters,  

the expected proportion of intervals failing to  cover ≤ α : 

Vi making a non-covering confidence interval 

       E(ΣVi / m) = ΣE(Vi )/m=m α /m 

But 
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20 parameters to be estimated with 90% CIs  
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3/20 do not cover  
   

3/4  CI do not cover  
      when selected 

These so selected 4  
will tend to fail,  
or shrink back, 
when replicated. 

Selection of this form  
harms Bayesian Intervals  
as well  
(Wang & Lagakos ‘07 EMR, Yekutieli 2012) 
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we wish at least to assure that the property of the individual 
inference will still hold on the average over the selected 

The False Coverage-statement Rate (FCR) of a selective 

CIs procedure is the expected proportion of coverage 

statements made that fail to cover their respective parameters 

    

Inference on the average over the selected –  
selective inference 



There are general FCR controlling CIs  

Selecting from m features the ‘interesting ones’ by S(Y) 
                #(selected) = |S(Y)|  

For each of the selected ones, 

construct a marginal 1- q* |S(Y)| / m   Conf. Int. 

 
Thm: holds for “simple” selection rules under positive 

regression dependency 
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1-.05*10/400000 

Odds ratio point and CI estimates for 
confirmed T2D susceptibility variants  

Region    Odds ratio   0.95 CIs   FCR-adjusted CIs  
•  FTO     1.17    [1.12, 1.22]   [1.05, 1.30]  
•  CDKAL1   1.12    [1.08, 1.16]   [1.03, 1.22]  
•  HHEX   1.13    [1.08, 1.17]   [1.02, 1.25]  
•  CDKN2B   1.20    [1.14, 1.25]   [1.07, 1.34]  
•  CDKN2B   1.12    [1.07, 1.17]   [1.00, 1.25]  
•  IGF2BP2   1.14    [1.11, 1.18]   [1.06, 1.23]  
•  SLC30A8   1.12    [1.07, 1.16]   [1.01, 1.24]  
•  TCF7L2   1.37    [1.31, 1.43]   [1.23, 1.53]  
•  KCNJ11   1.14    [1.10, 1.19]   [1.03, 1.26]  
•  PPARG   1.14    [1.08, 1.20]   [1.00, 1.30] 

Using marginal CIs is common even in large problems 
Alas protecting from the effect of selection in testing 
does not solve the problem in estimation 
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In examples 

•  Pizza and Prostate  3 discoveries   

 FWER screening X FCR screening X 

•  Natalizumab study 

 FWER screening X FDR screening V  

           27 18 

 
 



Car manufacturing 
In 1902 Olds implemented the first production line. 
 It manufactured a car every two hours, ~1500 per year:  
In 1914 Ford’s T-model, 4 cars per hour, ~12,000 per year.



Car manufacturing 
The robotic production line started in Japan in  the 1980’s

 
 

This is the way 70 millions new cars are manufactured each 
year. People design and supervise.  



Y Benjamini TAU  

Industrialization of the scientific 
process: gene expression analysis 
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•  During the manual manufacturing period – the mechanic  
•  In the production lines of the 50’s – statistical process control
 

•  With the beginning of automated production line in the 80’s 
TQM Total Quality Management 

    started in Japan and the methods were adopted world-wide. 
 

  
The lesson: methods that were appropriate for manual 

manufacturing are no longer appropriate for mass production.

Assuring quality of cars 



Assuring quality of cars 
During the manual manufacturing period – the mechanic  

In the production lines of the 50’s – statistical process control



Assuring quality of cars 
 
 

 
    With the beginning of automated production line in the 80’s 

TQM Total Quality Management 
    started in Japan and the methods were adopted world-wide. 
 

 The lesson: methods that were appropriate for manual 
manufacturing are no longer appropriate for mass 
production.



 Assuring quality of scientific research 

Methods developed in the 20’s for testing a single 
hypothesis, like Fisher’s 1/20 rule, 

or during the 50’s for testing a few hypotheses,

are no longer appropriate when used after selection from 
the huge pool of potential discoveries made available to 
researchers in modern industrialized research. 

 
New methods are needed, and that’s what MCP2013 is 

about.



Conclusion 

Lack of appropriateness of design and transparency in 
reporting is only a part of the replicability problem 

The importance of statistical issues is recognized but 
sometimes the solutions are ill conceived 

Addressing selective inference is the major statistical 
challenge in assuring replicability 

Taking too narrow a view about variability is a second 
major challenge (not addressed in this talk) 

Yoav Benjamini Paris 2016 
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•  Ioanidis wrote about what may happen 

•  Jager & Leek (‘14) tried to estimate it: 
  Mined the Abstracts of 5 top medical journal over 10 years 
  Collected all p-values < 0.05; Estimated FDR at ~15% 
  
•  Analyzing a sample of 25 papers  
   The problem seems more severe (and different).  
  # p-value ≤ 0.05 in the paper >> in the abstract, yet in 
   19 of the 25 papers the smallest p-value in the paper 
   appeared in the abstract. Again, evidence of selection. 
    
   Even more selection with CIs                                              

YB& Hechtlinger  ‘14 

Estimating the science-wise FDR 


