Random forests 0000000000	Purely random forests	Toy forests 0000000	Hold-out random forests 0000	Conclusion

Analysis of some purely random forests

Sylvain Arlot¹ (joint work with Robin Genuer²)

¹UNIVERSITÉ PARIS-SUD

²ISPED, Université Bordeaux 2

Conference Mathematical Methods of Modern Statistics, CIRM 13 July 2017

arXiv:1407.3939 arXiv:1604.01515

Random forests 000000000	Purely random forests	Toy forests 0000000	Hold-out random forests 0000	Conclusion
Outline				

- 2 Purely random forests
- 3 Toy forests in one dimension
- 4 Hold-out random forests

Random forests	Purely random forests	Toy forests 0000000	Hold-out random forests 0000	Conclusion
Outline				

1 Random forests

2 Purely random forests

3 Toy forests in one dimension

4 Hold-out random forests

4/38

Goal: find the signal (denoising)

5/38

Random forests	Purely random forests	Toy forests 0000000	Hold-out random forests 0000	Conclusion
Regression				

• Data
$$D_n$$
: $(X_1, Y_1), \dots, (X_n, Y_n) \in \mathbb{R}^d \times \mathbb{R}$ (i.i.d. $\sim P$)
 $Y_i = s^*(X_i) + \varepsilon_i$

with $s^{\star}(X) = \mathbb{E}[Y | X]$ (regression function).

• Goal: learn f measurable function $\mathcal{X} \to \mathbb{R}$ s.t. the quadratic risk $[(\mathcal{L}(\mathcal{X}) = \mathcal{X}(\mathcal{X}))^2]$

$$\mathbb{E}_{(X,Y)\sim P}\left[\left(f(X)-s^{\star}(X)\right)^{2}\right]$$

is minimal.

Tree: piecewise-constant predictor, obtained by partitioning recursively \mathbb{R}^d .

Restriction: splits parallel to the axes.

Tree: piecewise-constant predictor, obtained by partitioning recursively \mathbb{R}^d .

Choice of the partition U (tree structure)
 Usually, at each step, one looks for the best split of the data into two groups (minimize sum of within-group variances) D_n.

Analysis of some purely random forests

Tree: piecewise-constant predictor, obtained by partitioning recursively \mathbb{R}^d .

- Choice of the partition U (tree structure)
- For each λ ∈ U (tree leaf), choice of the estimation β_λ of s*(x) when x ∈ λ. Here, β_λ = Y_λ average of the (Y_i)_{Xi∈λ}.

Random forest (Breiman, 2001)

Definition (Random forest (Breiman, 2001))

 $\left\{\widehat{s}_{\Theta_j}, 1 \leq j \leq q\right\}$ collection of tree predictors, $(\Theta_j)_{1 \leq j \leq q}$ i.i.d. r.v. independent from D_n . Random forest predictor \widehat{s} obtained by aggregating the tree

collection.

$$\widehat{s}(x) = rac{1}{q} \sum_{j=1}^{q} \widehat{s}_{\Theta_j}(x)$$

- ensemble method (Dietterich, 1999, 2000)
- powerful statistical learning algorithm, for both classification and regression.

- Bootstrap (Efron, 1979): draw *n* i.i.d. r.v., uniform over $\{(X_i, Y_i) / i = 1, ..., n\}$ (sampling with replacement) \Rightarrow resample D_n^b
- Bootstrapping a tree: $\widehat{s}_{\text{tree}}^b = \widehat{s}_{\text{tree}}(D_n^b)$
- Bagging: bootstrap (q independent resamples) then aggregation

$$\widehat{s}_{ ext{bagging}}(x) = rac{1}{q}\sum_{j=1}^{q}\widehat{s}_{ ext{tree}}^{b,j}(x)$$

Definition (RI tree)

In a RI tree, at each node, mtry variables are randomly chosen. Then, the best cut direction is chosen only among the chosen variables.

Definition (Random forest RI)

A random forest RI (RF-RI) is obtained by aggregating RI trees built on independent bootstrap resamples.

 $\mathsf{RF}\text{-}\mathsf{RI} \hspace{0.1in} \Leftrightarrow \hspace{0.1in} \mathsf{bagging} \hspace{0.1in} \mathsf{on} \hspace{0.1in} \mathsf{RI} \hspace{0.1in} \mathsf{trees}$

 Random forests
 Purely random forests
 Toy forests
 Hold-out random forests
 Conclusion

 000000000
 00000000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 00000
 <t

Random Forest-Random Inputs

Random forests ○○○○○○○○●	Purely random forests	Toy forests 0000000	Hold-out random forests 0000	Conclusion
Theoretics	l results on RE	RI		

- Few theoretical results on Breiman's original RF-RI
- Most results:
 - focus on a specific part of the algorithm (resampling, split criterion),
 - modify the algorithm (eg, subsampling instead of resampling)
 - make strong assumptions on s^*
- References (see survey paper by Biau and Scornet, 2016): Mentch & Hooker (2014), Scornet, Biau & Vert (2015), Wager & Athey (2015), ...

Random forests ○○○○○○○○●	Purely random forests	Toy forests 0000000	Hold-out random forests 0000	Conclusion
Theoretics	l results on RE	RI		

- Few theoretical results on Breiman's original RF-RI
- Most results:
 - focus on a specific part of the algorithm (resampling, split criterion),
 - modify the algorithm (eg, subsampling instead of resampling)
 - make strong assumptions on s^*
- References (see survey paper by Biau and Scornet, 2016): Mentch & Hooker (2014), Scornet, Biau & Vert (2015), Wager & Athey (2015), ...
- ⇒ Here, we consider simplified RF models, for which a precise analysis is possible: purely random forests

Random forests 0000000000	Purely random forests	Toy forests 0000000	Hold-out random forests 0000	Conclusion
Outline				

- 3 Toy forests in one dimension
- 4 Hold-out random forests

Random forests	Purely random forests	Toy forests	Hold-out random forests	Conclusion
000000000	●0000000	0000000	0000	
Purely rand	om forests			

Definition (Purely random tree)

$$\widehat{s}_{\mathbb{U}}(x) = \sum_{\lambda \in \mathbb{U}} \overline{Y_{\lambda}}(D_n) \mathbb{1}_{x \in \lambda}$$

where $\overline{Y_{\lambda}}(D_n)$ is the average of $(Y_i)_{X_i \in \lambda, (X_i, Y_i) \in D_n}$ and the partition \mathbb{U} is independent from D_n .

Definition (Purely random forest)

$$\widehat{s}(x) = rac{1}{q}\sum_{j=1}^{q}\widehat{s}_{\mathbb{U}^{j}}(x)$$

with $\mathbb{U}^1, \ldots, \mathbb{U}^q$ i.i.d., independent from D_n .

Random forests 0000000000	Purely random forests	Toy forests 0000000	Hold-out random forests 0000	Conclusion
Purely ran	dom forests			

Definition (Purely random forest)

$$\widehat{s}(x) = rac{1}{q}\sum_{j=1}^{q}\widehat{s}_{\mathbb{U}^{j}}(x) = rac{1}{q}\sum_{j=1}^{q}\sum_{\lambda\in\mathbb{U}^{j}}\overline{Y_{\lambda}}(D_{n})\mathbb{1}_{x\in\lambda}$$

with $\mathbb{U}^1, \ldots, \mathbb{U}^q$ i.i.d., independent from D_n .

Example ("hold-out RF" model): (random) split of the sample into D_n (used for defining the labels $\overline{Y_{\lambda}}$) and D'_n (used for building the trees $\mathbb{U}^j = \mathbb{U}_{\mathrm{RI}}(D_n^{\prime \star j})$).

Random forests	Purely random forests	Toy forests	Hold-out random forests	Conclusion
0000000000	●0000000	0000000	0000	
Purelv ran	dom forests			

Definition (Purely random forest)

$$\widehat{s}(x) = rac{1}{q} \sum_{j=1}^{q} \widehat{s}_{\mathbb{U}^{j}}(x) = rac{1}{q} \sum_{j=1}^{q} \sum_{\lambda \in \mathbb{U}^{j}} \overline{Y_{\lambda}}(D_{n}) \mathbb{1}_{x \in \lambda}$$

with $\mathbb{U}^1, \ldots, \mathbb{U}^q$ i.i.d., independent from D_n .

Example ("hold-out RF" model): (random) split of the sample into D_n (used for defining the labels $\overline{Y_{\lambda}}$) and D'_n (used for building the trees $\mathbb{U}^j = \mathbb{U}_{\mathrm{RI}}(D_n^{\prime*j})$).

From now on, D_n is the sample used for computing the $Y_{\lambda}(D_n)$, and we assume its size is n.

- Consistency: Biau, Devroye & Lugosi (2008), Scornet (2014)
- Rates of convergence: Breiman (2004), Biau (2012)
- Some adaptivity to dimension reduction (sparse framework): Biau (2012)
- Forests decrease the estimation error (Biau, 2012; Genuer, 2012)
- ⇒ What about approximation error? Almost the same for a forest and a tree?

Given the partition $\mathbb U,$ regressogram estimator

$$\widehat{s}_{\mathbb{U}}(x) := \sum_{\lambda \in \mathbb{U}} \overline{Y_{\lambda}} \mathbb{1}_{x \in \lambda}$$

where $\overline{Y_{\lambda}}$ is the average of $(Y_i)_{X_i \in \lambda}$.

$$\widehat{s}_{\mathbb{U}} \in \operatorname*{argmin}_{f \in S_{\mathbb{U}}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (Y_i - f(X_i))^2 \right\}$$

where $S_{\mathbb{U}}$ is the vector space of functions which are constant over each $\lambda \in \mathbb{U}$.

Define:

$$\tilde{s}_{\mathbb{U}}(x) := \sum_{\lambda \in \mathbb{U}} \beta_{\lambda} \mathbb{1}_{x \in \lambda} \quad \text{where } \beta_{\lambda} := \mathbb{E}[s^{\star}(X) \,|\, X \in \lambda] \; .$$

$$\Rightarrow \tilde{s}_{\mathbb{U}} \in \operatorname{argmin}_{f \in S_{\mathbb{U}}} \mathbb{E} \Big[\left(f(X) - s^{\star}(X) \right)^2 \Big] \text{ and } \tilde{s}_{\mathbb{U}}(x) = \mathbb{E} \big[\widehat{s}_{\mathbb{U}}(x) \, | \, \mathbb{U} \big]_{18/38}$$

Purely random forests 00000000

Risk decomposition: single tree

$$\mathbb{E}\left[\left(\widehat{s}_{\mathbb{U}}(X) - s^{\star}(X)\right)^{2}\right]$$

= $\mathbb{E}\left[\left(\widetilde{s}_{\mathbb{U}}(X) - s^{\star}(X)\right)^{2}\right] + \mathbb{E}\left[\left(\widehat{s}_{\mathbb{U}}(X) - \widetilde{s}_{\mathbb{U}}(X)\right)^{2}\right]$
= Approximation error + Estimation error

If s^* is smooth, $X \sim \mathcal{U}([0, 1])$ and \mathbb{U} regular partition into K pieces, then

$$\mathbb{E}\Big[\big(\widetilde{s}_{\mathbb{U}}(X) - s^{\star}(X)\big)^2\Big] \propto \frac{1}{K^2}$$

If var(Y | X) = σ^2 does not depend on X, then

$$\mathbb{E}\Big[\big(\widetilde{s}_{\mathbb{U}}(X) - \widehat{s}_{\mathbb{U}}(X)\big)^2\Big] \approx \frac{\sigma^2 K}{n}$$

$$\begin{split} (\mathbb{U}^{j})_{1\leqslant j\leqslant q} & \text{finite partitions, i.i.d.} ~\sim \mathcal{U} \\ \text{Estimator (forest):} & \widehat{s}_{\mathbb{U}^{1\cdots q}}(x) := \frac{1}{q}\sum_{j=1}^{q}\widehat{s}_{\mathbb{U}^{j}}(x) \\ \text{Ideal forest:} & \widetilde{s}_{\mathbb{U}^{1\cdots q}}(x) := \frac{1}{q}\sum_{j=1}^{q}\widetilde{s}_{\mathbb{U}^{j}}(x) = \mathbb{E}\big[\widehat{s}_{\mathbb{U}^{1\cdots q}}(x) \,|\, \mathbb{U}^{1\cdots q}\big] \end{split}$$

Quadratic risk decomposition (given X = x)

$$\mathbb{E}\Big[\left(\widehat{s}_{\mathbb{U}^{1\cdots q}}(x) - s^{\star}(x)\right)^{2}\Big] = \mathbb{E}\Big[\left(\widetilde{s}_{\mathbb{U}^{1\cdots q}}(x) - s^{\star}(x)\right)^{2}\Big] \\ + \mathbb{E}\Big[\left(\widehat{s}_{\mathbb{U}^{1\cdots q}}(x) - \widetilde{s}_{\mathbb{U}^{1\cdots q}}(x)\right)^{2}\Big]$$

Bias term (approximation error): $\mathcal{B}_{\mathcal{U},q}(x) := \mathbb{E}\Big[\left(\tilde{s}_{\mathbb{U}^{1 \cdots q}}(x) - s^{\star}(x) \right)^2 \Big]$

21/38

Random forests
occocococoPurely random forests
occocococoToy forests
occocococoHold-out random forests
occococoConclusionBias decomposition (given X = x)

$$\begin{split} \mathcal{B}_{\mathcal{U},q}(x) &= \mathcal{B}_{\mathcal{U},\infty}(x) + \frac{\mathcal{V}_{\mathcal{U}}(x)}{q} \\ \text{where} \quad \mathcal{B}_{\mathcal{U},\infty}(x) &:= \left(\mathbb{E}[\tilde{s}_{\mathbb{U}}(x)] - s^{\star}(x)\right)^2 \\ \text{and} \quad \mathcal{V}_{\mathcal{U}}(x) &:= \operatorname{var}(\tilde{s}_{\mathbb{U}}(x)) \end{split}$$

 $\mathcal{B}_{\mathcal{U},\infty}(x)$ is the bias of the infinite forest: $\tilde{s}_{\mathbb{U},\infty}(x) := \mathbb{E}[\tilde{s}_{\mathbb{U}}(x)]$

to be compared with the bias of a single tree

$$\mathcal{B}_{\mathcal{U},1}(x) = \mathcal{B}_{\mathcal{U},\infty}(x) + \mathcal{V}_{\mathcal{U}}(x)$$

Random forests 0000000000	Purely random forests 00000000	Toy forests	Hold-out random forests 0000	Conclusion
Outline				

- 3 Toy forests in one dimension
- 4 Hold-out random forests

Analysis of some purely random forests

Random forests 0000000000	Purely random forests	Toy forests ●000000	Hold-out random forests 0000	Conclusion
Toy forests	in one dimensic	on		

Assume: $\mathcal{X} = [0, 1)$ X uniform over [0, 1)

$$\mathbb{U} \sim \mathcal{U}_k^{\text{toy}} \text{ defined by:}$$
$$\mathbb{U} = \left\{ \left[0, \frac{1-T}{k} \right) , \left[\frac{1-T}{k}, \frac{2-T}{k} \right) , \dots, \left[\frac{k-T}{k}, 1 \right) \right\}$$

where T has uniform distribution over [0, 1].

 Random forests
 Purely random forests
 Toy forests
 Hold-out random forests
 Conclusion

 000000000
 0000000
 0000000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 <t

Interpretation of the ideal infinite forest

Proposition (A. & Genuer, 2014)

For any $x \in \left[\frac{1}{k}, 1 - \frac{1}{k}\right]$, the ideal infinite forest at x satisfies:

$$\widetilde{s}_{\mathbb{U},\infty}(x) = (s^* * h_k)(x) = \int_0^1 s^*(t) h_k(x-t) \,\mathrm{d}t$$

where

$$h_k(u) = \begin{cases} k(1-ku) & \text{if } 0 \leq u \leq \frac{1}{k} \\ k(1+ku) & \text{if } -\frac{1}{k} \leq u \leq 0 \\ 0 & \text{if } |u| \geq \frac{1}{k} \end{cases}$$

Random forests Purely random forests Toy forests Hold-out random forests Conclusion

Analysis of the approximation error

(H2) s^* twice differentiable over (0, 1) and $s^{*''}$ bounded

Taylor-Lagrange formula: for every $t \in (0,1)$, some $c_{t,x} \in (0,1)$ exists such that

$$s^{\star}(t) - s^{\star}(x) = s^{\star\prime}(x)(t-x) + \frac{1}{2}s^{\star\prime\prime}(c_{t,x})(t-x)^2$$

Therefore,

$$\begin{split} \tilde{s}_{\mathbb{U}}(x) - s^{\star}(x) &= k \int_{x + \frac{V_x - 1}{k}}^{x + \frac{V_x}{k}} (s^{\star}(t) - s^{\star}(x)) \, \mathrm{d}t \\ &= k \, s^{\star \prime}(x) \int_{x + \frac{V_x - 1}{k}}^{x + \frac{V_x}{k}} (t - x) \, \mathrm{d}t + R_1(x) \\ &= \frac{s^{\star \prime}(x)}{k} \Big(V_x - \frac{1}{2} \Big) + R_1(x) \end{split}$$

where
$$R_1(x) = \frac{k}{2} \int_{x+\frac{V_x}{k}}^{x+\frac{V_x}{k}} s^{\star \prime \prime}(c_{t,x})(t-x)^2 \, \mathrm{d}t$$

38

 Random forests
 Purely random forests
 Toy forests
 Hold-out random forests
 Conclusion

 Occoococco
 Occooccocco
 Occooccocco
 Occooccocco
 Occooccocco
 Occooccocco

 Analysis of the approximation error
 Conclusion
 Occooccoccoccocco
 Occooccoccoccocco
 Occooccoccoccoccoccocco

$$\left(\mathbb{E}_{\mathbb{U}}[\tilde{s}_{\mathbb{U}}(x) - s^{\star}(x)]\right)^2 \leqslant \frac{\Box}{k^4} \qquad \mathcal{V}_{\mathcal{U}}(x) \underset{k \to +\infty}{\sim} \frac{\Box}{k^2}$$

Proposition (A. & Genuer, 2014)

Assuming (H2), for every $x \in \left[\frac{1}{k}, 1 - \frac{1}{k}\right]$,

$$\mathcal{B}_{\mathcal{U}_{k}^{\mathrm{toy}},1}(x) \underset{k \to +\infty}{\sim} \frac{\Box}{k^{2}} \qquad \mathcal{B}_{\mathcal{U}_{k}^{\mathrm{toy}},\infty}(x) \leqslant \frac{\Box}{k^{4}}$$
$$\int_{\frac{1}{k}}^{1-\frac{1}{k}} \mathcal{B}_{\mathcal{U}_{k}^{\mathrm{toy}},1}(x) \, \mathrm{d}x \underset{k \to +\infty}{\sim} \frac{\Box}{k^{2}} \qquad \int_{\frac{1}{k}}^{1-\frac{1}{k}} \mathcal{B}_{\mathcal{U}_{k}^{\mathrm{toy}},\infty}(x) \, \mathrm{d}x \leqslant \frac{\Box}{k^{4}}$$

Rate k^{-4} is tight assuming: (H3) s^* three times differentiable over (0, 1) and $s^{*''}$ bounded 27/38

Random forests 000000000	Purely random forests	Toy forests ○○○○●○○	Hold-out random forests 0000	Conclusion
Estimation	error			

General fact (Jensen's inequality):

$$\mathbb{E}\Big[\big(\widehat{s}_{\mathbb{U},\infty}(X) - \widetilde{s}_{\mathbb{U},\infty}(X)\big)^2\Big] \leqslant \mathbb{E}\Big[\big(\widehat{s}_{\mathbb{U}}(X) - \widetilde{s}_{\mathbb{U}}(X)\big)^2\Big]$$

Analysis of some purely random forests

Random forests	Purely random forests	Toy forests	Hold-out random forests	Conclusion
0000000000	00000000	○○○○●○○	0000	
Estimation e	error			

General fact (Jensen's inequality):

$$\mathbb{E} \Big[\big(\widehat{s}_{\mathbb{U},\,\infty}(X) - \widetilde{s}_{\mathbb{U},\,\infty}(X) \big)^2 \Big] \leqslant \mathbb{E} \Big[\big(\widehat{s}_{\mathbb{U}}(X) - \widetilde{s}_{\mathbb{U}}(X) \big)^2 \Big]$$

For the toy forest, without any resampling for computing labels and assuming that $var(Y|X) = \sigma^2$:

$$\mathbb{E}\Big[\big(\widehat{s}_{\mathbb{U}}(X) - \widetilde{s}_{\mathbb{U}}(X)\big)^2\Big] \approx \frac{\sigma^2 k}{n}$$
$$\mathbb{E}\Big[\big(\widehat{s}_{\mathbb{U},\infty}(X) - \widetilde{s}_{\mathbb{U},\infty}(X)\big)^2\Big] \approx \frac{2}{3} \frac{\sigma^2 k}{n}$$

(A. & Genuer, 2016)

Random forests
COODOCOCOPurely random forests
OCOCOCOCOToy forests
OCOCOCOCOHold-out random forests
OCOCOCOCOConclusionSummary: risk analysisSingle tree
$$(q = 1)$$
Infinite forest
 $(q = \infty)$ $\mathbb{E}\left[(\widehat{s}_{\mathbb{U}^{1\cdots q}}(x) - s^{\star}(x))^2\right] \approx$ $\frac{c_1(s^{\star}, x)}{k^2} + \frac{\sigma^2 k}{n}$ $\frac{c_2(s^{\star}, x)}{k^4} + \frac{2\sigma^2 k}{3n}$ where $c_1(s^{\star}, x) = \frac{s^{\star'}(x)^2}{12}$ and $c_2(s^{\star}, x) = \frac{s^{\star''}(x)^2}{144}$

Assumptions:

- $x \in (0,1)$ far from boundary
- (H3) s^* three times differentiable over (0,1) and $s^{*\prime\prime\prime}$ bounded
- $\bullet \ \mathcal{X}$ uniform over [0,1]
- $\operatorname{var}(Y|X) = \sigma^2$
- no resampling for computing labels

Corollary: risk convergence rates (far from boundaries, with $k = k_n^*$ optimal):

Tree
$$\geq \Box n^{-2/3}$$

Infinite forest $\leq \Box n^{-4/5} \Rightarrow \text{minimax } C^2$

Corollary: risk convergence rates (far from boundaries, with $k = k_n^*$ optimal):

Tree
$$\geq \Box n^{-2/3}$$

Infinite forest $\leq \Box n^{-4/5} \Rightarrow \text{minimax } C^2$

Remarks:

- $q \ge \Box (k_n^*)^2$ is sufficient to get an "infinite" forest
- with subsampling *a* out of *n* for computing labels: estimation error of a single tree $\frac{\sigma^2 k}{a}$ instead of $\frac{\sigma^2 k}{n}$; no change for infinite forest

Random forests 0000000000	Purely random forests 00000000	Toy forests 0000000	Hold-out random forests	Conclusion
Outline				

- 2 Purely random forests
- 3 Toy forests in one dimension
- 4 Hold-out random forests

Split D_n into D_{n_1} and D_{n_2}

 \Rightarrow purely random forest

 Data generation: $X_i \sim \mathcal{U}([0,1]^d)$ $Y_i = s^*(X_i) + \varepsilon_i$ $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ $\sigma^2 = 1/16$

$$s^{\star}: \mathbf{x} \in [0,1]^d \mapsto \frac{1}{10} \times \left[10\sin(\pi x_1 x_2) + 20(x_3 - 0.5)^2 + 10x_4 + 5x_5 \right]$$

- Data split: $n_1 = 1\,280$ $n_2 = 25\,600$
- Forests definition:

nodesize = 1 $k \in \{2^5, 2^6, 2^7, 2^8\}$ "Large" forests are made of q = k trees.

Compute integrated approximation/estimation errors

38

Random forests 000000000	Purely random forests	Toy forests 0000000	Hold-out random forests 00●0	Conclusion
Numerical	experiments:	results ($d =$	5)	

	Single tree	Large forest
No bootstrap $mtry = d$	$\frac{0.13}{k^{0.17}} + \frac{1.04\sigma^2 k}{n_2}$	$\frac{0.13}{k^{0.17}} + \frac{1.04\sigma^2 k}{n_2}$
$\frac{Bootstrap}{\mathtt{mtry}} = d$	$\frac{0.14}{k^{0.17}} + \frac{1.06\sigma^2 k}{n_2}$	$\frac{0.15}{k^{0.29}} + \frac{0.08\sigma^2 k}{n_2}$
No bootstrap mtry = $\lfloor d/3 \rfloor$	$\frac{0.23}{k^{0.19}} + \frac{1.01\sigma^2 k}{n_2}$	$\frac{0.06}{k^{0.31}} + \frac{0.06\sigma^2 k}{n_2}$
$\boxed{\begin{array}{c} Bootstrap \\ \mathtt{mtry} = \lfloor d/3 \rfloor \end{array}}$	$\frac{0.25}{k^{0.20}} + \frac{1.02\sigma^2 k}{n_2}$	$\frac{0.06}{k^{0.34}} + \frac{0.05\sigma^2 k}{n_2}$

Random forests 000000000	Purely random forests	Toy forests 0000000	Hold-out random forests 000●	Conclusion
Numerical	experiments:	results ($d =$	10)	

	Singl	e tree	Large	e forest
No bootstrap $mtry = d$	$\frac{0.11}{k^{0.12}} +$	$\frac{1.03\sigma^2 k}{n_2}$	$\frac{0.11}{k^{0.12}}$ +	$\frac{1.03\sigma^2 k}{n_2}$
$\frac{Bootstrap}{\mathtt{mtry}} = d$	$\frac{0.11}{k^{0.11}}$ +	$\frac{1.05\sigma^2 k}{n_2}$	$\frac{0.10}{k^{0.19}}$ +	$\frac{0.04\sigma^2 k}{n_2}$
No bootstrap mtry = $\lfloor d/3 \rfloor$	$\frac{0.21}{k^{0.18}}$ +	$\frac{1.08\sigma^2 k}{n_2}$	$\frac{0.08}{k^{0.25}}$ +	$\frac{0.04\sigma^2 k}{n_2}$
$\begin{array}{c} \\ \hline \\ Bootstrap \\ \\ \texttt{mtry} = \lfloor d/3 \rfloor \end{array}$	$\frac{0.20}{k^{0.16}}$ +	$\frac{1.05\sigma^2 k}{n_2}$	$\frac{0.07}{k^{0.26}}$ +	$\frac{0.03\sigma^2 k}{n_2}$

Random forests 000000000	Purely random forests	Toy forests 0000000	Hold-out random forests 0000	Conclusion
Conclusion				

- Forests improve the order of magnitude of the approximation error, compared to a single tree
- Estimation error seems to change only by a constant factor (at least for toy forests); not contradictory with literature: here, we fix k; different picture if nodesize is fixed (+subsampling)

Random forests 0000000000	Purely random forests	Toy forests 0000000	Hold-out random forests 0000	Conclusion
Conclusion				

- Forests improve the order of magnitude of the approximation error, compared to a single tree
- Estimation error seems to change only by a constant factor (at least for toy forests); not contradictory with literature: here, we fix k; different picture if nodesize is fixed (+subsampling)
- Randomization:

randomization of labels seems to have no impact; strong impact of randomization of partitions (hold-out RF: both bootstrap and mtry)

General result on the approximation error under (H2)/(H3):
 e.g., roughly, if x is centered in its cell (on average over U),

tree approx. error $\propto \mathcal{M}_2$ infinite forest approx. error $\propto \mathcal{M}_2^2$

where $M_2 \approx$ average square distance from x to the boundary of its cell ($\propto k^{-2}$ for toy forests)

e.g., roughly, if x is centered in its cell (on average over \mathbb{U}),

tree approx. error $\propto \mathcal{M}_2$ — infinite forest approx. error $\propto \mathcal{M}_2^2$

where $M_2 \approx$ average square distance from x to the boundary of its cell ($\propto k^{-2}$ for toy forests)

• toy forests in dimension d: approximation error $\propto k^{-2/d}$ vs. $k^{-4/d}$ (infinite forest reaches minimax C^2 rates)

General result on the approximation error under (H2)/(H3):
 e.g., roughly, if x is centered in its cell (on average over U),

tree approx. error $\propto \mathcal{M}_2$ infinite forest approx. error $\propto \mathcal{M}_2^2$

where $M_2 \approx$ average square distance from x to the boundary of its cell ($\propto k^{-2}$ for toy forests)

- toy forests in dimension d: approximation error $\propto k^{-2/d}$ vs. $k^{-4/d}$ (infinite forest reaches minimax C^2 rates)
- purely uniformly random forests in dimension 1 (split a random cell, chosen with probability equal to its volume): rates similar to toy forests

General result on the approximation error under (H2)/(H3):
 e.g., roughly, if x is centered in its cell (on average over U),

tree approx. error $\propto \mathcal{M}_2$ infinite forest approx. error $\propto \mathcal{M}_2^2$

where $M_2 \approx$ average square distance from x to the boundary of its cell ($\propto k^{-2}$ for toy forests)

- toy forests in dimension d: approximation error $\propto k^{-2/d}$ vs. $k^{-4/d}$ (infinite forest reaches minimax C^2 rates)
- purely uniformly random forests in dimension 1 (split a random cell, chosen with probability equal to its volume): rates similar to toy forests
- balanced purely random forests (full binary tree, uniform splits) in dimension d: $k^{-\alpha}$ (tree) vs. $k^{-2\alpha}$ (forest) where $\alpha = -\log_2\left(1 \frac{1}{2d}\right) \Rightarrow$ not minimax rates!

• Extensive numerical experiments? (other functions s^* , ...)

 Theory on approximation error of hold-out RF?
 ⇒ understand the typical shape of a cell of a RI tree (x centered on average? square distance to boundary?)

• Theory on estimation error of other models (beyond toy)? of hold-out RF?