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Regression: data (X1, Y1), . . . , (Xn, Yn)
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Goal: find the signal (denoising)
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Regression

Data Dn : (X1,Y1), . . . , (Xn,Yn) ∈ Rd × R (i.i.d. ∼ P)

Yi = s?(Xi ) + εi

with s?(X ) = E[Y |X ] (regression function).

Goal: learn f measurable function X → R s.t. the quadratic
risk

E(X ,Y )∼P
[(
f (X )− s?(X )

)2]
is minimal.
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Regression tree (Breiman et al, 1984)

Tree: piecewise-constant
predictor, obtained by partitioning
recursively Rd .

Restriction: splits parallel to the
axes.

1 Choice of the partition U
(tree structure)

2 For each λ ∈ U (tree leaf),
choice of the estimation β̂λ
of s?(x) when x ∈ λ.
Here, β̂λ = Y λ average of
the (Yi )Xi∈λ.
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Regression tree (Breiman et al, 1984)

Tree: piecewise-constant
predictor, obtained by partitioning
recursively Rd .

1 Choice of the partition U
(tree structure)
Usually, at each step, one
looks for the best split of the
data into two groups
(minimize sum of
within-group variances) Dn.
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Random forest (Breiman, 2001)

Definition (Random forest (Breiman, 2001)){
ŝΘj , 1 6 j 6 q

}
collection of tree predictors, (Θj)16j6q i.i.d. r.v.

independent from Dn.
Random forest predictor ŝ obtained by aggregating the tree
collection.

ŝ(x) =
1
q

q∑
j=1

ŝΘj (x)

ensemble method (Dietterich, 1999, 2000)
powerful statistical learning algorithm, for both classification
and regression.
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Bagging (“bootstrap aggregating”)

Bootstrap (Efron, 1979): draw n i.i.d. r.v., uniform over{
(Xi ,Yi ) / i = 1, . . . , n

}
(sampling with replacement)

⇒ resample Db
n

Bootstrapping a tree: ŝb
tree = ŝtree(Db

n )

Bagging: bootstrap (q independent resamples) then
aggregation

ŝbagging(x) =
1
q

q∑
j=1

ŝb,j
tree(x)
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Random Forest-Random Inputs (Breiman, 2001)

Definition (RI tree)
In a RI tree, at each node, mtry variables are randomly chosen.
Then, the best cut direction is chosen only among the chosen
variables.

Definition (Random forest RI)
A random forest RI (RF-RI) is obtained by aggregating RI trees
built on independent bootstrap resamples.

RF-RI ⇔ bagging on RI trees
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Random Forest-Random Inputs

Dn
Bootstrap

uu {{ ((
Db,1

n

RI tree

��

Db,2
n

��

. . . . . . Db,q
n

��

. . . . . .

ŝΘ1

Aggregation ))

ŝΘ2

##

. . . . . . ŝΘq

vv
ŝRF−RI
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Example of application of random forests: Kinect

Depth image ⇒ depth comparison features at each pixel

⇒ body part at each pixel ⇒ body part positions ⇒ · · ·

Figures from Shotton et al (2011)
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Theoretical results on RF-RI

Few theoretical results on Breiman’s original RF-RI

Most results:
focus on a specific part of the algorithm (resampling, split
criterion),
modify the algorithm (eg, subsampling instead of resampling)
make strong assumptions on s?

References (see survey paper by Biau and Scornet, 2016):
Mentch & Hooker (2014), Scornet, Biau & Vert (2015),
Wager & Athey (2015), ...

⇒ Here, we consider simplified RF models, for which a precise
analysis is possible: purely random forests
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Purely random forests

Definition (Purely random tree)

ŝU(x) =
∑
λ∈U

Yλ(Dn)1x∈λ

where Yλ(Dn) is the average of (Yi )Xi∈λ , (Xi ,Yi )∈Dn and the
partition U is independent from Dn.

Definition (Purely random forest)

ŝ(x) =
1
q

q∑
j=1

ŝUj (x)

with U1, . . . ,Uq i.i.d., independent from Dn.

Example (“hold-out RF” model): (random) split of the sample into
Dn (used for defining the labels Yλ) and D′n (used for building the
trees Uj = URI(D′? j

n )).
B From now on, Dn is the sample used for computing the
Yλ(Dn), and we assume its size is n.
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Purely random forests

U1
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Purely random forests: theory

Consistency: Biau, Devroye & Lugosi (2008), Scornet (2014)

Rates of convergence: Breiman (2004), Biau (2012)
Some adaptivity to dimension reduction (sparse framework):
Biau (2012)

Forests decrease the estimation error (Biau, 2012; Genuer,
2012)

⇒ What about approximation error?
Almost the same for a forest and a tree?
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Risk of a single tree (regressogram)
Given the partition U, regressogram estimator

ŝU(x) :=
∑
λ∈U

Yλ1x∈λ

where Yλ is the average of (Yi )Xi∈λ.

ŝU ∈ argmin
f ∈SU

{
1
n

n∑
i=1

(
Yi − f (Xi )

)2}
where SU is the vector space of functions which are constant over
each λ ∈ U.
Define:

s̃U(x) :=
∑
λ∈U

βλ1x∈λ where βλ := E[s?(X ) |X ∈ λ] .

⇒ s̃U ∈ argminf ∈SU E
[(
f (X )− s?(X )

)2] and s̃U(x) = E
[
ŝU(x) |U

]
Analysis of some purely random forests Sylvain Arlot
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Risk decomposition: single tree

E
[(
ŝU(X )− s?(X )

)2]
= E

[(
s̃U(X )− s?(X )

)2]
+ E

[(
ŝU(X )− s̃U(X )

)2]
= Approximation error + Estimation error

If s? is smooth, X ∼ U([0, 1]) and U regular partition into K
pieces, then

E
[(
s̃U(X )− s?(X )

)2] ∝ 1
K 2

If var(Y |X ) = σ2 does not depend on X , then

E
[(
s̃U(X )− ŝU(X )

)2] ≈ σ2K
n
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Approximation and estimation errors
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Risk decomposition: purely random forest

(Uj)16j6q finite partitions, i.i.d. ∼ U

Estimator (forest): ŝU1···q (x) :=
1
q

q∑
j=1

ŝUj (x)

Ideal forest: s̃U1···q (x) :=
1
q

q∑
j=1

s̃Uj (x) = E
[
ŝU1···q (x) |U1···q]

Quadratic risk decomposition (given X = x)

E
[(
ŝU1···q (x)− s?(x)

)2]
= E

[(
s̃U1···q (x)− s?(x)

)2]
+ E

[(
ŝU1···q (x)− s̃U1···q (x)

)2]
Bias term (approximation error):
BU ,q(x) := E

[(
s̃U1···q (x)− s?(x)

)2]
Analysis of some purely random forests Sylvain Arlot
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Bias decomposition (given X = x)

BU ,q(x) = BU ,∞(x) +
VU (x)

q

where BU ,∞(x) :=
(
E
[
s̃U(x)

]
− s?(x)

)2

and VU (x) := var
(
s̃U(x)

)

BU ,∞(x) is the bias of the infinite forest: s̃U,∞(x) := E
[
s̃U(x)

]
to be compared with the bias of a single tree

BU ,1(x) = BU ,∞(x) + VU (x)
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Toy forests in one dimension

Assume: X = [0, 1) X uniform over [0, 1)

U ∼ Utoy
k defined by:

U =

{[
0, 1− T

k

)
,

[1− T
k ,

2− T
k

)
, . . . ,

[k − T
k , 1

)}

where T has uniform distribution over [0, 1].
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Interpretation of the ideal infinite forest

Proposition (A. & Genuer, 2014)

For any x ∈
[

1
k , 1−

1
k

]
, the ideal infinite forest at x satisfies:

s̃U,∞(x) = (s? ∗ hk)(x) =

∫ 1

0
s?(t)hk(x − t) dt

where

hk(u) =


k(1− ku) if 0 6 u 6 1

k
k(1 + ku) if − 1

k 6 u 6 0
0 if |u| > 1

k
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Analysis of the approximation error
(H2) s? twice differentiable over (0, 1) and s?′′ bounded

Taylor-Lagrange formula: for every t ∈ (0, 1), some ct,x ∈ (0, 1)
exists such that

s?(t)− s?(x) = s?′(x)(t − x) +
1
2s

?′′(ct,x )(t − x)2

Therefore,
s̃U(x)− s?(x) = k

∫ x+ Vx
k

x+ Vx −1
k

(s?(t)− s?(x)) dt

= k s?′(x)

∫ x+ Vx
k

x+ Vx −1
k

(t − x) dt + R1(x)

=
s?′(x)

k

(
Vx −

1
2

)
+ R1(x)

where R1(x) = k
2
∫ x+ Vx

k
x+ Vx −1

k
s?′′(ct,x )(t − x)2 dt
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Analysis of the approximation error

(
EU
[
s̃U(x)− s?(x)

])2
6
�
k4 VU (x) ∼

k→+∞

�
k2

Proposition (A. & Genuer, 2014)

Assuming (H2), for every x ∈
[

1
k , 1−

1
k

]
,

BUtoy
k ,1(x) ∼

k→+∞

�
k2 BUtoy

k ,∞(x) 6
�
k4∫ 1− 1

k

1
k

BUtoy
k ,1(x) dx ∼

k→+∞

�
k2

∫ 1− 1
k

1
k

BUtoy
k ,∞(x) dx 6 �k4

Rate k−4 is tight assuming:
(H3) s? three times differentiable over (0, 1) and s?′′′ bounded
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Estimation error

General fact (Jensen’s inequality):

E
[(
ŝU ,∞(X )− s̃U ,∞(X )

)2]
6 E

[(
ŝU(X )− s̃U(X )

)2]

For the toy forest, without any resampling for computing labels
and assuming that var(Y |X ) = σ2:

E
[(
ŝU(X )− s̃U(X )

)2] ≈ σ2k
n

E
[(
ŝU ,∞(X )− s̃U ,∞(X )

)2] ≈ 2
3
σ2k
n

(A. & Genuer, 2016)
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Summary: risk analysis
Single tree Infinite forest
(q = 1) (q =∞)

E
[(
ŝU1···q (x)− s?(x)

)2] ≈ c1(s?, x)

k2 +
σ2k
n

c2(s?, x)

k4 +
2σ2k
3n

where c1(s?, x) =
s?′(x)2

12 and c2(s?, x) =
s?′′(x)2

144 .

Assumptions:
x ∈ (0, 1) far from boundary
(H3) s? three times differentiable over (0, 1) and s?′′′ bounded
X uniform over [0, 1]

var(Y |X ) = σ2

no resampling for computing labels
Analysis of some purely random forests Sylvain Arlot
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Rates of convergence

Corollary: risk convergence rates (far from boundaries, with k = k?n
optimal):

Tree > � n−2/3

Infinite forest 6 � n−4/5 ⇒ minimax C2

Remarks:
q > � (k?n )2 is sufficient to get an “infinite” forest

with subsampling a out of n for computing labels:
estimation error of a single tree σ2k

a instead of σ2k
n ;

no change for infinite forest
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Definition (Biau, 2012)

Split Dn into Dn1 and Dn2

U1

��

U2

��

. . . Uq

Using Dn2 , no resampling here

��

RI partitions, using Dn1

. . .

. . .

ŝU1

Aggregation ))

ŝU2

##

. . . ŝUq

{{
ŝHO−RF

⇒ purely random forest
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Numerical experiments: framework

Data generation:
Xi ∼ U([0, 1]d ) Yi = s?(Xi ) + εi
εi ∼ N (0, σ2) σ2 = 1/16

s? : x ∈ [0, 1]d 7→ 1
10×

[
10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5

]
.

Data split: n1 = 1 280 n2 = 25 600

Forests definition:
nodesize = 1
k ∈ {25, 26, 27, 28}
“Large” forests are made of q = k trees.
Compute integrated approximation/estimation errors
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Numerical experiments: results (d = 5)

Single tree Large forest

No bootstrap
mtry = d

0.13
k0.17 +

1.04σ2k
n2

0.13
k0.17 +

1.04σ2k
n2

Bootstrap
mtry = d

0.14
k0.17 +

1.06σ2k
n2

0.15
k0.29 +

0.08σ2k
n2

No bootstrap
mtry = bd/3c

0.23
k0.19 +

1.01σ2k
n2

0.06
k0.31 +

0.06σ2k
n2

Bootstrap
mtry = bd/3c

0.25
k0.20 +

1.02σ2k
n2

0.06
k0.34 +

0.05σ2k
n2
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Numerical experiments: results (d = 10)

Single tree Large forest

No bootstrap
mtry = d

0.11
k0.12 +

1.03σ2k
n2

0.11
k0.12 +

1.03σ2k
n2

Bootstrap
mtry = d

0.11
k0.11 +

1.05σ2k
n2

0.10
k0.19 +

0.04σ2k
n2

No bootstrap
mtry = bd/3c

0.21
k0.18 +

1.08σ2k
n2

0.08
k0.25 +

0.04σ2k
n2

Bootstrap
mtry = bd/3c

0.20
k0.16 +

1.05σ2k
n2

0.07
k0.26 +

0.03σ2k
n2
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Conclusion

Forests improve the order of magnitude of the approximation
error, compared to a single tree

Estimation error seems to change only by a constant factor
(at least for toy forests);
not contradictory with literature: here, we fix k; different
picture if nodesize is fixed (+subsampling)

Randomization:
randomization of labels seems to have no impact;
strong impact of randomization of partitions (hold-out RF:
both bootstrap and mtry)

Analysis of some purely random forests Sylvain Arlot



36/38

Random forests Purely random forests Toy forests Hold-out random forests Conclusion

Conclusion

Forests improve the order of magnitude of the approximation
error, compared to a single tree

Estimation error seems to change only by a constant factor
(at least for toy forests);
not contradictory with literature: here, we fix k; different
picture if nodesize is fixed (+subsampling)

Randomization:
randomization of labels seems to have no impact;
strong impact of randomization of partitions (hold-out RF:
both bootstrap and mtry)

Analysis of some purely random forests Sylvain Arlot



37/38

Random forests Purely random forests Toy forests Hold-out random forests Conclusion

Approximation error: generalization

General result on the approximation error under (H2)/(H3):
e.g., roughly, if x is centered in its cell (on average over U),

tree approx. error ∝M2 infinite forest approx. error ∝M2
2

whereM2 ≈ average square distance from x to the boundary
of its cell (∝ k−2 for toy forests)

toy forests in dimension d : approximation error ∝ k−2/d vs.
k−4/d (infinite forest reaches minimax C2 rates)
purely uniformly random forests in dimension 1 (split a
random cell, chosen with probability equal to its volume):
rates similar to toy forests
balanced purely random forests (full binary tree, uniform
splits) in dimension d : k−α (tree) vs. k−2α (forest) where
α = − log2

(
1− 1

2d

)
⇒ not minimax rates!
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random cell, chosen with probability equal to its volume):
rates similar to toy forests
balanced purely random forests (full binary tree, uniform
splits) in dimension d : k−α (tree) vs. k−2α (forest) where
α = − log2

(
1− 1

2d

)
⇒ not minimax rates!
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Open problems / future work

Extensive numerical experiments? (other functions s?, ...)

Theory on approximation error of hold-out RF?
⇒ understand the typical shape of a cell of a RI tree
(x centered on average? square distance to boundary?)

Theory on estimation error of other models (beyond toy)?
of hold-out RF?
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