Franks-Misiurewicz conjecture for extensions of irrational rotations

Alejandro Passeggi (joint work with A. Koropecki and M. Sambarino)

Universidad de la República, Montevideo, Uruguay.

Alejandro Passeggi (joint work with A. Koropecki and M. Sambarin Franks-Misiurewicz conjecture for extensions of irrational rotation

Assume *I* is a non-trivial interval so that $I = \rho(F)$ for some lift *F* of an element $f \in \text{Homeo}_0(\mathbb{T}^2)$. Then

Assume *I* is a non-trivial interval so that $I = \rho(F)$ for some lift *F* of an element $f \in \text{Homeo}_0(\mathbb{T}^2)$. Then

If I has rational slope, then I contains rational points.

Assume *I* is a non-trivial interval so that $I = \rho(F)$ for some lift *F* of an element $f \in \text{Homeo}_0(\mathbb{T}^2)$. Then

If I has rational slope, then I contains rational points.

If I has irrational slope, then one end-point of I is rational.

Partial answers to the conjecture

Alejandro Passeggi (joint work with A. Koropecki and M. Sambarir Franks-Misiurewicz conjecture for extensions of irrational rotation

Avila presented a counter example for (2) given by a smooth minimal diffeomorphism (with several interesting features).

Avila presented a counter example for (2) given by a smooth minimal diffeomorphism (with several interesting features).

LeCalvez and Tal have shown that whenever a rotation set is an interval of irrational slope containing a rational point, this rational point must be an endpoint.

Alejandro Passeggi (joint work with A. Koropecki and M. Sambarir Franks-Misiurewicz conjecture for extensions of irrational rotation

We say that $f \in \text{Homeo}_0(\mathbb{T}^2)$ is an extension of an irrational rotation if for some continuous map $h : \mathbb{T}^2 \to \mathbb{S}^1$ we have

$$h \circ f = R_\alpha \circ h$$

for some irrational rotation R_{α} .

We say that $f \in \text{Homeo}_0(\mathbb{T}^2)$ is an extension of an irrational rotation if for some continuous map $h : \mathbb{T}^2 \to \mathbb{S}^1$ we have

$$h\circ f=R_\alpha\circ h$$

for some irrational rotation R_{α} .

Theorem (Jäger-_)

Assume *f* is an e.i.r. having a non-singleton rotation set. Then, *h* can be considered so that the fibers form a partition by essential annular continua of \mathbb{T}^2 where generically

We say that $f \in \text{Homeo}_0(\mathbb{T}^2)$ is an extension of an irrational rotation if for some continuous map $h : \mathbb{T}^2 \to \mathbb{S}^1$ we have

$$h\circ f=R_\alpha\circ h$$

for some irrational rotation R_{α} .

Theorem (Jäger-_)

Assume *f* is an e.i.r. having a non-singleton rotation set. Then, *h* can be considered so that the fibers form a partition by essential annular continua of \mathbb{T}^2 where generically

are non-compactly generated,

We say that $f \in \text{Homeo}_0(\mathbb{T}^2)$ is an extension of an irrational rotation if for some continuous map $h : \mathbb{T}^2 \to \mathbb{S}^1$ we have

$$h \circ f = R_\alpha \circ h$$

for some irrational rotation R_{α} .

Theorem (Jäger-_)

Assume *f* is an e.i.r. having a non-singleton rotation set. Then, *h* can be considered so that the fibers form a partition by essential annular continua of \mathbb{T}^2 where generically

- are non-compactly generated,
- have points realizing both extremal rotation vectors.

Let $f \in Homeo_0(\mathbb{T}^2)$ be an extension of an irrational rotation. Then $\rho(F)$ is a singleton.

Let $f \in Homeo_0(\mathbb{T}^2)$ be an extension of an irrational rotation. Then $\rho(F)$ is a singleton.

Making use of Avila counter example together with LeCalvez-Tal result, Jäger-Tal result and Koksard result we obtain:

Let $f \in Homeo_0(\mathbb{T}^2)$ be an extension of an irrational rotation. Then $\rho(F)$ is a singleton.

Making use of Avila counter example together with LeCalvez-Tal result, Jäger-Tal result and Koksard result we obtain:

Theorem

Let $f \in Homeo_0(\mathbb{T}^2)$ be minimal. Then the rotation set is either

Let $f \in Homeo_0(\mathbb{T}^2)$ be an extension of an irrational rotation. Then $\rho(F)$ is a singleton.

Making use of Avila counter example together with LeCalvez-Tal result, Jäger-Tal result and Koksard result we obtain:

Theorem

Let $f \in Homeo_0(\mathbb{T}^2)$ be minimal. Then the rotation set is either a singleton or

Let $f \in Homeo_0(\mathbb{T}^2)$ be an extension of an irrational rotation. Then $\rho(F)$ is a singleton.

Making use of Avila counter example together with LeCalvez-Tal result, Jäger-Tal result and Koksard result we obtain:

Theorem

Let $f \in Homeo_0(\mathbb{T}^2)$ be minimal. Then the rotation set is either

a singleton or

an irrational slope interval containing no rational points, where both situation can be realized.

Let \mathbb{A} be the usual annulus given as the quotient of \mathbb{R}^2 by integer horizontal translations.

Let \mathbb{A} be the usual annulus given as the quotient of \mathbb{R}^2 by integer horizontal translations. The *winding* number of a continuous arc $I : [0, 1] \to \mathbb{A}$ is defined as $\omega(I) = \overline{I}(1) - \overline{I}(0)$ for any lift \overline{I} of I.

Let \mathbb{A} be the usual annulus given as the quotient of \mathbb{R}^2 by integer horizontal translations. The *winding* number of a continuous arc $I : [0,1] \to \mathbb{A}$ is defined as $\omega(I) = \overline{I}(1) - \overline{I}(0)$ for any lift \overline{I} of I. Fix $f \in \text{Homeo}_0(\mathbb{A})$ uniform continuous and $0 < \varepsilon < \frac{1}{4}$ so that $\text{diam}(f(B(x,\varepsilon))) < \frac{1}{4}$ for every $x \in \mathbb{A}$.

Let \mathbb{A} be the usual annulus given as the quotient of \mathbb{R}^2 by integer horizontal translations. The *winding* number of a continuous arc $I : [0,1] \to \mathbb{A}$ is defined as $\omega(I) = \overline{I}(1) - \overline{I}(0)$ for any lift \overline{I} of I. Fix $f \in \text{Homeo}_0(\mathbb{A})$ uniform continuous and $0 < \varepsilon < \frac{1}{4}$ so that $\text{diam}(f(B(x,\varepsilon))) < \frac{1}{4}$ for every $x \in \mathbb{A}$.

Lemma (Dragging Lemma)

Assume the existence of an essential loop $\gamma \subset \mathbb{A}$ and a pair of points $z, w \in \mathbb{A}$ so that for some closed topological disks $V_z, V_w, V_{f(z)}, V_{f(w)}$ of diameter bounded above by ε with $z \in V_z, w \in V_w, f(z) \in V_{f(z)}, f(w) \in V_{f(w)}$, we have that $\gamma \cap V_z, \gamma \cap V_w, f(\gamma) \cap V_{f(z)}, f(\gamma) \cap V_{f(z)}$ are all singletons. Then, for any two arcs $I \subset \gamma$ joining V_z with V_w and $J \subset f(\gamma)$ joining $V_{f(z)}$ with $V_{f(z)}$, we have

$$\omega(J) \ge \omega(f(I)) - 5.$$

Corollary of the Dragging Lemma

For any extension of an irrational rotation f consider a lift $\tilde{f} \in \text{Homeo}_0(\mathbb{A})$. Let ε given as in the Dragging lemma. We obtain as corollary:

Corollary of the Dragging Lemma

For any extension of an irrational rotation f consider a lift $\tilde{f} \in \text{Homeo}_0(\mathbb{A})$. Let ε given as in the Dragging lemma. We obtain as corollary:

Corollary (Relaxed version)

Assume *f* is an e.i.r. having a non-trivial interval as rotation set $[\rho^-, \rho^+] \times \{\alpha\}$, with $\rho^- < -20$ and $\rho^+ > 20$. Let $x, y \in \mathbb{A}$ be the projection of two points realizing (ρ^-, α) and (ρ^+, α) respectively, and an essential curve $\gamma \subset \mathbb{A}$ so that for every $n \in \mathbb{N}$

$$d(\tilde{f}^n(x), \tilde{f}^n(\gamma)) < \varepsilon$$
 and $d(\tilde{f}^n(y), \tilde{f}^n(\gamma)) < \varepsilon$.

Then, there exists a sequence of arcs $(I_n)_{n \in \mathbb{N}}$ with $I_n \subset f^n(\gamma)$ so that

$$\omega(I_n) > 5n.$$

In particular $\omega(I_n) \to \infty$.