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Franks Misiurewicz conjecture.

Assume I is a non-trivial interval so that I = ρ(F) for some lift F
of an element f ∈ Homeo0(T

2). Then
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Franks Misiurewicz conjecture.

Assume I is a non-trivial interval so that I = ρ(F) for some lift F
of an element f ∈ Homeo0(T

2). Then

1 if I has rational slope, then I contains rational points.
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Franks Misiurewicz conjecture.

Assume I is a non-trivial interval so that I = ρ(F) for some lift F
of an element f ∈ Homeo0(T

2). Then

1 if I has rational slope, then I contains rational points.

2 if I has irrational slope, then one end-point of I is rational.

Alejandro Passeggi (joint work with A. Koropecki and M. Sambarino) Franks-Misiurewicz conjecture for extensions of irrational rotations



Partial answers to the conjecture
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Partial answers to the conjecture

Avila presented a counter example for (2) given by a smooth
minimal diffeomorphism (with several interesting features).

Alejandro Passeggi (joint work with A. Koropecki and M. Sambarino) Franks-Misiurewicz conjecture for extensions of irrational rotations



Partial answers to the conjecture

Avila presented a counter example for (2) given by a smooth
minimal diffeomorphism (with several interesting features).

LeCalvez and Tal have shown that whenever a rotation set is an
interval of irrational slope containing a rational point, this
rational point must be an endpoint.
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Extension of irrational rotations
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Extension of irrational rotations

We say that f ∈ Homeo0(T
2) is an extension of an irrational

rotation if for some continuous map h : T2 → S
1 we have

h ◦ f = Rα ◦ h

for some irrational rotation Rα.
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Extension of irrational rotations

We say that f ∈ Homeo0(T
2) is an extension of an irrational

rotation if for some continuous map h : T2 → S
1 we have

h ◦ f = Rα ◦ h

for some irrational rotation Rα.

Theorem (Jäger- )

Assume f is an e.i.r. having a non-singleton rotation set. Then,
h can be considered so that the fibers form a partition by
essential annular continua of T2 where generically
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Extension of irrational rotations

We say that f ∈ Homeo0(T
2) is an extension of an irrational

rotation if for some continuous map h : T2 → S
1 we have

h ◦ f = Rα ◦ h

for some irrational rotation Rα.

Theorem (Jäger- )

Assume f is an e.i.r. having a non-singleton rotation set. Then,
h can be considered so that the fibers form a partition by
essential annular continua of T2 where generically

are non-compactly generated,
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Extension of irrational rotations

We say that f ∈ Homeo0(T
2) is an extension of an irrational

rotation if for some continuous map h : T2 → S
1 we have

h ◦ f = Rα ◦ h

for some irrational rotation Rα.

Theorem (Jäger- )

Assume f is an e.i.r. having a non-singleton rotation set. Then,
h can be considered so that the fibers form a partition by
essential annular continua of T2 where generically

are non-compactly generated,

have points realizing both extremal rotation vectors.
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Results

Theorem (Koropecki- -Sambarino)

Let f ∈ Homeo0(T
2) be an extension of an irrational rotation.

Then ρ(F) is a singleton.
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Results

Theorem (Koropecki- -Sambarino)

Let f ∈ Homeo0(T
2) be an extension of an irrational rotation.

Then ρ(F) is a singleton.

Making use of Avila counter example together with
LeCalvez-Tal result, Jäger-Tal result and Koksard result we
obtain:
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Results

Theorem (Koropecki- -Sambarino)

Let f ∈ Homeo0(T
2) be an extension of an irrational rotation.

Then ρ(F) is a singleton.

Making use of Avila counter example together with
LeCalvez-Tal result, Jäger-Tal result and Koksard result we
obtain:

Theorem

Let f ∈ Homeo0(T
2) be minimal. Then the rotation set is either
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Results

Theorem (Koropecki- -Sambarino)

Let f ∈ Homeo0(T
2) be an extension of an irrational rotation.

Then ρ(F) is a singleton.

Making use of Avila counter example together with
LeCalvez-Tal result, Jäger-Tal result and Koksard result we
obtain:

Theorem

Let f ∈ Homeo0(T
2) be minimal. Then the rotation set is either

1 a singleton or
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Results

Theorem (Koropecki- -Sambarino)

Let f ∈ Homeo0(T
2) be an extension of an irrational rotation.

Then ρ(F) is a singleton.

Making use of Avila counter example together with
LeCalvez-Tal result, Jäger-Tal result and Koksard result we
obtain:

Theorem

Let f ∈ Homeo0(T
2) be minimal. Then the rotation set is either

1 a singleton or
2 an irrational slope interval containing no rational points,

where both situation can be realized.
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Dragging Lemma

Let A be the usual annulus given as the quotient of R2 by
integer horizontal translations.
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Dragging Lemma

Let A be the usual annulus given as the quotient of R2 by
integer horizontal translations. The winding number of a
continuous arc I : [0, 1] → A is defined as ω(I) = I(1)− I(0) for
any lift I of I.
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Dragging Lemma

Let A be the usual annulus given as the quotient of R2 by
integer horizontal translations. The winding number of a
continuous arc I : [0, 1] → A is defined as ω(I) = I(1)− I(0) for
any lift I of I. Fix f ∈ Homeo0(A) uniform continuous and
0 < ε <

1
4 so that diam(f (B(x, ε))) < 1

4 for every x ∈ A.
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Dragging Lemma

Let A be the usual annulus given as the quotient of R2 by
integer horizontal translations. The winding number of a
continuous arc I : [0, 1] → A is defined as ω(I) = I(1)− I(0) for
any lift I of I. Fix f ∈ Homeo0(A) uniform continuous and
0 < ε <

1
4 so that diam(f (B(x, ε))) < 1

4 for every x ∈ A.

Lemma (Dragging Lemma)

Assume the existence of an essential loop γ ⊂ A and a pair of
points z,w ∈ A so that for some closed topological disks
Vz,Vw,Vf (z),Vf (w) of diameter bounded above by ε with
z ∈ Vz,w ∈ Vw, f (z) ∈ Vf (z), f (w) ∈ Vf (w), we have that
γ ∩ Vz, γ ∩ Vw, f (γ) ∩ Vf (z), f (γ) ∩ Vf (z) are all singletons. Then,
for any two arcs I ⊂ γ joining Vz with Vw and J ⊂ f (γ) joining
Vf (z) with Vf (z), we have

ω(J) ≥ ω(f (I)) − 5.
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Corollary of the Dragging Lemma

For any extension of an irrational rotation f consider a lift
f̃ ∈ Homeo0(A). Let ε given as in the Dragging lemma. We
obtain as corollary:
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Corollary of the Dragging Lemma

For any extension of an irrational rotation f consider a lift
f̃ ∈ Homeo0(A). Let ε given as in the Dragging lemma. We
obtain as corollary:

Corollary (Relaxed version)

Assume f is an e.i.r. having a non-trivial interval as rotation set
[ρ−, ρ+]× {α}, with ρ− < −20 and ρ+ > 20. Let x, y ∈ A be the
projection of two points realizing (ρ−, α) and (ρ+, α)
respectively, and an essential curve γ ⊂ A so that for every
n ∈ N

d(f̃ n(x), f̃ n(γ)) < ε and d(f̃ n(y), f̃ n(γ)) < ε.

Then, there exists a sequence of arcs (In)n∈N with In ⊂ f̃ n(γ) so
that

ω(In) > 5n.

In particular ω(In) → ∞.
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