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Non-autonomous differential equations

Consider the system
ẋ = F (t, x) (1)

where

I F : R× R2 → R2 is T−periodic in t and

I the solutions ϕ(t; τ, x0) exist, are unique, can be extended
indefinitely into the future and depend continuously on initial
condition.

The solutions of (1) define a semiflow π on S1 × R2, given by

ϕ(s, (τ, x0)) = (τ + smodT , ϕ(τ + s; τ, x0)), ∀s ≥ 0

where τ ∈ S1 = [0,T ] with 0 and T identified.
Consider τ = 0 for simplicity and let P(x0) = ϕ(T ; 0, x0), the first
return map under the semiflow π.
The map P is called the [0,T ] Poincaré map of the Equation (1).



Non-autonomous differential equations

I the solutions ϕ(t; τ, x0) exist, are unique, can be extended
indefinitely into the future,

X P : R2 → R2 is well defined and injective. Observe that P(R2)
can not equal R2.

I the solutions ϕ(t; τ, x0) are depend continuously on initial
condition,

X P : R2 → R2 continuous.

So P ∈ Emb+(R2), where Emb(R2) is the set of planar
continuous and injective self maps.
Furthermore, T−periodic solutions of Equation (1) correspond to
fixed points of P and nT−periodic solutions of (1) are periodic
points of P.



Non-autonomous differential equations

If in addition...

I all solutions can be also extended indefinitely into the past,

X P ∈ Homeo+(R2). Observe that P−1(p) = ϕ(−T ; 0, p)

I and have differentiable dependence on initial condition,

X P : R2 → R2 is differentiable and the Jacobi-Liouville Formula
holds

0 < detP ′(p) = exp{
∫ T

0

divxF (t, ϕ(t, p))dt}

X P ∈ Diff+(R2)
X if divxF (t, x) < 0 then P is area-contracting.



Non-autonomous differential equations

Definition
The system ẋ = F (t, x) given by (1) is said to be dissipative if
there exists a real number B > 0 such that ‖ϕ(t, x)‖ ≤ B, ∀t ≥ τ ,
where τ may depend on x and B.

Theorem (Yoshizawa, 1975)

If the system ẋ = F (t, x) is dissipative, then Equation (1) has a
T−periodic solution.

Remark
If the system (1) is dissipative, the corresponding Poincaré map is
also dissipative.

Definition
A system ẋ = F (t, x) given by (1) is said to be convergent if there
exists a unique T−periodic solution and it is globally
asymptotically stable (GAS).



Let’s play topological dynamics

Theorem (P. Murthy, 1998)

If U is an open simply connected subset of R2 and g : U → U is a
continuous, 1− 1, orientation preserving self-map such that
Ω(g) 6= ∅, then g has a fixed point in U.

Lemma (Alarcón,Guiñez, Gutierrez 2008)

Let f ∈ Emb(R2) such that f (0) = 0. Suppose that one of the
following hold:

I f is orientation preserving and Fix(f ) = {0}
I f is orientation reversing and Fix(f 2) = {0}

If there exists a f−invariant ray, γ, then Ω(f ) ⊂ γ and either
ω(p) = {0} or ω(p) = ∅, for all p ∈ R2.



Let’s play topological dynamics

Theorem (Alarcón-Guiñez-Gutierrez, 2008)

Let f ∈ Emb(R2) such that f (0) = 0 and f is dissipative.
Suppose that one of the following hold:

I f is orientation preserving and Fix(f ) = {0}
I f is orientation reversing and Fix(f 2) = {0}

If there exists a f−invariant ray, γ, then Ω(f ) ⊂ γ and either
ω(p) = {0} or ω(p) = ∅, for all p ∈ R2.
Additionally, 0 is globally asymptotically stable (GAS) provided by
0 is locally stable.

Remark
Ortega and Ruiz del Portal applied in 2011 this result to
Population Dynamics.



Go back to non-autonomous systems

Theorem
Consider the Equation (1) and suppose that F (t, 0) = 0, ∀t and
the following assumptions hold:

I the system is dissipative,

I the linearized system ẏ = ∂F
∂x (t, 0)y is asymptotically stable,

I there exists a ray invariant by the Poincaré map.

Then, the system (1) is convergent if and only if there are no other
T−periodic solutions.



Symmetries

Definition
We say that γ ∈ GL(2) is a symmetry of Equation (1) if
F (t, γx) = γF (t, x), ∀x and ∀t.

Theorem (Alarcón-Castro-Labouriau, 2013)

If γ ∈ O(2) is a symmetry of Equation (1), then P(γx) = γP(x),
∀x ∈ R2.

Lemma (Alarcón-Castro-Labouriau, 2013)

Let f ∈ Emb(R2) such that the linear reflection κ is a symmetry of
f and Fix(f ) = {0}. Suppose that one of the following hold:

I f is orientation preserving and does not interchange connected
components of R2 \ Fix〈κ〉.

I Fix(f 2) = {0}.
Then for all p ∈ R2 either ω(p) = {0} or ω(p) = ∅.



Symmetry group

Definition
We define the symmetry group of f as the biggest closed subset of
GL(2) containing all the symmetries of f . It will be denoted by
Γf (g).

Remark

I f is always Γf−equivariant

I we only consider the symmetry groups O(2),SO(2), Dn,Zn

for n ≥ 2 and Z2〈κ〉.
I Observe that all considered symmetry groups Γ has

Fix(Γ) = {0}, so f (0) = 0.



Symmetric planar maps

Symmetry group Df (0) hyperbolic local dynamics

O(2)

(
α 0
0 α

)
α ∈ R attractor / repellor

SO(2)

(
α −β
β α

)
α, β ∈ R attractor / repellor

Dn, n ≥ 3

(
α 0
0 α

)
α ∈ R attractor / repellor

Zn, n ≥ 3

(
α −β
β α

)
α, β ∈ R attractor / repellor

Z2 any matrix saddle / attractor / repellor

Z2〈κ〉
(
α 0
0 β

)
α, β ∈ R saddle / attractor / repellor

D2 = Z2〈−κ〉 ⊕ Z2〈κ〉
(
α 0
0 β

)
α, β ∈ R saddle / attractor / repellor

Saddles only appear with symmetry group D2,Z2〈κ〉 and Z2.



Let’s play topological dynamics with symmetry

Proposition (Alarcón-Castro-Labouriau, 2013)

Let f ∈ Emb(R2) such that Fix(f ) = {0} and its group of
symmetry is either O(2) or Z2〈κ〉 or Dn. Suppose that one of the
following hold:

I f is orientation preserving and does not interchange connected
components of R2 \ Fix〈κ〉.

I Fix(f 2) = {0}.
Then for all p ∈ R2 either ω(p) = {0} or ω(p) = ∅.

Remark

I also holds if Γf = SO(2) but we need f is area-contracting.

I its false for Γf = Zn. We construct counter-examples with
irrational prime ends rotation number.



Topological global saddles

Definition
We say that 0 is a topological global saddle if

(i) 0 is a hyperbolic saddle,

(ii) there are no homoclinic contacts and the curves W s(0, f ) and
W u(0, f ) are unbounded. Moreover, W s ∪W u separates the
plane into exactly four connected components.

(iii) for all p /∈W s(0, f ) ∪W u(0, f ) ∪ {0} both ‖f n(p)‖ → ∞ and
‖f −n(p)‖ → ∞ as n goes to ∞.

In case of 0 is a direct (twisted) saddle, 0 is called direct (twisted)
topological global saddle.

Remark
Observe that topological global saddles are still far from the global
conjugation to the linear saddle.



What about symmetric saddles?

Theorem (Alarcón-Castro-Labouriau, to appear)

Let f ∈ Homeo(R2) of class C 1 such that Fix(f ) = {0} and 0 is a
hyperbolic saddle. Suppose that Γf = D2 and one of the following
holds:

I 0 is a direct saddle

I Fix(f 2) = {0}

Then, the origin is a topological global saddle.

Remark

I f is a free homeomorphism of the plane.

I Observe that both W s ⊂ Fix〈κ1〉 and W u ⊂ Fix〈κ2〉 which
are two invariant line.

I For symmetric group Z2〈κ2〉 we have only one reflection and
for Z2 we have no reflections.



Go back to non-autonomous systems

Example (Alarcón-Castro-Labouriau, to appear)

As an illustration of such a transformed system, consider:
ẋ = αx + f1(x , y)
ẏ = −βy + f2(x , y)
ż = 1

α, β > 0

such that fi (x , y) = O(|(x , y)|2) and f = (f1, f2) is D2-equivariant,
and either ẋ 6= 0 or ẏ 6= 0 for (x , y) 6= (0, 0).

The linear part of P is given by (x , y) 7→
(
eαx , e−βy

)
and, by

previous theorem, the origin is a topological global saddle.



What about saddles without symmetry?

Theorem (Hirsch, 2000)

Let f ∈ Diff+(R2) be such that every fixed point is isolated and
has index ≤ 0. Then the following statements hold:

i) For every x , as n goes to ±∞, either f n(x) goes to a fixed
point or ‖f n(x)‖ → ∞.

ii) For each direct saddle p, every homoclinic contact is a fixed
point different from p and each branch at p is homeomorphic
to [0,∞).

iii) If the only fixed point is a direct saddle p, then there are no
homoclinic contacts and every branch of W s(p) and of
W u(p) is unbounded.



Partial results: Weak global saddles

Definition
We say that 0 is a weak global saddle if

(i) 0 is a hyperbolic saddle,

(ii) there are no homoclinic contacts and the curves W s(0, f ) and
W u(0, f ) are unbounded. Moreover, W s ∪W u separates the
plane into exactly four connected components.

(iii) for all p /∈W s(0, f ) ∪W u(0, f ) ∪ {0} both ‖f n(p)‖ → ∞ and
‖f −n(p)‖ → ∞ as n goes to ∞.

Proposition (Alarcón-Castro-Labouriau, to appear)

Let f ∈ Diff(R2) be such that the only fixed point p is a
hyperbolic saddle. Suppose that one of the following holds:

I 0 is a direct saddle

I Fix(f 2) = {0}

Then, the origin is a weak global saddle.



Partial results

Remark
Observe that the curves W s and W u for a weak global saddle can
be badly behaved, so the set

(R2 \W s ∪W u) ∪ (W s ∪W u)

may have lots of connected components.

Proposition (Alarcón-Ribón, work in progress)

Consider the simply connected subset

∆ = cc((R2 \W s ∪W u) ∪ (W s ∪W u), 0)

then 0 is a topological global saddle for f |∆.



Weak global saddles in forced Lienard Equations

Consider the differential equation

ẍ + f (x)ẋ + g(x) = p(t), (2)

where f , g : R→ R are locally Lipschitz maps of class C 1.
Suppose in addition that the following assumptions holds:

(A1) p : R→ R is continuous and periodic with minimal period
T > 0;

(A2) f is bounded and f (x) ≥ 0, for all x ∈ R;

(A3) g is a strictly decreasing homeomorphism;

(A4) ∃c , d ≥ 0 such that |g(x)| ≤ c + d |x |, for all x ∈ R.

Theorem (Alarcón-Castro-Labouriau, to appear)

The unique T− periodic solution of (2) is a weak global saddle for
the associated Poincaré map.



Proof: Weak saddles in forced Lienard Equations

Theorem (Campos and Torres, 1999)

There exists exactly one T−periodic solution of (2).

Poincaré map

I Assumptions on (2) imply that the Poincaré map P is an
orientation preserving diffeomorphism of the plain.

I Theorem of Campos and Torres implies that Fix(P) = {p}.
I Assumptions (A2) and (A3) imply that the unique fixed point

of P is a direct saddle.



Global saddles conjugated to the linear saddle

Theorem (Kerékjártó, 1934)

An orientation preserving homeomorphism of the plane h is
conjugated to the topological translation T (x , y) = (x + 1, y) if
and only if, for all p ∈ R2, ‖hn(p)‖ → +∞, as |n| goes to +∞,
and the convergence is uniform on compact sets.

Remark
Bonatti and Kolev presented in 1997 an alternative proof
considering the quotient space given by the orbits.

Theorem (Alarcón-Ribón, in progress)

Let f ∈ Diff+(R2) be such that the only fixed point 0 is a direct
saddle. Suppose that the following hold:

I both W s and W u are closed

I for all p /∈W s ∪W u ∪ {0}, ‖f n(p)‖ → +∞, as |n| goes to
+∞, and the convergence is uniform on compact sets in
R2 \W s ∪W u ∪ {0}.

Then, the map f is globally conjugated to the linear saddle.



Global saddles in forced Lienard Equations

Consider the differential equation

ẍ + f (x)ẋ + g(x) = p(t),

where f , g : R→ R are locally Lipschitz maps of class C 1.
Suppose in addition that the following assumptions holds:

(A1) p : R→ R is continuous and periodic with minimal period
T > 0;

(A2) f is bounded and f (x) ≥ 0, for all x ∈ R;

(A3) g is a strictly decreasing homeomorphism;

(A4) ∃c , d ≥ 0 such that |g(x)| ≤ c + d |x |, for all x ∈ R.

We hope to prove that

The Poincaré map associated to the Linear equation (plus perhaps
some extra condition) is globally conjugated to the linear saddle.



Let Maths be with you :-)


