Global Dynamics for symmetric planar maps

Begoña Alarcón

Universidade Federal Fluminense Brazil

joint work with: Isabel Labouriau, Sofia Castro and Javier Ribón

Surfaces in Luminy, October 2016

(日) (四) (三) (三)

э.

Global Dynamics for symmetric planar maps vs Periodic non autonomous differential equations

Begoña Alarcón

Universidade Federal Fluminense Brazil

joint work with: Isabel Labouriau, Sofia Castro and Javier Ribón

Surfaces in Luminy, October 2016

э

Consider the system

$$\dot{x} = F(t, x) \tag{1}$$

where

- $F : \mathbf{R} \times \mathbf{R}^2 \to \mathbf{R}^2$ is *T*-periodic in *t* and
- the solutions φ(t; τ, x₀) exist, are unique, can be extended indefinitely into the future and depend continuously on initial condition.

The solutions of (1) define a semiflow π on $S^1 \times \mathbf{R}^2$, given by

$$\varphi(s,(\tau,x_0)) = (\tau + s \mod T, \varphi(\tau + s;\tau,x_0)), \quad \forall s \ge 0$$

where $\tau \in S^1 = [0, T]$ with 0 and T identified. Consider $\tau = 0$ for simplicity and let $P(x_0) = \varphi(T; 0, x_0)$, the first return map under the semiflow π . The map P is called the [0, T] Poincaré map of the Equation (1).

- ► the solutions \u03c6(t; \u03c6, x_0) exist, are unique, can be extended indefinitely into the future,
 - ✓ $P : \mathbf{R}^2 \to \mathbf{R}^2$ is well defined and injective. Observe that $P(\mathbf{R}^2)$ can not equal \mathbf{R}^2 .
- ► the solutions \u03c6(t; \u03c6, x_0) are depend continuously on initial condition,

 $\checkmark P: \mathbf{R}^2 \to \mathbf{R}^2$ continuous.

So $P \in \text{Emb}^+(R^2)$, where $\text{Emb}(\mathbb{R}^2)$ is the set of planar continuous and injective self maps. Furthermore, T-periodic solutions of Equation (1) correspond to fixed points of P and nT-periodic solutions of (1) are periodic points of P.

A D > A B > A B > A B >

If in addition...

- ▶ all solutions can be also extended indefinitely into the past, $\checkmark P \in \mathbf{Homeo}^+(R^2)$. Observe that $P^{-1}(p) = \varphi(-T; 0, p)$
- > and have differentiable dependence on initial condition,
 - $\checkmark~P:{\bf R}^2\to{\bf R}^2$ is differentiable and the Jacobi-Liouville Formula holds

$$0 < det P'(p) = \exp\{\int_0^T div_x F(t, \varphi(t, p)) dt\}$$

э

✓ $P \in \mathbf{Diff}^+(R^2)$ ✓ if $div_x F(t, x) < 0$ then P is area-contracting.

Definition

The system $\dot{x} = F(t, x)$ given by (1) is said to be dissipative if there exists a real number B > 0 such that $\|\varphi(t, x)\| \le B$, $\forall t \ge \tau$, where τ may depend on x and B.

Theorem (Yoshizawa, 1975)

If the system $\dot{x} = F(t, x)$ is dissipative, then Equation (1) has a T-periodic solution.

Remark

If the system (1) is dissipative, the corresponding Poincaré map is also dissipative.

Definition

A system $\dot{x} = F(t, x)$ given by (1) is said to be convergent if there exists a unique T-periodic solution and it is globally asymptotically stable (GAS).

Let's play topological dynamics

Theorem (P. Murthy, 1998)

If U is an open simply connected subset of \mathbf{R}^2 and $g: U \to U$ is a continuous, 1 - 1, orientation preserving self-map such that $\Omega(g) \neq \emptyset$, then g has a fixed point in U.

Lemma (Alarcón, Guiñez, Gutierrez 2008)

Let $f \in Emb(\mathbf{R}^2)$ such that f(0) = 0. Suppose that one of the following hold:

• f is orientation preserving and $Fix(f) = \{0\}$

f is orientation reversing and Fix(f²) = {0}

If there exists a f-invariant ray, γ , then $\Omega(f) \subset \gamma$ and either $\omega(p) = \{0\}$ or $\omega(p) = \emptyset$, for all $p \in \mathbb{R}^2$.

Let's play topological dynamics

Theorem (Alarcón-Guiñez-Gutierrez, 2008) Let $f \in Emb(\mathbf{R}^2)$ such that f(0) = 0 and f is dissipative. Suppose that one of the following hold:

- f is orientation preserving and $Fix(f) = \{0\}$
- ▶ f is orientation reversing and Fix(f²) = {0}

If there exists a f-invariant ray, γ , then $\Omega(f) \subset \gamma$ and either $\omega(p) = \{0\}$ or $\omega(p) = \emptyset$, for all $p \in \mathbb{R}^2$. Additionally, 0 is globally asymptotically stable (GAS) provided by 0 is locally stable.

(日) (四) (日) (日) (日)

Remark

Ortega and Ruiz del Portal applied in 2011 this result to Population Dynamics.

Go back to non-autonomous systems

Theorem

Consider the Equation (1) and suppose that F(t, 0) = 0, $\forall t$ and the following assumptions hold:

- the system is dissipative,
- the linearized system $\dot{y} = \frac{\partial F}{\partial x}(t,0)y$ is asymptotically stable,
- there exists a ray invariant by the Poincaré map.

Then, the system (1) is convergent if and only if there are no other T-periodic solutions.

Symmetries

Definition

We say that $\gamma \in GL(2)$ is a symmetry of Equation (1) if $F(t, \gamma x) = \gamma F(t, x)$, $\forall x$ and $\forall t$.

Theorem (Alarcón-Castro-Labouriau, 2013) If $\gamma \in O(2)$ is a symmetry of Equation (1), then $P(\gamma x) = \gamma P(x)$, $\forall x \in \mathbf{R}^2$.

Lemma (Alarcón-Castro-Labouriau, 2013)

Let $f \in Emb(\mathbf{R}^2)$ such that the linear reflection κ is a symmetry of f and $Fix(f) = \{0\}$. Suppose that one of the following hold:

f is orientation preserving and does not interchange connected components of R² \ Fix⟨κ⟩.

• $Fix(f^2) = \{0\}.$

Then for all $p \in \mathbf{R}^2$ either $\omega(p) = \{0\}$ or $\omega(p) = \emptyset$.

Symmetry group

Definition

We define the symmetry group of f as the biggest closed subset of GL(2) containing all the symmetries of f. It will be denoted by $\Gamma_f(g)$.

Remark

- f is always Γ_f equivariant
- we only consider the symmetry groups O(2), SO(2), D_n, Z_n for n ≥ 2 and Z₂⟨κ⟩.

・ロット (雪) (日) (日) (日)

 Observe that all considered symmetry groups Γ has Fix(Γ) = {0}, so f(0) = 0.

Symmetric planar maps

Symmetry group	<i>Df</i> (0)	hyperbolic local dynamics
<i>O</i> (2)	$\begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} \alpha \in \mathbf{R}$	attractor / repellor
<i>SO</i> (2)	$ \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix} \alpha, \beta \in \mathbf{R} $	attractor / repellor
$D_n, n \geq 3$	$\begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} \alpha \in \mathbf{R}$	attractor / repellor
$Z_n, n \ge 3$	$\begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix} \alpha, \beta \in \mathbf{R}$	attractor / repellor
Z ₂	any matrix	saddle / attractor / repellor
$Z_2\langle\kappa angle$	$\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \alpha, \beta \in \mathbf{R}$	saddle / attractor / repellor
$D_2 = {\sf Z}_2 \langle -\kappa angle \oplus {\sf Z}_2 \langle \kappa angle$	$\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \alpha, \beta \in \mathbf{R}$	saddle / attractor / repellor

・ロト・(型ト・(型ト・(型ト・))

Saddles only appear with symmetry group D_2 , $Z_2\langle\kappa\rangle$ and Z_2 .

Let's play topological dynamics with symmetry

Proposition (Alarcón-Castro-Labouriau, 2013)

Let $f \in Emb(\mathbf{R}^2)$ such that $Fix(f) = \{0\}$ and its group of symmetry is either O(2) or $\mathbf{Z}_2\langle\kappa\rangle$ or D_n . Suppose that one of the following hold:

- f is orientation preserving and does not interchange connected components of R² \ Fix⟨κ⟩.
- $Fix(f^2) = \{0\}.$

Then for all $p \in \mathbf{R}^2$ either $\omega(p) = \{0\}$ or $\omega(p) = \emptyset$.

Remark

- ► also holds if $\Gamma_f = SO(2)$ but we need f is area-contracting.
- ► its false for Γ_f = Z_n. We construct counter-examples with irrational prime ends rotation number.

Topological global saddles

Definition

We say that 0 is a topological global saddle if

- (i) 0 is a hyperbolic saddle,
- (ii) there are no homoclinic contacts and the curves $W^{s}(0, f)$ and $W^{u}(0, f)$ are unbounded. Moreover, $W^{s} \cup W^{u}$ separates the plane into exactly four connected components.
- (iii) for all $p \notin W^s(0, f) \cup W^u(0, f) \cup \{0\}$ both $||f^n(p)|| \to \infty$ and $||f^{-n}(p)|| \to \infty$ as *n* goes to ∞ .

In case of 0 is a direct (twisted) saddle, 0 is called direct (twisted) topological global saddle.

Remark

Observe that topological global saddles are still far from the global conjugation to the linear saddle.

What about symmetric saddles?

Theorem (Alarcón-Castro-Labouriau, to appear) Let $f \in Homeo(\mathbb{R}^2)$ of class C^1 such that $Fix(f) = \{0\}$ and 0 is a hyperbolic saddle. Suppose that $\Gamma_f = D_2$ and one of the following holds:

- 0 is a direct saddle
- $Fix(f^2) = \{0\}$

Then, the origin is a topological global saddle.

Remark

- f is a free homeomorphism of the plane.
- ► Observe that both W^s ⊂ Fix ⟨κ₁⟩ and W^u ⊂ Fix ⟨κ₂⟩ which are two invariant line.
- ► For symmetric group Z₂⟨κ₂⟩ we have only one reflection and for Z₂ we have no reflections.

Go back to non-autonomous systems

Example (Alarcón-Castro-Labouriau, to appear) As an illustration of such a transformed system, consider:

$$\begin{cases} \dot{x} = \alpha x + f_1(x, y) \\ \dot{y} = -\beta y + f_2(x, y) \\ \dot{z} = 1 \end{cases} \quad \alpha, \beta > 0$$

such that $f_i(x, y) = O(|(x, y)|^2)$ and $f = (f_1, f_2)$ is D_2 -equivariant, and either $\dot{x} \neq 0$ or $\dot{y} \neq 0$ for $(x, y) \neq (0, 0)$.

A D > A B > A B > A B >

The linear part of P is given by $(x, y) \mapsto (e^{\alpha}x, e^{-\beta}y)$ and, by previous theorem, the origin is a topological global saddle.

What about saddles without symmetry?

Theorem (Hirsch, 2000)

Let $f \in Diff^+(\mathbf{R}^2)$ be such that every fixed point is isolated and has index ≤ 0 . Then the following statements hold:

- i) For every x, as n goes to ±∞, either fⁿ(x) goes to a fixed point or ||fⁿ(x)|| → ∞.
- ii) For each direct saddle p, every homoclinic contact is a fixed point different from p and each branch at p is homeomorphic to [0,∞).
- iii) If the only fixed point is a direct saddle p, then there are no homoclinic contacts and every branch of W^s(p) and of W^u(p) is unbounded.

Partial results: Weak global saddles

Definition

We say that 0 is a weak global saddle if

- (i) 0 is a hyperbolic saddle,
- (ii) there are no homoclinic contacts and the curves $W^s(0, f)$ and $W^u(0, f)$ are unbounded. Moreover, $-\frac{W^s \cup W^u}{W^u}$ separates the plane into exactly four connected components.
- (iii) for all $p \notin W^s(0, f) \cup W^u(0, f) \cup \{0\}$ both $||f^n(p)|| \to \infty$ and $||f^{-n}(p)|| \to \infty$ as *n* goes to ∞ .

Proposition (Alarcón-Castro-Labouriau, to appear) Let $f \in Diff(\mathbf{R}^2)$ be such that the only fixed point p is a hyperbolic saddle. Suppose that one of the following holds:

- 0 is a direct saddle
- $Fix(f^2) = \{0\}$

Then, the origin is a weak global saddle.

Partial results

Remark

Observe that the curves W^s and W^u for a weak global saddle can be badly behaved, so the set

$$(\mathbf{R}^2 \setminus \overline{W^s \cup W^u}) \cup (W^s \cup W^u)$$

may have lots of connected components.

Proposition (Alarcón-Ribón, work in progress) Consider the simply connected subset

$$\Delta = cc((\mathbf{R}^2 \setminus \overline{W^s \cup W^u}) \cup (W^s \cup W^u), 0)$$

then 0 is a topological global saddle for $f|_{\Delta}$.

Weak global saddles in forced Lienard Equations

Consider the differential equation

$$\ddot{x} + f(x)\dot{x} + g(x) = p(t), \qquad (2)$$

where $f, g : \mathbf{R} \to \mathbf{R}$ are locally Lipschitz maps of class C^1 . Suppose in addition that the following assumptions holds:

- (A1) $p : \mathbf{R} \to \mathbf{R}$ is continuous and periodic with minimal period T > 0;
- (A2) f is bounded and $f(x) \ge 0$, for all $x \in \mathbf{R}$;

(A3) g is a strictly decreasing homeomorphism;

 $(\mathsf{A4}) \ \exists c,d \geq 0 \text{ such that } |g(x)| \leq c+d \, |x|, \text{ for all } x \in \mathbf{R}.$

Theorem (Alarcón-Castro-Labouriau, to appear) The unique T – periodic solution of (2) is a weak global saddle for the associated Poincaré map.

Proof: Weak saddles in forced Lienard Equations

Theorem (Campos and Torres, 1999)

There exists exactly one T-periodic solution of (2).

Poincaré map

- Assumptions on (2) imply that the Poincaré map P is an orientation preserving diffeomorphism of the plain.
- ► Theorem of Campos and Torres implies that Fix(P) = {p}.
- Assumptions (A2) and (A3) imply that the unique fixed point of P is a direct saddle.

Global saddles conjugated to the linear saddle

Theorem (Kerékjártó, 1934)

An orientation preserving homeomorphism of the plane h is conjugated to the topological translation T(x, y) = (x + 1, y) if and only if, for all $p \in \mathbb{R}^2$, $||h^n(p)|| \to +\infty$, as |n| goes to $+\infty$, and the convergence is uniform on compact sets.

Remark

Bonatti and Kolev presented in 1997 an alternative proof considering the quotient space given by the orbits.

Theorem (Alarcón-Ribón, in progress)

Let $f \in Diff^+(\mathbf{R}^2)$ be such that the only fixed point 0 is a direct saddle. Suppose that the following hold:

- ▶ both W^s and W^u are closed
- ▶ for all $p \notin W^s \cup W^u \cup \{0\}$, $||f^n(p)|| \to +\infty$, as |n| goes to $+\infty$, and the convergence is uniform on compact sets in $\mathbf{R}^2 \setminus W^s \cup W^u \cup \{0\}$.

æ

Then, the map f is globally conjugated to the linear saddle.

Global saddles in forced Lienard Equations

Consider the differential equation

$$\ddot{x}+f(x)\dot{x}+g(x)=p(t),$$

where $f, g : \mathbf{R} \to \mathbf{R}$ are locally Lipschitz maps of class C^1 . Suppose in addition that the following assumptions holds:

(A1)
$$p : \mathbf{R} \to \mathbf{R}$$
 is continuous and periodic with minimal period $T > 0$;

- (A2) f is bounded and $f(x) \ge 0$, for all $x \in \mathbf{R}$;
- (A3) g is a strictly decreasing homeomorphism;
- (A4) $\exists c, d \ge 0$ such that $|g(x)| \le c + d |x|$, for all $x \in \mathbf{R}$.

We hope to prove that

The Poincaré map associated to the Linear equation (plus perhaps some extra condition) is globally conjugated to the linear saddle.

Let Maths be with you :-)

to Let the force be with you à que las mates te algunarien. Fre que les maths soie aver to Ri Niech Matma bydue (vous) 2 Tobs あり いっしまっとよい動学を、 (Itsu mademo yoi suugaku wo) 出 CHE LA MATEMATICA SIA CON TE Lumin Ch 教学与你同在! G10120 Br Que a malemática estera con você. Ed. Nech ta matematika sprevadza CO NEKA MATCHATIKA BUBE S TOBOY ریاضی با شیا با شرا Ки Да пребудет с тобой матенатика!

νff

< □ > < □ > < □ > < □ > < □ > < □ >