Spin-coherent, Basis–coherent, and Anti-coherent States

Karol Życzkowski Jagiellonian University, Cracow, & Polish Academy of Sciences, Warsaw in collaboration with Zbigniew Puchała (Gliwice, Cracow) Łukasz Rudnicki (Warsaw, Freiburg) Krzysztof Chabuda and Mikołaj Paraniak (Warsaw)

CIRM Luminy, Coherent States'16, November 17, 2016

Quantum Uncertainty Relations (HUR)

Heisenberg uncertainty relation (1927)

Formulation of Kennard (1927) for the product of variances of position and momentum ($\hbar=1)$

$$\Delta^2 x \ \Delta^2 p \ \ge \ \frac{1}{4}$$

A more general (but **state dependent** !)

formulation of Robertson (1929)

for arbitrary operators A an B. Let $\Delta^2 A = \langle \psi | A^2 | \psi \rangle - \langle \psi | A | \psi \rangle^2$ be the variance of an operator A. Then for any state $|\psi\rangle$

$$\Delta^2 A \Delta^2 B \geq \frac{1}{4} |\langle \psi | AB - BA | \psi \rangle|^2$$

As [x, p] = xp - px = i the latter form implies the former bound.

▲ ■ ▶ ■ ∽ ९ €
 17.11.2016 3 / 33

・ロト ・四ト ・ヨト ・ヨト

Otton Nikodym & Stefan Banach,

talking at a bench in Planty Garden, Cracow, summer 1916

Harmonic Oscillator Coherent States (CS)

Vacuum state, $|0\rangle$ and **commutation relation**, $[a, a^{\dagger}] = 1$, with $a = (\hat{x} + i\hat{p})/\sqrt{2}$ and with $z = (x + ip)/\sqrt{2}$ yield "standard" **Displacement operator coherent states**: $|z\rangle := \exp(za^{\dagger} - z^{*}a)|0\rangle$ satisfying identity resolution: $\frac{1}{2\pi}\int d^{2}z|z\rangle\langle z| = 1$. Equivalent conditions: **Anihilation operator** CS: $a|z\rangle = z|z\rangle$,

Minimum uncertainty CS: $\Delta x \Delta p = 1/2$ (saturation of HUR)

Husimi function & Wehrl entropy

Q-representation: $Q_{\rho}(z) := \text{Tr}\rho|z\rangle\langle z| = \langle z|\rho|z\rangle.$

Wehrl entropy: $S_W(\rho) := -\frac{1}{2\pi} \int d^2 z \ Q_\rho(z) \log Q_\rho(z)$.

Wehrl conjecture (1978) \rightarrow Lieb theorem (1978): Minimum of S_W is achieved for coherent states, $S_W(\rho) \ge 1$.

KŻ (UJ/CFT)

SU(2) [Bloch] Coherent States

Let N = 2j + 1 where j is the total spin. For vacuum state set the eigenstate $|j, j\rangle$ of momentum operator J_z and commutation relation, $[J_i, J_k] = 2iJ_i e_{ikl}$ [group SU(2)] with $z = tan(\theta/2)e^{i\phi}$ yield Bloch CS $|z\rangle = |\theta, \phi\rangle := \frac{1}{(1+|z|^2)^j} \exp[z(J_x - iJ_y)] |j, j\rangle$ satisfying identity resolution: $\frac{N}{4\pi} \int_{\Omega} d\Omega |z\rangle \langle z| = 1$.

Husimi function & Wehrl entropy

Q-representation: $Q_{\rho}(z) := \text{Tr}\rho |z\rangle \langle z| = \langle z|\rho|z\rangle.$

Wehrl entropy: $S_W(\rho) := -\frac{1}{2\pi} \int_{\Omega} d\Omega \ Q_{\rho}(z) \log Q_{\rho}(z)$.

Lieb conjecture (1978) \rightarrow Lieb-Solovej theorem (2014): Minimum of S_W is achieved for coherent states, $S_W(\rho) \ge 1 - 1/N$.

・ロト ・回ト ・回ト ・

Wawel castle in Cracow

KŻ (UJ/CFT)

Stellar Representation & Anti-coherent states

Stellar representation of a pure state $|\psi\rangle \in \mathcal{H}_N$

Husim function of a pure state $Q_{\psi}(z) := |\langle z | \psi \rangle|^2$ forms a polynomial f(z) or order n = N - 1 = 2j. Thus it has *n* zeros (possibly degenerated!) on the complex plane or on the sphere – stereographic projection $z = \tan(\theta/2)e^{i\phi}$. Hence any state $|\psi\rangle \in \mathcal{H}_N$ can be **uniquely** defined by a collection of *n* points on the sphere, called **stars**.

For coherent state all stars sit in the antipodal point One defines **anti-coherent states** as these which:

- a) maximize the Wehrl entropy (among pure states)
- b) are most distant from the set of coherent states
 - (e.g. with respect to the geodesic, Fubini-Study distance)

Thus anti-coherent states correspond to

'uniform' distribution of **stars** on the sphere

(observation: random states are close to anti-coherent!)

KŻ (UJ/CFT)

Stellar representation and Husimi function for coherent and anti-coherent states

KŻ (UJ/CFT)

Spin-coherent & Basis-coherent States

17.11.2016 8 / 33

Vector Coherent States & Separable States

Higher vector coherent states – group SU(K) CS

- Take generators S_k of the group SU(K), a **highest weight** state $|\mu\rangle$, a vector $z = (z_1, \ldots, z_m)$, and obtain a **vector coherent state** $|z\rangle = C_z \prod_k \exp(z_k S_k)|\mu\rangle$ **Lieb-Solovej theorem** (2016):

Coherent states miminize the (generalized) Wehrl entropy.

Stellar representation: now 'stars' live in $\mathbb{C}P^{K-1}$.

Texas effect: for N = K every state is SU(K) coherent!

Separable & Entangled States

Consider a composed Hilbert space $\mathcal{H}_{\mathcal{K}\mathcal{M}} = \mathcal{H}_{\mathcal{K}} \otimes \mathcal{H}_{\mathcal{M}} = \mathcal{H}_{\mathcal{A}} \otimes \mathcal{H}_{\mathcal{B}}$. Definition: a product state $|\phi_{sep}\rangle = |\phi_A\rangle \otimes |\phi_B\rangle$ is called **separable**, while any other state is called **entangled**.

A separable state is **coherent** with respect to the group $SU(K) \times SU(M)$, a maximally **entangled** state is **anti-coherent**

with respect to a certain measure of non-coherence.

KŻ (UJ/CFT)

Spin-coherent & Basis-coherent States

17.11.2016 9 / 33

Stratification of the manifold $\Omega_N = \mathbb{C}P^{N-1}$ of pure states of a **simple** system into **strata** of states with the same **degree of coherence** (the Wehrl entropy or the distance to the set of **coherent** states).

KŻ (UJ/CFT)

17.11.2016 10 / 33

Stratification of set Ω of **pure states** of a) **simple** system with *N* levels, b) **composed** system $N^{\times K}$; set \mathcal{M} of **mixed states** for c) **simple** system with *N* levels, d) **composed** system $N^{\times K}$.

17.11.2016 11 / 33

Wawel castle in Cracow

э 17.11.2016

-

► < ∃ ►</p>

Ciesielski theorem

э

・ロト ・ 日 ト ・ 日 ト ・

Ciesielski theorem: With probability $1 - \epsilon$ the bench **Banach** talked to **Nikodym** in 1916 was localized in η -neighbourhood of the **red arrow**.

Bench commemorating discussion between Stefan Banach and Otton Nikodym (Kraków, summer 1916)

Brilliant Mathematics

Biographical materials edited by Emilia Jakimowicz and Adam Miranowicz

GDANSK UNIVERSITY PRESS

Spin-coherent & Basis-coherent States

17.11.2016 16 / 3

5 K K 5 K

Continuous case

Define continuous (Boltzmann-Gibbs) entropies:

$$S(x) = -\int dx |\psi(x)|^2 \ln |\psi(x)|^2$$

and

$$S(p) = -\int dp |\psi(p)|^2 \ln |\psi(p)|^2.$$

Then

$$S(x) + S(p) \geq \ln(e\pi)$$
.

Białynicki-Birula, Mycielski (1975) and Beckner, (1975)

generalizations for **Rényi** α -entropies,

$$S_{lpha}(x) := \frac{1}{1-lpha} \ln\left(\int dx |\psi(x)|^{2lpha}
ight)$$

Białynicki-Birula, (2006)

KŻ (UJ/CFT)

Entropic Uncertainty Relations - N dimensional case

State $|\psi\rangle = \sum_{i}^{N} a_{i} |i\rangle = \sum_{j} b_{j} |\beta_{j}\rangle$ is expanded in the eigenbases of operators A and B, related by a unitary matrix $U_{ij} = \langle i | \beta_{j} \rangle$.

Let Shannon entropies in both expansion be $S^{A}(\psi) = -\sum_{i=1}^{N} p_{i} \ln p_{i} = S(p)$ with $p_{i} = |a_{i}|^{2}$, $\sum_{i} p_{i} = 1$ and $S^{B}(\psi) = -\sum_{j=1}^{N} q_{j} \ln q_{j} = S(q)$ with $q_{j} = |b_{j}|^{2}$, $\sum_{j} q_{j} = 1$.

Let $c_1(A, B) = \max_{ij} |U_{ij}|^2$. Then for any state $|\psi\rangle \in \mathcal{H}_N$ we have $S^A(\psi) + S^B(\psi) \ge -2\ln[(1 + \sqrt{c_1})/2] =: B_D$ Deutsch, (1983), later improved $S^A(\psi) + S^B(\psi) \ge -\ln c_1 =: B_{MU}$ by Maassen, Uffink, (1988),

(人間) とうき くうとう う

Example: the Fourier matrix F_N

Unitary matrix which defines the second (unbiased !) basis

$$U_{jk} = (F_N)_{jk} := \frac{1}{\sqrt{N}} \exp(i \ 2\pi j k / N) \quad \text{with} \quad j, k = 0, 1, \dots, n-1.$$

then $c_1 = \max_{jk} |U_{jk}|^2 = 1/N$. The bound of **Maassen–Uffink** gives $S(p) + S(q) \ge -\ln c_1 = \ln N$

If $|\psi
angle = (1,0,\ldots,0)$ then $S_A = 0$ and $S_B = \ln N$ so bound is saturated...

The same bound holds for any unitary **complex Hadamard matrix** H, for which $|H_{ij}|^2 = 1/N$ for all i, j = 1, ..., N.

In a general case the bounds of **Maassen and Uffink** are not optimal. How to improve them ??

KŻ (UJ/CFT)

Spin-coherent & Basis-coherent States

17.11.2016 19 / 33

An alternative approach: Key ingredients used

A) An algebraic tool: Majorization

Consider two probability vectors of length *N* ordered decreasingly, $x = (x_1 \ge x_2 \ge ... x_N \ge 0)$ and $y = (y_1 \ge y_2 \ge ... y_N \ge 0)$. The vector *x* is called to be **majorized** by *y*, written $x \prec y$, if $\sum_{i=1}^{m} x_i \le \sum_{i=1}^{m} y_i$, for m = 1, ... N - 1 **Majorization** $x \prec y$ implies inequalities for **Renyi** α -entropies $\frac{1}{1-\alpha} \ln\left(\sum_{i=1}^{N} x_i^{\alpha}\right) =: S_{\alpha}(x) \ge S_{\alpha}(y) := \frac{1}{1-\alpha} \ln\left(\sum_{i=1}^{N} y_i^{\alpha}\right)$ (and other **Schur-concave** functions)

B) Bi-entropy and product probability vectors

Let $p \otimes q = (p_1q_1, p_1q_2, \dots, p_1q_N, \dots p_Nq_N)$ denotes a product probability vector of size N^2 . Then the sum of bientropies reads $S_{\alpha}(p) + S_{\alpha}(q) = S_{\alpha}(p \otimes q)$. To arrive at an **entropic uncertainty relation** we need to find a vector Q majorizing the **product** $p \otimes q$.

KŻ (UJ/CFT)

1) Product Majorization EUR (PRŻ. 2013)

Let k = 1, ..., N - 1: spectral norms of all submatrices of unitary U

Let $A_{m,n}$ denote the **maximal** $m \times n$ submatrix of U. Define $s_k := \max\{||A_{1,k}||, ||A_{2,k-1}||, \dots, ||A_{k-1,2}||, ||A_{k,1}||\}.$

We have $s_k \geq s_{k-1}$ and $R_k := \left(\frac{1+s_k}{2}\right)^2 \geq R_{k-1}$.

Theorem: For any unitary U of order N

the following tensor-product majorization relation holds:

$$(p \otimes q) \prec (R_1, R_2 - R_1, \ldots, R_{N-1} - R_{N-2}, 1 - R_{N-1}) =: Q.$$

This implies an explicit 'product' majorization entropic uncertainty relation, valid for any pure state $|\psi\rangle$ and any Renyi entropy S_{α}

$$|S_{lpha}(p)+S_{lpha}(q)|\geq |S_{lpha}(Q)=rac{1}{1-lpha}\ln\sum_{i=1}^{N}Q_{i}^{lpha}.$$

Similar results: Friedland, Gheorghiu, Gour (2013)

Example: matrix of size N = 4, the second bound (k = 2)

k = 2: norms of 2-subvectors of unitary U

We look for a majorization relation of the type

$$(p \otimes q) \prec Q = (R_1, R_2 - R_1, 1 - R_2, 0, \dots 0).$$
 (1)

Consider the **longest** 2-sub-vector of unitary U and denote its norm by $s_2 = \max \left\{ \max_{i,j_1,j_2} \sqrt{|U_{ij_1}|^2 + |U_{ij_2}|^2}, \max_{i_1,i_2,j} \sqrt{|U_{i_1j}|^2 + |U_{i_2j}|^2} \right\}$ Theorem 1 implies that the above **majorization relation** with $R_2 = \left(\frac{1+s_2}{2}\right)^2$ holds !

Example: On orthogonal matrix $U \in U(4)$ with entries truncated to two decimal digits

$$\begin{bmatrix} 0.19 & 0.50 & -0.64 & 0.55 \\ -0.62 & 0.54 & -0.21 & -0.52 \\ 0.52 & -0.21 & -0.54 & -0.62 \\ -0.55 & -0.64 & -0.50 & 0.19 \end{bmatrix}$$

KŻ (UJ/CFT)

2) Strong Majorization EUR (2014) Direct-sum majorization relation = improved lower bound

$$p\oplus q\prec \{1\}\oplus W,$$

where the majorizing vector $W = (s_1, s_2 - s_1, \dots, s_N - s_{N-1}, 0, \dots, 0)$ is constructed out of the same largest norms s_k of submatrices of U. This implies an explicit **strong majorization entropic uncertainty relation**

$$S_lpha(p)+S_lpha(q) \ \geq \ S_lpha(W)=rac{1}{1-lpha}\ln\sum_{i=1}^{N^2}W_i^lpha_i$$

Rudnicki, Puchała, K. Ż, PRA (2014). Related bounds: Coles, Piani (2014)

 $\leftarrow \text{ Bounds for an orthogonal rotation} \\ \text{matrix } O(\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$

KŻ (UJ/CFT)

Spin-coherent & Basis-coherent States

17.11.2016 23 / 33

Upper bound for the sum of entropy

Two orthogonal measurements in L = 2 bases

Proposition: for any $U \in U(N)$ there exist a state $|\psi\rangle \in \mathcal{H}_N$ **mutually unbiased** with respect to a basis *B* and B' = UB, so that $|\langle i|\psi\rangle|^2 = |\langle i|U|\psi\rangle|^2 = 1/N$,

Korzekwa, Lostaglio, Jennings and Rudolph (2014). It implies a 'trivial' *Entropic Certainty Relation*: (saturation)

$$\bar{S} = \frac{1}{2} \Big(S(p) + S(q) \Big) \le \log N$$

A state $|\psi\rangle \in \mathcal{H}_N$ such that $|\langle i|\psi\rangle|^2 = 1/N$ is called **coherent** with respect to basis $\{|i\rangle\}$, as the sum of **coherences** (absolute values of off-diagonal elements) is maximal.

 \leftarrow Upper and lower bounds for \overline{S} for orthogonal matrices $O(\theta)$ of size 2.

What known theorem this figure illustrates?

17.11.2016 25 / 33

What known theorem this figure illustrates?

Two great circles at the sphere do cross ! \Leftrightarrow **Equator** is **non-displacable** in S^2 .

KŻ (UJ/CFT)

Spin-coherent & Basis-coherent States

17.11.2016 25 / 33

Non-displacable tori in CP^{N-1}

Observation. The set C of all *N*-dimensional states **mutually unbiased** with respect to a basis $\{|i\rangle\}$ forms an (N-1)- **great torus** T^{N-1} , as $|\psi\rangle = \frac{1}{\sqrt{N}} (1, \exp(i\phi_1), \exp(i\phi_2), \dots, \exp(i\phi_{N-1})).$

Do two great two-tori T_2 embedded in $\mathbb{C}P^2$ intersect?

Non-displacable tori in CP^{N-1}

Observation. The set C of all *N*-dimensional states **mutually unbiased** with respect to a basis $\{|i\rangle\}$ forms an (N-1)- **great torus** T^{N-1} , as $|\psi\rangle = \frac{1}{\sqrt{N}} (1, \exp(i\phi_1), \exp(i\phi_2), \dots, \exp(i\phi_{N-1})).$

Do two great two-tori T_2 embedded in $\mathbb{C}P^2$ intersect? Yes, a great *K*-torus T_K is non-displacable in $\mathbb{C}P^K$, Cho (2004).

Entropic uncertainty relations for *L* measurements

in basis given by L unitary matrices, $U^{(1)}, \ldots, U^{(L)}$: Define coefficients S_k : $\{U^{(j)}\}_{j=1}^L$,

$$\mathcal{S}_k = \max\{\sigma_1^2(|u_{i_1}^{(j_1)}\rangle, |u_{i_2}^{(j_2)}\rangle, \dots, |u_{i_{k+1}}^{(j_{k+1})}\rangle)\},$$

being maximal squares of norms of rectangular matrices of size $N \times (k+1)$ formed by k+1 columns taken from the **concatenation** of all L unitary matrices.

The following majorization relation holds,

$$\{p_i^{(j)}\}_{i,j=1}^{N,L} \prec \{1, \mathcal{S}_1 - 1, \mathcal{S}_2 - \mathcal{S}_1, \dots\}.$$

and it implies the poli-measurement entropic uncertainty relation

$$\sum_{i=1}^{L} S(p^{(i)}) \geq -\sum_{i=1}^{NL} (\mathcal{S}_i - \mathcal{S}_{i-1}) \ln(\mathcal{S}_i - \mathcal{S}_{i-1})$$

Mutually Unbiased Bases

- Two orthogonal bases consisting of N vectors each in H_N are called mutually unbiased (MUB) if
 |⟨φ_i|ψ_i⟩|² = 1/N, for i, j = 1,..., N.
- Full sets of (N + 1) MUB's are known if dimension is a power of prime, N = p^k. For N = 6 = 2 × 3 only 3 < 7 MUB's are known!
- A transition matrix H_{ij} = ⟨φ_i|ψ_j⟩ from one unbiased basis to another forms a complex Hadamard matrix, which is
 a) unitary, H[†] = H⁻¹,
 b) has "unimodular" entries, |H_{ij}|² = 1/N, i, j = 1,..., N.
- Classification of all complex Hadamard matrices is complete for N = 2, 3, 4, 5 only. (Haagerup 1996) see Catalog of complex Hadamard matrices, at http://chaos.if.uj.edu.pl/~karol/hadamard

・ 日 ・ ・ ヨ ・ ・ ヨ ・

3 measurements in \mathcal{H}_2 and Mutually Unbiased Bases.

Nontrivial upper bound (*) = **Certainty Relations (Sanchez** 1993)

For $\theta = 0$ all three measurements coincide so $\bar{S}_{min} = 0$, For $\theta = \pi/4$ these three bases become **maximally unbiased** (MUB) so the **lower bound** (*) for the sum of the entropies is **the largest**, while the **upper bound** (*) is the smallest!

The root mean square deviation of the mean entropy averaged over all pure states, $\Delta(\bar{S}) = (\langle \bar{S}^2 \rangle_{\psi} - \langle \bar{S} \rangle_{\psi}^2)^{1/2}$, is the smallest for MUB solution

KŻ (UJ/CFT)

17.11.2016 29 / 33

3 measurements in \mathcal{H}_2 and Mutually Unbiased Bases.

New nontrivial upper bounds $B_{\text{max}} = \text{Certainty Relations}$ and lower bounds B_{\min} = Uncertainty Relations, 2015 log (2) L = 3 measurements in 3 bases: for one qubit: N = 22 log (2) $U^{(1)} = \mathbb{I}_2$ 0.15 3 $U^{(2)} = \begin{pmatrix} \cos\theta & \sin\theta\\ \sin\theta & -\cos\theta \end{pmatrix}$ $U^{(3)} = \begin{pmatrix} \cos\theta & \sin\theta\\ i\sin\theta & -i\cos\theta \end{pmatrix}.$ MUB

For $\theta = 0$ all three measurements coincide so $\bar{S}_{min} = 0$, For $\theta = \pi/4$ these three bases become **maximally unbiased** (MUB) and the **lower bound** B_{min} - - - for the average entropy \bar{S} is **the largest** - it coincides with the bound of Sanchez and becomes tight, while the **upper bound** B_{max} - - - is the smallest!

KŻ (UJ/CFT)

Spin-coherent & Basis-coherent States

Stefan Banach sitting at a bench close to the Wawel Castle

Sculpture: Stefan Dousa

Fot. Andrzej Kobos

KŻ (UJ/CFT)

Spin-coherent & Basis-coherent States

17.11.2016 31 / 3

Concluding remarks

- Spin coherent states in H_N mimimize the Wehrl Entropy
- Pure states for which Wehrl Entropy is maximal are anti-coherent
- Composed K × K systems: separable states are coherent with respect to group SU(K) × SU(K); anti-coherent states are maximally entangled
- Three Majorization Entropic Uncertainty Relations (lower bounds B ≤ S_{min} ≤ S̄) derived for any unitary U ∈ U(N): The 2014 bound B_{Maj2} based on simple sum dominates the 2013 bound B_{Maj1} based on tensor product majorization. The 2015 bound B_{min} based on purity of the POVM works better in vicinity of the Fourier matrix (and MUBs).
- Upper bounds for mean entropy, $ar{S} \leq S_{max} \leq B_{\max}$

form universal Entropic Certainty Relations.

- Great torus T_{N-1} is **non-displacable** in $\mathbb{C}P^{N-1}$. Thus for any two bases in \mathcal{H}_N there exists a **mutually basis coherent state**, for which certainty relation is saturated $\overline{S} = \log N$.
- Generalization for L orthogonal measurements, , $\langle \sigma \rangle$, $\langle \varepsilon \rangle$,

KŻ (UJ/CFT)

17.11.2016 32 / 33

Bench commemorating discussion between **Stefan Banach** and **Otton Nikodym** (Kraków, summer 1916)

Sculpture: Stefan Dousa

Fot. Andrzej Kobos

Opened in Planty Garden, Cracow, Oct. 14, 2016

KŻ (UJ/CFT)

Spin-coherent & Basis-coherent States

17.11.2016 33 / 33