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Dirac contour representation

e h: harmonic oscillator Hilbert space
|A):coherent state (A € C)
H(A) = {|A)} one-dimensional subspace
MN(A) = |A){A| projector

o [s) =) sn|N):
|s) — sk(z) =Ji:os\]/viv (Bargmann)
(s] = sp(2) = Z Sz\fﬂ

N=0

sp(z) converges |z| > R (R depends on state)
scalar product

dz = .
(Fls) = § SER@E) = 3 fisx.
C £T1
N=0
C contour enclosing singularities of f,(z).

e s.(z) and s,(z) related as

jig—;Sb(Z) exp(¢*z) = [sk (O]

1 [~ t\]"
sp(z) = ;/o dt exp(—t) [sk (;)] :



e number state |N):

N
IN) — sp(z) = il
(N| — sp(z) = ﬂ

e coherent state |A):

A) > s,(2) = exp (Az - %\AP)

exp(—3|AJ?)
z — A*

(Al — sp(z) = |z > |A|

pole at A*
for convergence |z| > |A|<~» C should enclose pole

e in this paper:
finite sums, of bra functions with finite set of
poles each

S1,S> sets of poles of s,(2), f(2)
set of poles of A1sp(2)+X2fp(2): S1US> (or subset)

not true in infinite sums



e operator © = ) Oy n|M)(N|

N! M
@(21722) — Z@MN M N=+1°

acts on ket states as

Ols) = 5050 = 3 @uwsnlM),

acts on bra states as

GO = § 5s(OO2) = 3 Cunsis(N]

1
1 — @(Zl,ZQ) = , |22| > |le
zo — 21

|A1)(A2] = O(z1,22) =

pole at A*

Vourdas, Bishop, PRA53, (1996) R205
Vourdas, Bishop, JPA 31 (1998)8563



coherent spaces, coherent projectors

e finite number of coherent states are
linearly independent

o S={A1,..., Ay} finite set of complex numbers
S*={Ay,.., A}
coherent space
H(S) =H(Ai,..,A,) = H(A1) V...V H(A,)
contains superpositions A1|A1) 4+ ... + M| An)
in the Dirac contour repr:

fi(z) = A exp(Ai1z) + ... + Mnexp(Anz)

fi(z) = a + ...+ An

* *

set of poles S*

e Gram-Schmidt orthogonalization algorithm

N-(AD)N(A2)MN+H(Ar)

M(A1, A2) = M(A) + Tr(M+(A1)MN(A2)]

I'Ii(Al) =1 — H(Al), and
MN(A1,...,A,) = MN(A1,...,Ap_1)
N+(Aq, ..., A )N(A)NE(AL, .., A1)
Tr[NL(Aq, ..., An_1)M(AL)]




e coherent projectors M(Az1, ..., Ay) (rank n):
resolution of the identity:

1 [ d2A
—/—I‘I(A,A—I—dg,...,A—l—dn) =1

njc m

fixed do, ..., dy

e cClosure property:
under displacement trs, and
under time evolution with the Hamiltonian a'a
they transform into projectors of same type:

D(2)M(A1, ..., A) D] =N(AL + 2, ..., Ay, + 2)

exp(ita’a)M(Aq, ..., A,) exp(—itala)
= MN[A; exp(it), ..., A, exp(it)]

e Coherent states eigenstates of a: a‘lM(A;1) = A{MN(A1)
analogue

N+(Aq, ..., A)a'N(Aq, ..., A) =0

Trla'N(Ay, ..., A)] = > AL
=1



e Mmany subsets of coherent states: total sets
analogue here:

set of subspaces {h;} of h: total, if there is no
state in h, which is orthogonal to all h;

use theory of growth and density of zeros of ana-
lytic functions:

1. A set of coherent subspaces which is uncount-
ably infinite, is a total set.

2. {H(S;)} countably infinite set of coherent sub-
spaces with S; = {A1, ..., Air,}. Relabel the A;;
as A, (lexicographic order).

— A, converges to A— {H(S;)} total set of
coherent subspaces.

— |Ay| diverges, and its density greater than
(2,1)— {H(S;)} is a total set of coherent
subspaces.



TrlzM(Aq, ..., A))] = V2R (Z A@-)
TripM(Aq, ..., A))] = V25 (Z Ai)

o If S = {A1,..., A}, the M(S)
N(AL . An) =) Gi(S)|A;)(Axl
ik

exp (Ajzl — %‘AJP — %’Ak‘z)

zo — A7

O(21,22) = Y _Gjr(S)
4.k

|22| > maX(|A1|, ) |An|)
G(S) inverse (exists) of the n x n matrix g(S):

1 1
gjk:(S) = <AJ|Ak> = &Xp (A;kAk — §|AJ|2 — §|Ak|2) .
set of poles of ©(z1,22) is S*.
a finite set of complex numbers (poles), de-

fines uniquely a coherent projector/coherent
space



Boolean ring of finite sets of complex numbers

e Stone’'s formalism:
set theory/Boolean algebra <« rings <« topology

e L set of all finite subsets of C
For S1,5> € L define partial order, disjunction,
conjunction:

S1 <5 <+ 51C5
S1VvSy <+ Si1US> (logical OR)
Si1ANSy < S5.N55 (Iogical AND)

L has 0 (least element): the empty set 0
L does not have 1 (greatest element): C ¢ L

cannot define complements (C\ S € L)
complements important for logical NOT

L is a distributive lattice
L is not a Boolean algebra

e principal ideal Z(R) : all subsets of a finite set R
Z(R) has 1 (the set R)
complements S = R\ S defined
Z(R) Boolean algebra



e translate set theory into a ring (ordinary arith-
metic)
in the set L

S1+ 82 =(51\52)U(S2\ S1); (logical XOR)
S1 -8 =51 NS>, (logical AND)

OR, AND replaced by XOR, AND

S1 US> = S1 4+ 5>+ (51 - .52).
only finite sums and finite products

L is closed under multiplication and addition
addition, multipl: commutative, associative
distributivity holds:

S1-(S2+ 53) = (S1-52) + (S1-53)

0 is additive zero
additive inverse of a set, is itself (S; = —51)

Si1+0=S5;; S1+S1=0; 51-5=51.

multiplication is idempotent
L commutative ring (without identity) and with
idempotent multiplication

ring with idempotent multiplication is commuta-
tive, and is called Boolean ring

Boolean rings with identity: Boolean algebras

L has no 1, it is not a Boolean algebra

e ideal Z(R) within lattice theory, are also ideal within
ring theory
Z(R): Boolean ring with R as 1: Boolean algebra
complement of S€Z(R), is S=S+ R=R\S



Application to classical gates

e some classical gates:
OR, AND, XOR ([Z(R)]? — Z(R); not bijective)
NOT (Z(R) +» Z(R), bijective):

Mor(S51,52) =S1+ S22+ 5152 =51V S5
Manp(S1,52) = S1- 52 =51 NS>
Mxor(S1,52) = S1 + 5>
MnoT(S1)) =R+ S1 =S1 =R\ S:
example: R = {A;} (binary)
notation:

@—)O; {Al}—>1

in | OR | AND | XOR
(0,0) | 0 0 0
(1,0) | 1 0 1
(0,1) | 1 0 1
(1,1) | 1 1 0




example: R = {A1, A>} (22%-ary)

Mor({1},{1,2}) ={1,2}; Mor({1},0) = {1},
Mano({1},{1,2}) = {1}; Mano({1},0) =0,
Mxor({1},{1,2}) = {2}; Mxor({1},0) = {1},
MnoT({1}) = {2}, MnoT(D) = {1, 2},

notation:

0 — 0; {A1} — 1, {Ax} — 2; {A1,A} — 3

in | OR | AND | XOR

(0,00 | 0 0 0
(1,0) | 1 0

(2,0) | 2 0 2
(3,00 | 3 0 3
(0,1) | 1 0 1
(1, | 1 1 0
2,1 | 3 0 3
(3,1) | 3 1 2
(0,2) | 2 0 2
(1,2) | 3 0 3
22) [ 2 2 0
(3,2) | 3 2 1
(03) | 3 0 3
(1,3) | 3 1 2
(23) | 3 2 1
33) | 3 3 0




e reversible classical gates (bijective map):

CNOT gate (from [Z(R)]? to itself):

M(S1,82) = (51,51 + S2)
S1,S> control and target inputs

reversible

M(S1,51 4+ S2) = (51, 52)

for fixed control input Si:
bijective map: target input — target output

example: R = {A1} (binary)
notation:

@—)O; {Al}—>1

in | (0,0) | (0,1) | (1,0) | (1,1)

out | (0,0) | (0,1) | (1,1) | (1,0)

also 2™-ary case



Boolean ring of coherent spaces

e hi,hp subspaces of h:

hiV hy = span(hl U hz); OR
hi AN h = hiNhy AND

quantum OR s classical OR

e Lcon: Set of coherent subspaces H(S), S finite
H(0) = O (zero vector): element of Lcon

H(S1)V H(S2) = H(S51US>)

H(S1) ANH(S2) = H(S51 N S2).
finite number of disjunctions and conjunctions
Lcon is closed under these operations

The O is the zero in this lattice.
no 1 in this lattice (h does not belong to Lcon)

Lcon, IS a distributive lattice.
Lcon ~ L; not Boolean algebra

e L.on distributive sublattice of the Birkhoff-von Neu-
mann (non-distributive) lattice

e principal ideal of all coherent subspaces of the
coherent space H(R):

Zeon(R) = {H(S) € Lcon | S C R}.
Boolean algebra (1 is H(R))



In L.on define

H(S1+ S2) = H(S1\ S2) V H(S2\ S1).

This is the logical XOR operation

H(S1 + S2) contains the vectors in H(S1 \ S2),
H(S>\ S1), and superpositions

quantum XOR # classical XOR

H(S1) + H(S2) = H(S1 + S2)
H(S1) - H(S2) = H(S1-S2) = H(S1) AN H(S2).

Only finite sums and finite products

Lcon commutative ring (without identity) and with
idempotent multiplication:

H(S1) -H(S1) = H(S1)
L-.on Boolean ring, isomorphic to L.
H(S1) VvV H(S2) = H(S1) + H(S2) + [H(S1) - H(S2)]

H(S1) + O = H(S51)
H(S1)+ H(S1)=0; H(S1)=-H(S1)



quantum CNOT gates with coherent states
general quantum CNOT gate

le) @ [t) — |e) ® (Urlt)); |e) € h1;, |t) € ho

le) control input; [t) target input
previous work: orthogonal states; coherent states far
from each other (almost orthogonal)

e quantum CNOT gate with coherent states
binary example
Hs(A1, A2) ® Hp(B1, B2)

e input

[a1|A1) + a2]A2)] ® [B1|B1) + B2|B2)]

e transformation:

U=vaF1(A1,A2) QUiT + Y24 F2(A1, A2) Q@ Uor
Uit = g(B1, B2); Uxr = g(B1, B2) — 2v25E2(B1, B2)
(U, Usr] = 0.

via, Ei(A1, A2) and ~;g, E;j(B1, B2): eigenvalues and
eigenprojectors of g(Ai1, A>) and g(B1, B)



Discussion

e coherent spaces, coherent projectors
defined uniquely by finite set of complex numbers
(poles)

language: Dirac contour representation

e finite sets of complex numbers
distributive lattice
Boolean ring (Stone’s formalism)
classical gates

e coherent spaces distributive lattice
Boolean ring
quantum CNOT gates with coherent states
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