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Dirac contour representation

• h: harmonic oscillator Hilbert space
|A〉:coherent state (A ∈ C)
H(A) = {|A〉} one-dimensional subspace
Π(A) = |A〉〈A| projector

• |s〉 =
∑
sN |N〉:

|s〉 → sk(z) =
∞∑

N=0

sNz
N

√
N !

(Bargmann)

〈s| → sb(z) =
∞∑

N=0

s∗N
√
N !

zN+1
.

sb(z) converges |z| > R (R depends on state)
scalar product

〈f |s〉 =

∮
C

dz

2πi
fb(z)sk(z) =

∞∑
N=0

f∗NsN .

C contour enclosing singularities of fb(z).

• sk(z) and sb(z) related as∮
C

dz

2πi
sb(z) exp(ζ∗z) = [sk(ζ)]∗

sb(z) =
1

z

∫ ∞
0

dt exp(−t)
[
sk

(
t

z∗

)]∗
.
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• number state |N〉:

|N〉 → sk(z) =
zN√
N !

〈N | → sb(z) =

√
N !

zN+1
.

• coherent state |A〉:

|A〉 → sk(z) = exp

(
Az −

1

2
|A|2

)
〈A| → sb(z) =

exp(−1
2
|A|2)

z −A∗
; |z| > |A|

pole at A∗

for convergence |z| > |A|↔ C should enclose pole

• in this paper:
finite sums, of bra functions with finite set of
poles each

S1, S2 sets of poles of sb(z), fb(z)
set of poles of λ1sb(z)+λ2fb(z): S1∪S2 (or subset)

not true in infinite sums



• operator Θ =
∑

ΘMN |M〉〈N |

Θ(z1, z2) =
∑

ΘMN

√
N !

M !

zM1
zN+1

2

,

acts on ket states as

Θ|s〉 →
∮
C

dζ

2πi
Θ(z, ζ)sk(ζ) =

∑
ΘMNsN |M〉,

acts on bra states as

〈s|Θ →
∮
C

dζ

2πi
sb(ζ)Θ(ζ, z) =

∑
ΘMNs

∗
M〈N |.

•

1 → Θ(z1, z2) =
1

z2 − z1
; |z2| > |z1|

Π(A) = |A〉〈A| → Θ(z1, z2) =
exp

(
Az1 − |A|2

)
z2 −A∗

; |z2| > |A|

|A1〉〈A2| → Θ(z1, z2) =
exp

(
A1z1 − 1

2
|A1|2 − 1

2
|A2|2

)
z2 −A∗2

pole at A∗

Vourdas, Bishop, PRA53, (1996) R205
Vourdas, Bishop, JPA 31 (1998)8563



coherent spaces, coherent projectors

• finite number of coherent states are
linearly independent

• S = {A1, ..., An} finite set of complex numbers
S∗ = {A∗1, ..., A∗n}
coherent space

H(S) = H(A1, ..., An) = H(A1) ∨ ... ∨H(An)

contains superpositions λ1|A1〉+ ...+ λn|An〉
in the Dirac contour repr:

fk(z) = λ1 exp(A1z) + ...+ λn exp(Anz)

fb(z) =
λ1

z −A∗1
+ ...+

λn

z −A∗n
set of poles S∗

• Gram-Schmidt orthogonalization algorithm

Π(A1, A2) = Π(A1) +
Π⊥(A1)Π(A2)Π⊥(A1)

Tr[Π⊥(A1)Π(A2)]

Π⊥(A1) = 1−Π(A1), and

Π(A1, ..., An) = Π(A1, ..., An−1)

+
Π⊥(A1, ..., An−1)Π(An)Π⊥(A1, ..., An−1)

Tr[Π⊥(A1, ..., An−1)Π(An)]
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• coherent projectors Π(A1, ..., An) (rank n):
resolution of the identity:

1

n

∫
C

d2A

π
Π(A,A+ d2, ..., A+ dn) = 1

fixed d2, ..., dn

• closure property:
under displacement trs, and
under time evolution with the Hamiltonian a†a
they transform into projectors of same type:

D(z)Π(A1, ..., An)[D(z)]† = Π(A1 + z, ..., An + z)

exp(ita†a)Π(A1, ..., An) exp(−ita†a)
= Π[A1 exp(it), ..., An exp(it)]

• Coherent states eigenstates of a: a`Π(A1) = A`1Π(A1)
analogue

Π⊥(A1, ..., Ai)a
`Π(A1, ..., Ai) = 0

Tr[a`Π(A1, ..., An)] =
n∑
i=1

A`i.



• many subsets of coherent states: total sets
analogue here:

set of subspaces {hi} of h: total, if there is no
state in h, which is orthogonal to all hi

use theory of growth and density of zeros of ana-
lytic functions:

1. A set of coherent subspaces which is uncount-
ably infinite, is a total set.

2. {H(Si)} countably infinite set of coherent sub-
spaces with Si = {Ai1, ..., Aiki}. Relabel the Aij
as An (lexicographic order).

– An converges to A→ {H(Si)} total set of
coherent subspaces.

– |An| diverges, and its density greater than
(2,1)→ {H(Si)} is a total set of coherent
subspaces.



•

Tr[xΠ(A1, ..., An)] =
√

2<
(∑

Ai

)
Tr[pΠ(A1, ..., An)] =

√
2=
(∑

Ai

)
• If S = {A1, ..., An}, the Π(S)

Π(A1, ..., An) =
∑
j,k

Gjk(S)|Aj〉〈Ak|

Θ(z1, z2) =
∑
j,k

Gjk(S)
exp

(
Ajz1 − 1

2
|Aj|2 − 1

2
|Ak|2

)
z2 −A∗k

|z2| > max(|A1|, ..., |An|).
G(S) inverse (exists) of the n× n matrix g(S):

gjk(S) = 〈Aj|Ak〉 = exp

(
A∗jAk −

1

2
|Aj|2 −

1

2
|Ak|2

)
.

set of poles of Θ(z1, z2) is S∗.

a finite set of complex numbers (poles), de-
fines uniquely a coherent projector/coherent
space



Boolean ring of finite sets of complex numbers

• Stone’s formalism:
set theory/Boolean algebra ↔ rings ↔ topology

• L set of all finite subsets of C
For S1, S2 ∈ L define partial order, disjunction,
conjunction:

S1 ≺ S2 ↔ S1 ⊂ S2

S1 ∨ S2 ↔ S1 ∪ S2 (logical OR)
S1 ∧ S2 ↔ S1 ∩ S2 (logical AND)

L has 0 (least element): the empty set ∅
L does not have 1 (greatest element): C /∈ L

cannot define complements (C \ S /∈ L)
complements important for logical NOT

L is a distributive lattice
L is not a Boolean algebra

• principal ideal I(R) : all subsets of a finite set R
I(R) has 1 (the set R)
complements S = R \ S defined
I(R) Boolean algebra
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• translate set theory into a ring (ordinary arith-
metic)
in the set L

S1 + S2 = (S1 \ S2) ∪ (S2 \ S1); (logical XOR)
S1 · S2 = S1 ∩ S2; (logical AND)

OR, AND replaced by XOR, AND

S1 ∪ S2 = S1 + S2 + (S1 · S2).

only finite sums and finite products

L is closed under multiplication and addition
addition, multipl: commutative, associative
distributivity holds:

S1 · (S2 + S3) = (S1 · S2) + (S1 · S3)

∅ is additive zero
additive inverse of a set, is itself (S1 = −S1)

S1 + ∅ = S1; S1 + S1 = ∅; S1 · S1 = S1.

multiplication is idempotent
L commutative ring (without identity) and with
idempotent multiplication

ring with idempotent multiplication is commuta-
tive, and is called Boolean ring
Boolean rings with identity: Boolean algebras
L has no 1, it is not a Boolean algebra

• ideal I(R) within lattice theory, are also ideal within
ring theory
I(R): Boolean ring with R as 1: Boolean algebra
complement of S ∈ I(R), is S = S +R = R \ S



Application to classical gates

• some classical gates:
OR, AND, XOR ([I(R)]2 → I(R); not bijective)
NOT (I(R)↔ I(R), bijective):

MOR(S1, S2) = S1 + S2 + S1 · S2 = S1 ∨ S2

MAND(S1, S2) = S1 · S2 = S1 ∧ S2

MXOR(S1, S2) = S1 + S2

MNOT(S1) = R+ S1 = S1 = R \ S1

example: R = {A1} (binary)
notation:

∅ → 0; {A1} → 1

in OR AND XOR

(0,0) 0 0 0

(1,0) 1 0 1

(0,1) 1 0 1

(1,1) 1 1 0
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example: R = {A1, A2} (22-ary)

MOR({1}, {1,2}) = {1,2}; MOR({1}, ∅) = {1},
MAND({1}, {1,2}) = {1}; MAND({1}, ∅) = ∅,
MXOR({1}, {1,2}) = {2}; MXOR({1}, ∅) = {1},
MNOT({1}) = {2}; MNOT(∅) = {1,2},

notation:

∅ → 0; {A1} → 1; {A2} → 2; {A1, A2} → 3

in OR AND XOR
(0,0) 0 0 0
(1,0) 1 0 1
(2,0) 2 0 2
(3,0) 3 0 3
(0,1) 1 0 1
(1,1) 1 1 0
(2,1) 3 0 3
(3,1) 3 1 2
(0,2) 2 0 2
(1,2) 3 0 3
(2,2) 2 2 0
(3,2) 3 2 1
(0,3) 3 0 3
(1,3) 3 1 2
(2,3) 3 2 1
(3,3) 3 3 0



• reversible classical gates (bijective map):

– CNOT gate (from [I(R)]2 to itself):

M(S1, S2) = (S1, S1 + S2)

S1, S2 control and target inputs

– reversible

M(S1, S1 + S2) = (S1, S2)

– for fixed control input S1:
bijective map: target input → target output

– example: R = {A1} (binary)
notation:

∅ → 0; {A1} → 1

in (0,0) (0,1) (1,0) (1,1)
out (0,0) (0,1) (1,1) (1,0)

– also 2n-ary case



Boolean ring of coherent spaces

• h1, h2 subspaces of h:

h1 ∨ h2 = span(h1 ∪ h2); OR

h1 ∧ h2 = h1 ∩ h2 AND

quantum OR 6= classical OR

• Lcoh: set of coherent subspaces H(S), S finite
H(∅) = O (zero vector): element of Lcoh

H(S1) ∨H(S2) = H(S1 ∪ S2)
H(S1) ∧H(S2) = H(S1 ∩ S2).

finite number of disjunctions and conjunctions
Lcoh is closed under these operations

The O is the zero in this lattice.
no 1 in this lattice (h does not belong to Lcoh)

Lcoh, is a distributive lattice.
Lcoh ' L; not Boolean algebra

• Lcoh distributive sublattice of the Birkhoff-von Neu-
mann (non-distributive) lattice

• principal ideal of all coherent subspaces of the
coherent space H(R):

Icoh(R) = {H(S) ∈ Lcoh | S ⊂ R}.
Boolean algebra (1 is H(R))
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• In Lcoh define

H(S1 + S2) = H(S1 \ S2) ∨H(S2 \ S1).

This is the logical XOR operation
H(S1 + S2) contains the vectors in H(S1 \ S2),
H(S2 \ S1), and superpositions
quantum XOR 6= classical XOR

H(S1) +H(S2) = H(S1 + S2)
H(S1) ·H(S2) = H(S1 · S2) = H(S1) ∧H(S2).

Only finite sums and finite products

• Lcoh commutative ring (without identity) and with
idempotent multiplication:

H(S1) ·H(S1) = H(S1)

Lcoh Boolean ring, isomorphic to L.

H(S1) ∨H(S2) = H(S1) +H(S2) + [H(S1) ·H(S2)]
H(S1) +O = H(S1)
H(S1) +H(S1) = O; H(S1) = −H(S1)



quantum CNOT gates with coherent states

general quantum CNOT gate

|e〉 ⊗ |t〉 → |e〉 ⊗ (UT |t〉); |e〉 ∈ h1; |t〉 ∈ h2

|e〉 control input; |t〉 target input
previous work: orthogonal states; coherent states far
from each other (almost orthogonal)

• quantum CNOT gate with coherent states
binary example
HA(A1, A2)⊗HB(B1, B2)

• input

[α1|A1〉+ α2|A2〉]⊗ [β1|B1〉+ β2|B2〉]

• transformation:

U = γ1AE1(A1, A2)⊗ U1T + γ2AE2(A1, A2)⊗ U2T

U1T = g(B1, B2); U2T = g(B1, B2)− 2γ2BE2(B1, B2)
[U1T ,U2T ] = 0.

γjA, Ej(A1, A2) and γjB, Ej(B1, B2): eigenvalues and
eigenprojectors of g(A1, A2) and g(B1, B2)
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Discussion

• coherent spaces, coherent projectors
defined uniquely by finite set of complex numbers
(poles)

language: Dirac contour representation

• finite sets of complex numbers
distributive lattice
Boolean ring (Stone’s formalism)
classical gates

• coherent spaces distributive lattice
Boolean ring
quantum CNOT gates with coherent states

A. Vourdas, Ann. Phys. 373, 557 (2016)
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