Shearlets: Theory, Applications, and Generalizations

Felix Voigtlaender (on behalf of Gitta Kutyniok)

Coherent States and their Applications: A Contemporary Panorama November 15, 2016

Outline

Multiscale Systems inspired by Coherent States

- The Quasi-regular Representation
- Wavelets and their Limitations
- Continuous Shearlet Systems
- Discrete Shearlet Systems

2 Shearlets and their Applications

- Compactly supported Shearlets
- Optimal sparse Approximation
- Applications with Compressed Sensing

3 Shearlets, Coherent States & Decomposition spaces

Outline

Multiscale Systems inspired by Coherent States

- The Quasi-regular Representation
- Wavelets and their Limitations
- Continuous Shearlet Systems
- Discrete Shearlet Systems

2 Shearlets and their Applications

- Compactly supported Shearlets
- Optimal sparse Approximation
- Applications with Compressed Sensing

3 Shearlets, Coherent States & Decomposition spaces

The quasi-regular representation of $\mathbb{R}^d \rtimes \operatorname{GL}(\mathbb{R}^d)$

The quasi-regular representation

$$\pi: \mathbb{R}^d \rtimes \mathrm{GL}(\mathbb{R}^d) \to \mathfrak{U}\left(L^2(\mathbb{R}^d)\right), (x, h) \mapsto \mathsf{T}_x \mathsf{D}_h$$

with

$$(\mathsf{T}_{\mathsf{x}} f)(y) = f(y - x)$$
 and $\mathsf{D}_h f = |\det h|^{-1/2} \cdot f \circ h^{-1}$

is a unitary representation.

The quasi-regular representation of $\mathbb{R}^d \rtimes \mathrm{GL}\left(\mathbb{R}^d\right)$

The quasi-regular representation

$$\pi: \mathbb{R}^d \rtimes \mathrm{GL}(\mathbb{R}^d) \to \mathfrak{U}\left(L^2(\mathbb{R}^d)\right), (x, h) \mapsto \mathsf{T}_x \mathsf{D}_h$$

with

 $(\mathbf{T}_{x}f)(y) = f(y-x)$ and $\mathbf{D}_{h}f = |\det h|^{-1/2} \cdot f \circ h^{-1}$

is a unitary representation.

Duflo-Moore: Instead of $GL(\mathbb{R}^d)$, consider $H \leq GL(\mathbb{R}^d)$ closed, called dilation group. We get a system of coherent states $(\pi(x,h)\psi)_{(x,h)\in G}$ for $G := \mathbb{R}^d \rtimes H$ if $\pi|_G$ is irreducible and square-integrable.

The quasi-regular representation of $\mathbb{R}^d \rtimes \operatorname{GL}(\mathbb{R}^d)$

The quasi-regular representation

$$\pi: \mathbb{R}^d \rtimes \mathrm{GL}(\mathbb{R}^d) \to \mathfrak{U}\left(L^2(\mathbb{R}^d)\right), (x, h) \mapsto \mathsf{T}_x \mathsf{D}_h$$

with

 $(\mathsf{T}_{x}f)(y) = f(y-x)$ and $\mathsf{D}_{h}f = |\det h|^{-1/2} \cdot f \circ h^{-1}$

is a unitary representation.

Duflo-Moore: Instead of $GL(\mathbb{R}^d)$, consider $H \leq GL(\mathbb{R}^d)$ closed, called dilation group. We get a system of coherent states $(\pi(x,h)\psi)_{(x,h)\in G}$ for $G := \mathbb{R}^d \rtimes H$ if $\pi|_G$ is irreducible and square-integrable.

Theorem (Führ)

 $\pi|_{G}$ is irreducible and square-integrable if and only if

• There is $\xi_0 \in \mathbb{R}^d$ such that the dual orbit $\mathfrak{O} := H^T \xi_0 \subset \mathbb{R}^d$ is open and of full measure.

3 The isotropy group $H_{\xi_0} := \{h \in H \mid h^T \xi_0 = \xi_0\} \le H$ is compact.

Wavelets

Definition: Let $\psi \in L^2(\mathbb{R})$ be a wavelet, i.e., $\int_{\mathbb{R}} |\widehat{\psi}(\omega)|^2 \frac{d\omega}{|\omega|} < \infty$. The associated homogeneous continuous wavelet system is

$$\left(|a|^{-1/2}\cdot\psi\left(a^{-1}\left(ullet-b
ight)
ight)
ight)_{a\in\mathbb{R}^*,b\in\mathbb{R}}=\left(\pi\left(b,a
ight)\psi
ight)_{\left(b,a
ight)\in\mathbb{R} imes\mathbb{R}^*}.$$

Wavelets

Definition: Let $\psi \in L^2(\mathbb{R})$ be a wavelet, i.e., $\int_{\mathbb{R}} |\widehat{\psi}(\omega)|^2 \frac{d\omega}{|\omega|} < \infty$. The associated homogeneous continuous wavelet system is

$$\left(|a|^{-1/2} \cdot \psi\left(a^{-1}\left(ullet-b
ight)
ight)
ight)_{a\in\mathbb{R}^*,b\in\mathbb{R}}=(\pi\left(b,a
ight)\psi)_{(b,a)\in\mathbb{R} imes\mathbb{R}^*}$$

Definition: Let $\phi, \psi \in L^2(\mathbb{R})$ be a scaling function and a wavelet. Then the inhomogeneous discrete wavelet system generated by ϕ, ψ is

$$\left(\phi\left(\bullet-m\right)\right)_{m\in\mathbb{Z}}\cup\left(2^{j/2}\cdot\psi\left(2^{j}\bullet-m\right)\right)_{j\in\mathbb{N}_{0},m\in\mathbb{Z}}.$$

Wavelets

Definition: Let $\psi \in L^2(\mathbb{R})$ be a wavelet, i.e., $\int_{\mathbb{R}} |\widehat{\psi}(\omega)|^2 \frac{d\omega}{|\omega|} < \infty$. The associated homogeneous continuous wavelet system is

$$\left(|a|^{-1/2} \cdot \psi\left(a^{-1}\left(ullet-b
ight)
ight)
ight)_{a\in\mathbb{R}^*,b\in\mathbb{R}}=\left(\pi\left(b,a
ight)\psi
ight)_{\left(b,a
ight)\in\mathbb{R}
ightarrow\mathbb{R}^*}$$

Definition: Let $\phi, \psi \in L^2(\mathbb{R})$ be a scaling function and a wavelet. Then the **inhomogeneous discrete** wavelet system generated by ϕ, ψ is

$$\left(\phi\left(\bullet-m\right)\right)_{m\in\mathbb{Z}}\cup\left(2^{j/2}\cdot\psi\left(2^{j}\bullet-m\right)\right)_{j\in\mathbb{N}_{0},m\in\mathbb{Z}}.$$

Definition: Let ϕ, ψ as above. A 2D inhomogeneous discrete wavelet system is defined by

$$\left(\phi^{(1)}(\bullet-m)\right)_{m\in\mathbb{Z}^2}\cup\left(2^j\cdot\psi^{(\ell)}\left(2^j\bullet-m\right)\right)_{j\in\mathbb{N}_0,m\in\mathbb{Z}^2,\ell\in\{1,2,3\}}$$

where

$$\phi^{(1)}:=\phi\otimes\phi,\quad \psi^{(1)}:=\phi\otimes\psi,\quad \psi^{(2)}:=\psi\otimes\phi,\quad \psi^{(3)}:=\psi\otimes\dot{\psi}.$$

Approximation properties of Wavelets

For good compression of a signal f, it would be desirable that f can be well approximated using only a few wavelets:

Approximation properties of Wavelets

For good compression of a signal f, it would be desirable that f can be well approximated using only a few wavelets:

Approximation properties of Wavelets

For good compression of a signal f, it would be desirable that f can be well approximated using only a few wavelets:

Theorem: Discrete wavelets provide optimal approximation rates for those $f \in L^2(\mathbb{R}^2)$ which are C^2 apart from point singularities:

$$\|f-f_N\|_{L^2} \lesssim N^{-1/2} \qquad (N \to \infty).$$

Living on the point

Living on the point edge

Natural images are governed by curved singularities, not point singularities!

Living on the point edge

Natural images are governed by curved singularities, not point singularities!

Definition (Donoho; 2001) With $Q := (0,1)^2$, the set of cartoon-like functions is defined as $\mathcal{E}^2(\mathbb{R}^2) = \{ f_0 + f_1 \cdot \mathbb{1}_B | \partial B \subset Q \text{ closed } C^2 \text{ curve and } f_0, f_1 \in C_c^2(Q) \}.$

Theorem: For $f \in \mathcal{E}^2(\mathbb{R}^2)$, the best *N*-term approximation f_N

- using Fourier basis: $\|f f_N\|_{L^2} \lesssim N^{-1/4}$,
- using Wavelets: $\|f f_N\|_{L^2} \lesssim N^{-1/2}$.

Theorem: For $f \in \mathcal{E}^2(\mathbb{R}^2)$, the best *N*-term approximation f_N

• using Fourier basis: $\|f - f_N\|_{L^2} \lesssim N^{-1/4}$,

• using Wavelets:
$$\|f - f_N\|_{L^2} \lesssim N^{-1/2}$$
.

Theorem (Donoho; 2001): Let $(\psi_n)_{n \in \mathbb{N}}$ be any countable family in $L^2(\mathbb{R}^2)$. If

$$\|f-f_N\|_{L^2} \lesssim N^{-\theta} \qquad \forall N \in \mathbb{N} \qquad \forall f \in \mathcal{E}^2(\mathbb{R}^2),$$

then $\theta \leq 1$. Here, we assume polynomial depth search for forming f_N .

Theorem: For $f \in \mathcal{E}^2(\mathbb{R}^2)$, the best *N*-term approximation f_N

• using Fourier basis: $\|f - f_N\|_{L^2} \lesssim N^{-1/4}$,

• using Wavelets:
$$\|f - f_N\|_{L^2} \lesssim N^{-1/2}$$
.

Theorem (Donoho; 2001): Let $(\psi_n)_{n \in \mathbb{N}}$ be any countable family in $L^2(\mathbb{R}^2)$. If

$$\|f-f_N\|_{L^2} \lesssim N^{-\theta} \qquad \forall N \in \mathbb{N} \qquad \forall f \in \mathcal{E}^2(\mathbb{R}^2),$$

then $\theta \leq 1$. Here, we assume polynomial depth search for forming f_N .

Hence, Wavelets cannot approximate curvilinear singularities optimally.

Theorem: For $f \in \mathcal{E}^2(\mathbb{R}^2)$, the best *N*-term approximation f_N

• using Fourier basis: $\|f - f_N\|_{L^2} \lesssim N^{-1/4}$,

• using Wavelets:
$$\|f - f_N\|_{L^2} \lesssim N^{-1/2}$$
.

Theorem (Donoho; 2001): Let $(\psi_n)_{n \in \mathbb{N}}$ be any countable family in $L^2(\mathbb{R}^2)$. If

$$\|f-f_N\|_{L^2} \lesssim N^{-\theta} \qquad \forall N \in \mathbb{N} \qquad \forall f \in \mathcal{E}^2(\mathbb{R}^2),$$

then $\theta \leq 1$. Here, we assume polynomial depth search for forming f_N .

Hence, Wavelets cannot approximate curvilinear singularities optimally.

Intuitive explanation: This is caused by the scalar dilations:

$$f \in L^2 \mapsto (\langle f, \psi_{\lambda} \rangle)_{\lambda} \in \ell^2 \mapsto \sum_{\lambda} \langle f, \psi_{\lambda} \rangle \, \widetilde{\psi_{\lambda}} = f.$$

Design a representation system $\Psi = (\psi_{\lambda})_{\lambda} \subset L^2(\mathbb{R}^2)$ such that: • Ψ is a frame:

$$f \in L^2 \mapsto (\langle f, \psi_{\lambda} \rangle)_{\lambda} \in \ell^2 \mapsto \sum_{\lambda} \langle f, \psi_{\lambda} \rangle \, \widetilde{\psi_{\lambda}} = f.$$

• Ψ is an affine system, motivated by coherent states.

$$f \in L^2 \mapsto (\langle f, \psi_\lambda \rangle)_\lambda \in \ell^2 \mapsto \sum_\lambda \langle f, \psi_\lambda \rangle \, \widetilde{\psi_\lambda} = f.$$

- Ψ is an affine system, motivated by coherent states.
- Ψ is a multiscale representation system, with an associated tiling of the Fourier domain.

$$f \in L^2 \mapsto (\langle f, \psi_{\lambda} \rangle)_{\lambda} \in \ell^2 \mapsto \sum_{\lambda} \langle f, \psi_{\lambda} \rangle \, \widetilde{\psi_{\lambda}} = f.$$

- Ψ is an affine system, motivated by coherent states.
- Ψ is a multiscale representation system, with an associated tiling of the Fourier domain.
- It should be possibly to choose a compactly supported generator for Ψ .

$$f \in L^2 \mapsto (\langle f, \psi_{\lambda} \rangle)_{\lambda} \in \ell^2 \mapsto \sum_{\lambda} \langle f, \psi_{\lambda} \rangle \, \widetilde{\psi_{\lambda}} = f.$$

- Ψ is an affine system, motivated by coherent states.
- Ψ is a multiscale representation system, with an associated tiling of the Fourier domain.
- It should be possibly to choose a compactly supported generator for Ψ .
- Ψ should provide optimally sparse approximations of cartoons.

$$f \in L^2 \mapsto (\langle f, \psi_{\lambda} \rangle)_{\lambda} \in \ell^2 \mapsto \sum_{\lambda} \langle f, \psi_{\lambda} \rangle \, \widetilde{\psi_{\lambda}} = f.$$

- Ψ is an affine system, motivated by coherent states.
- Ψ is a multiscale representation system, with an associated tiling of the Fourier domain.
- It should be possibly to choose a compactly supported generator for Ψ .
- Ψ should provide optimally sparse approximations of cartoons.
- Fast algorithms which treat the analog and digital world uniformly.

Design a representation system $\Psi = (\psi_{\lambda})_{\lambda} \subset L^2(\mathbb{R}^2)$ such that: • Ψ is a frame:

$$f \in L^2 \mapsto (\langle f, \psi_\lambda \rangle)_\lambda \in \ell^2 \mapsto \sum_\lambda \langle f, \psi_\lambda \rangle \, \widetilde{\psi_\lambda} = f.$$

- Ψ is an affine system, motivated by coherent states.
- Ψ is a multiscale representation system, with an associated tiling of the Fourier domain.
- It should be possibly to choose a compactly supported generator for Ψ .
- Ψ should provide optimally sparse approximations of cartoons.
- Fast algorithms which treat the analog and digital world uniformly.

Non-exhaustive list of approaches:

- Ridgelets (Candès and Donoho; 1999)
- Curvelets (Candès and Donoho; 2002)
- Contourlets (Do and Vetterli; 2002)
- Bandlets (LePennec and Mallat; 2003)
- Shearlets (Kutyniok and Labate; 2006)

Instead of the dilation group $H = \mathbb{R}^* \cdot SO(\mathbb{R}^d)$ leading to wavelets, we consider the dilation group

$$H = \left\{ \varepsilon \cdot \underbrace{\begin{pmatrix} a & 0 \\ 0 & a^{1/2} \end{pmatrix}}_{=:A_a} \underbrace{\begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}}_{=:S_s} \middle| \varepsilon \in \{\pm 1\}, a \in (0, \infty), s \in \mathbb{R} \right\}.$$

Instead of the dilation group $H = \mathbb{R}^* \cdot SO(\mathbb{R}^d)$ leading to wavelets, we consider the dilation group

$$H = \left\{ \varepsilon \cdot \underbrace{\begin{pmatrix} a & 0 \\ 0 & a^{1/2} \end{pmatrix}}_{=:A_a} \underbrace{\begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}}_{=:S_s} \middle| \varepsilon \in \{\pm 1\}, a \in (0, \infty), s \in \mathbb{R} \right\}.$$

For admissible $\psi \in L^2(\mathbb{R}^2)$, the associated continuous shearlet system is $(\pi(x,h)\psi)_{x\in\mathbb{R}^2,h\in H}$.

Instead of the dilation group $H = \mathbb{R}^* \cdot SO(\mathbb{R}^d)$ leading to wavelets, we consider the dilation group

$$H = \left\{ \varepsilon \cdot \underbrace{\begin{pmatrix} a & 0 \\ 0 & a^{1/2} \end{pmatrix}}_{=:A_a} \underbrace{\begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}}_{=:S_s} \middle| \varepsilon \in \{\pm 1\}, a \in (0, \infty), s \in \mathbb{R} \right\}.$$

For admissible $\psi \in L^2(\mathbb{R}^2)$, the associated continuous shearlet system is $(\pi(x,h)\psi)_{x\in\mathbb{R}^2,h\in H}$.

Main properties:

- Parabolic scaling
- Different orientations via shearing.

Instead of the dilation group $H = \mathbb{R}^* \cdot SO(\mathbb{R}^d)$ leading to wavelets, we consider the dilation group

$$H = \left\{ \varepsilon \cdot \underbrace{\begin{pmatrix} a & 0 \\ 0 & a^{1/2} \end{pmatrix}}_{=:A_a} \underbrace{\begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}}_{=:S_s} \middle| \varepsilon \in \{\pm 1\}, a \in (0, \infty), s \in \mathbb{R} \right\}.$$

For admissible $\psi \in L^2(\mathbb{R}^2)$, the associated continuous shearlet system is $(\pi(x,h)\psi)_{x\in\mathbb{R}^2,h\in H}$.

Main properties:

- Parabolic scaling
- Different orientations via shearing.

Advantages of shearing:

- The shearing matrices $\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$ leave the digital grid \mathbb{Z}^2 invariant.
- Uniform theory for the analog and digital situation.

Discretization of continuous shearlet systems

The set

$$\left\{ \left(S_k A_{2^j}\right)^{-1} = \left[\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2^j & 0 \\ 0 & 2^{j/2} \end{pmatrix} \right]^{-1} : j, k \in \mathbb{Z} \right\}$$

is well-spread in the shearlet group H.

Discretization of continuous shearlet systems

The set

$$\left\{ \left(S_k A_{2^j}\right)^{-1} = \left[\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2^j & 0 \\ 0 & 2^{j/2} \end{pmatrix} \right]^{-1} : j, k \in \mathbb{Z} \right\}$$

is well-spread in the shearlet group H.

Hence, coorbit theory (Feichtinger & Gröchenig) motivates the following definition:

Definition (Kutyniok, Labate; 2006): For $\psi \in L^2(\mathbb{R}^2)$, the associated discrete shearlet system is

$$\left(2^{\frac{3}{4}j} \cdot \psi(S_k A_{2^j} \bullet -m)\right)_{j,k \in \mathbb{Z}, m \in \mathbb{Z}^2} = \left(\mathsf{D}_{\left(S_k A_{2^j}\right)^{-1}}\mathsf{T}_m \psi\right)_{j,k \in \mathbb{Z}, m \in \mathbb{Z}^2}$$

Very different treatment of x-direction and y-direction!

Very different treatment of x-direction and y-direction!

Solution: Use cone-adapted shearlets:

Very different treatment of x-direction and y-direction!

Solution: Use cone-adapted shearlets:

The induced frequency tiling

Very different treatment of x-direction and y-direction!

Solution: Use cone-adapted shearlets:

Cone-adapted Discrete Shearlet Systems

Cone-adapted Discrete Shearlet Systems

Definition (Kutyniok, Labate; 2006):

The cone-adapted discrete shearlet system $S\mathcal{H}(\phi, \psi, \tilde{\psi}; c)$ with sampling density c > 0 generated by $\phi, \psi, \tilde{\psi} \in L^2(\mathbb{R}^2)$ is the union of

$$\begin{split} &\left\{ \phi\left(\bullet-c\cdot m\right) \left| \ m\in\mathbb{Z}^{2} \right\}, \\ &\left\{ \psi_{j,k,m,h} := \psi\left(S_{k}A_{2^{j}}\bullet-c\cdot m\right) \left| \ j\in\mathbb{N}_{0}, \ |k|\leq \lceil 2^{j/2}\rceil, \ m\in\mathbb{Z}^{2} \right\}, \\ &\left\{ \psi_{j,k,m,\nu} := \tilde{\psi}\left(S_{k}^{\mathsf{T}}\tilde{A}_{2^{j}}\bullet-c\cdot m\right) \left| \ j\in\mathbb{N}_{0}, \ |k|\leq \lceil 2^{j/2}\rceil, \ m\in\mathbb{Z}^{2} \right\}, \end{split} \right.$$

where

$$S_{k} = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}, \qquad A_{2j} = \begin{pmatrix} 2^{j} & 0 \\ 0 & 2^{j/2} \end{pmatrix}, \qquad \tilde{A}_{2j} = \begin{pmatrix} 2^{j/2} & 0 \\ 0 & 2^{j} \end{pmatrix}.$$

We have seen:

• Wavelets are not optimal for approximation of functions with curvilinear singularities.

We have seen:

- Wavelets are not optimal for approximation of functions with curvilinear singularities.
- Shearlets are an alternative multiscale system which uses
 - parabolic dilations
 - shearings

instead of scalar dilations.

We have seen:

- Wavelets are not optimal for approximation of functions with curvilinear singularities.
- Shearlets are an alternative multiscale system which uses
 - parabolic dilations
 - shearings

instead of scalar dilations.

Recall: Design goals for shearlet system Ψ :

- Ψ is a frame.
- Ψ is an affine system, motivated by coherent states. \checkmark
- Ψ is a multiscale representation system, with an associated tiling of the Fourier domain. \checkmark
- It should be possibly to choose a compactly supported generator for $\Psi.$
- Ψ should provide optimally sparse approximations of cartoons.
- Fast algorithms treating the analog and digital world uniformly. (\checkmark)

We have seen:

- Wavelets are not optimal for approximation of functions with curvilinear singularities.
- Shearlets are an alternative multiscale system which uses
 - parabolic dilations
 - shearings

instead of scalar dilations.

Recall: Design goals for shearlet system Ψ :

- Ψ is a frame.
- Ψ is an affine system, motivated by coherent states. \checkmark
- Ψ is a multiscale representation system, with an associated tiling of the Fourier domain. \checkmark
- It should be possibly to choose a compactly supported generator for $\Psi.$
- Ψ should provide optimally sparse approximations of cartoons.
- Fast algorithms treating the analog and digital world uniformly. (\checkmark)

Outline

Multiscale Systems inspired by Coherent States

- The Quasi-regular Representation
- Wavelets and their Limitations
- Continuous Shearlet Systems
- Discrete Shearlet Systems

Shearlets and their Applications

- Compactly supported Shearlets
- Optimal sparse Approximation
- Applications with Compressed Sensing

3) Shearlets, Coherent States & Decomposition spaces

Compactly supported shearlets

Theorem (Kittipoom, Kutyniok, Lim; 2012):

Let $\phi,\psi, ilde{\psi}\in L^{2}\left(\mathbb{R}^{2}
ight)$ be compactly supported and assume that

• $\widehat{\psi}, \widehat{\widetilde{\psi}}$ satisfy certain decay conditions,

we have

$$|\widehat{\phi}(\xi)|^2 + \sum_{j,k} |\widehat{\psi}_{j,k}(\xi)|^2 + |\widehat{\widetilde{\psi}_{j,k}}(\xi)|^2 \ge C > 0$$
 a.e. (†)

Then there is some c > 0 such that $SH(\phi, \psi, \tilde{\psi}; c)$ is a frame for $L^2(\mathbb{R}^2)$.

Compactly supported shearlets

Theorem (Kittipoom, Kutyniok, Lim; 2012):

Let $\phi,\psi, ilde{\psi}\in L^{2}\left(\mathbb{R}^{2}
ight)$ be compactly supported and assume that

• $\widehat{\psi}, \widehat{\widetilde{\psi}}$ satisfy certain decay conditions,

we have

$$|\widehat{\phi}\left(\xi
ight)|^{2}+\sum_{i,k}|\widehat{\psi}_{j,k}\left(\xi
ight)|^{2}+|\widehat{\widetilde{\psi}_{j,k}}\left(\xi
ight)|^{2}\geq C>0$$
 a.e. (†)

Then there is some c > 0 such that $SH(\phi, \psi, \tilde{\psi}; c)$ is a frame for $L^2(\mathbb{R}^2)$.

Compactly supported shearlets

Theorem (Kittipoom, Kutyniok, Lim; 2012):

Let $\phi,\psi,\widetilde{\psi}\in L^{2}\left(\mathbb{R}^{2}
ight)$ be compactly supported and assume that

• $\widehat{\psi}, \widehat{\widetilde{\psi}}$ satisfy certain decay conditions,

we have

$$|\widehat{\phi}\left(\xi
ight)|^{2}+\sum_{i,k}\left|\widehat{\psi}_{j,k}\left(\xi
ight)|^{2}+\left|\widehat{\widetilde{\psi}_{j,k}}\left(\xi
ight)|^{2}\geq C>0$$
 a.e. (†)

Then there is some c > 0 such that $SH(\phi, \psi, \tilde{\psi}; c)$ is a frame for $L^2(\mathbb{R}^2)$.

Remarks

• For (†), it suffices to have $ilde{\psi}((\xi_1,\xi_2))=\psi((\xi_2,\xi_1))$ as well as

$$ig| \widehat{\phi}(\xi) ig| \gtrsim 1 \qquad ext{for } \xi \in [-1,1]^2 \,,$$

 $| \widehat{\psi}(\xi) | \gtrsim 1 \qquad ext{for } \xi_1 \in [1/3,\,3] ext{ and } |\xi_2| \leq |\xi_1| \,,$

• There are special examples with frame bounds $B/A \approx 4$.

Optimal Sparse Approximation of Cartoon-like functions

Theorem (Kutyniok, Lim; 2011):

Let $\phi, \psi, \tilde{\psi} \in L^2(\mathbb{R}^2)$ be compactly supported and such that $S\mathcal{H}(\phi, \psi, \tilde{\psi}; c)$ is a frame for $L^2(\mathbb{R}^2)$. Further, assume that $\hat{\psi}, \hat{\tilde{\psi}}$ satisfy certain decay conditions. Then $S\mathcal{H}(\phi, \psi, \tilde{\psi}; c)$ provides an optimally sparse approximation of all $f \in \mathcal{E}^2(\mathbb{R}^2)$, i.e.,

 $\|f - f_N\|_{L^2} \lesssim N^{-1} \cdot (\log N)^{3/2} \qquad \forall N \in \mathbb{N} \qquad \forall f \in \mathcal{E}^2(\mathbb{R}^2).$

Optimal Sparse Approximation of Cartoon-like functions

Theorem (Kutyniok, Lim; 2011):

Let $\phi, \psi, \tilde{\psi} \in L^2(\mathbb{R}^2)$ be compactly supported and such that $\mathcal{SH}(\phi, \psi, \tilde{\psi}; c)$ is a frame for $L^2(\mathbb{R}^2)$. Further, assume that $\hat{\psi}, \hat{\tilde{\psi}}$ satisfy certain decay conditions. Then $\mathcal{SH}(\phi, \psi, \tilde{\psi}; c)$ provides an optimally sparse approximation of all $f \in \mathcal{E}^2(\mathbb{R}^2)$, i.e.,

 $\|f-f_N\|_{L^2} \lesssim N^{-1} \cdot (\log N)^{3/2} \qquad \forall N \in \mathbb{N} \qquad \forall f \in \mathcal{E}^2(\mathbb{R}^2).$

Here, f_N is a linear combination of (at most) N elements of the dual frame of $S\mathcal{H}(\phi, \psi, \tilde{\psi}; c)$.

Optimal Sparse Approximation of Cartoon-like functions

Theorem (Kutyniok, Lim; 2011):

Let $\phi, \psi, \tilde{\psi} \in L^2(\mathbb{R}^2)$ be compactly supported and such that $S\mathcal{H}(\phi, \psi, \tilde{\psi}; c)$ is a frame for $L^2(\mathbb{R}^2)$. Further, assume that $\hat{\psi}, \hat{\tilde{\psi}}$ satisfy certain decay conditions. Then $S\mathcal{H}(\phi, \psi, \tilde{\psi}; c)$ provides an optimally sparse approximation of all $f \in \mathcal{E}^2(\mathbb{R}^2)$, i.e.,

$$\|f - f_N\|_{L^2} \lesssim N^{-1} \cdot (\log N)^{3/2} \qquad \forall N \in \mathbb{N} \qquad \forall f \in \mathcal{E}^2(\mathbb{R}^2).$$

Here, f_N is a linear combination of (at most) N elements of the dual frame of $SH(\phi, \psi, \tilde{\psi}; c)$.

Remark

The proof shows

$$\sum_{n>N} |\theta(f)|_n^2 \lesssim N^{-2} \cdot (\log N)^3 \qquad \forall N \in \mathbb{N} \qquad \forall f \in \mathcal{E}^2(\mathbb{R}^2),$$

where $|\theta(f)|_n$ denotes the *n*-th largest shearlet coefficient. Hence, the shearlet coefficients are in ℓ^p for all $p > \frac{2}{3}$.

Applications

Feature separation in Images

Problem from Neurobiology: Alzheimer Research

- Detection of characteristics of Alzheimer
- Separation of spines (point-like) and dendrites (curvilinear)

(Confocal-Laser Scanning-Microscopy)

Numerical results of feature separation

(Source: Brandt, Kutyniok, Lim, Sündermann; 2010)

General approach:

- Let $x^0 = x_1^0 + x_2^0$ be a signal.
- Let Φ_1, Φ_2 be frames such that $x_i^0 = \Phi_i c_i^0$ with c_i^0 sparse, i = 1, 2.
- This yields

$$x^{0} = \left[\begin{array}{c} \Phi_{1} \mid \Phi_{2} \end{array} \right] \begin{bmatrix} c_{1}^{0} \\ c_{2}^{0} \end{bmatrix}$$

General approach:

- Let $x^0 = x_1^0 + x_2^0$ be a signal.
- Let Φ_1, Φ_2 be frames such that $x_i^0 = \Phi_i c_i^0$ with c_i^0 sparse, i = 1, 2.
- This yields

$$x^{0} = \left[\begin{array}{c} \Phi_{1} \mid \Phi_{2} \end{array} \right] \begin{bmatrix} c_{1}^{0} \\ c_{2}^{0} \end{bmatrix}.$$

 $x_1^0, x_2^0, c_1^0, c_2^0$ exist, but are unknown!

General approach:

- Let $x^0 = x_1^0 + x_2^0$ be a signal.
- Let Φ_1, Φ_2 be frames such that $x_i^0 = \Phi_i c_i^0$ with c_i^0 sparse, i = 1, 2.
- This yields

$$x^{0} = \left[\begin{array}{c} \Phi_{1} & \Phi_{2} \end{array} \right] \begin{bmatrix} c_{1}^{0} \\ c_{2}^{0} \end{bmatrix}.$$

 $x_1^0, x_2^0, c_1^0, c_2^0$ exist, but are unknown!

Idea for determining c_1^0, c_2^0 and hence x_1^0, x_2^0 : ℓ^1 minimization (Elad, Starck, Querre, Donoho; 2005):

 $(\hat{c}_1, \hat{c}_2) = \operatorname{argmin} \|c_1\|_{\ell^1} + \|c_2\|_{\ell^1}$ subject to $x^0 = \Phi_1 c_1 + \Phi_2 c_2$.

General approach:

- Let $x^0 = x_1^0 + x_2^0$ be a signal.
- Let Φ_1, Φ_2 be frames such that $x_i^0 = \Phi_i c_i^0$ with c_i^0 sparse, i = 1, 2.
- This yields

$$x^{0} = \left[\begin{array}{c} \Phi_{1} \mid \Phi_{2} \end{array} \right] \begin{bmatrix} c_{1}^{0} \\ c_{2}^{0} \end{bmatrix}.$$

 $x_1^0, x_2^0, c_1^0, c_2^0$ exist, but are unknown!

Idea for determining c_1^0, c_2^0 and hence x_1^0, x_2^0 : ℓ^1 minimization (Elad, Starck, Querre, Donoho; 2005):

 $(\hat{c}_1, \hat{c}_2) = \operatorname{argmin} \|c_1\|_{\ell^1} + \|c_2\|_{\ell^1}$ subject to $x^0 = \Phi_1 c_1 + \Phi_2 c_2$.

Theorems (Donoho, Kutyniok; 2013), (Kutyniok; 2014):

- Wavelets: Optimally sparse approximations of points.
- Shearlets: Optimally sparse approximations of curves.
- → Provable asymptotic separation of points and curves!

Inpainting using Shearlets

Inpainting using Shearlets

Inpainting using Shearlets

(Source: Lim; 2014)

MRI reconstruction

Shearlets

MRI reconstruction

Outline

Multiscale Systems inspired by Coherent States

- The Quasi-regular Representation
- Wavelets and their Limitations
- Continuous Shearlet Systems
- Discrete Shearlet Systems

2 Shearlets and their Applications

- Compactly supported Shearlets
- Optimal sparse Approximation
- Applications with Compressed Sensing

Shearlets, Coherent States & Decomposition spaces

F. Voigtlaender Shearlets: Theory, Applications, and Generalizations Coherent States Workshop, CIRM 24/34

Given

• a suitable (frequency space!) covering $\Omega = (Q_i)_{i \in I}$ of $\Omega \subset \mathbb{R}^d$,

Given

- a suitable (frequency space!) covering $\Omega = (Q_i)_{i \in I}$ of $\Omega \subset \mathbb{R}^d$,
- a suitable partition of unity $\Phi = (\varphi_i)_{i \in I}$ subordinate to Q,

Given

- a suitable (frequency space!) covering $\Omega = (Q_i)_{i \in I}$ of $\Omega \subset \mathbb{R}^d$,
- a suitable partition of unity $\Phi = (\varphi_i)_{i \in I}$ subordinate to Q,
- a suitable weight $w = (w_i)_{i \in I}$,

Given

- a suitable (frequency space!) covering $\Omega = (Q_i)_{i \in I}$ of $\Omega \subset \mathbb{R}^d$,
- a suitable partition of unity $\Phi = (\varphi_i)_{i \in I}$ subordinate to Q,
- a suitable weight $w = (w_i)_{i \in I}$,

we define the associated decomposition space as

$$\mathcal{D}(\mathfrak{Q}, L^{p}, \ell^{q}_{w}) := \Big\{ g \in ??? | (\big\| \mathcal{F}^{-1}(\varphi_{i} \cdot \widehat{g}) \big\|_{L^{p}} \big)_{i \in I} \in \ell^{q}_{w}(I) \Big\}.$$

Note: $\ell_w^q(I) = \left\{ (c_i)_{i \in I} \in \mathbb{C}^I \mid (w_i \cdot c_i)_{i \in I} \in \ell^q(I) \right\}.$

Given

- a suitable (frequency space!) covering $\Omega = (Q_i)_{i \in I}$ of $\Omega \subset \mathbb{R}^d$,
- a suitable partition of unity $\Phi = (\varphi_i)_{i \in I}$ subordinate to Q,
- a suitable weight $w = (w_i)_{i \in I}$,

we define the associated decomposition space as

$$\mathcal{D}(\mathcal{Q}, L^{p}, \ell^{q}_{w}) := \Big\{ g \in ??? \ \Big| \left(\big\| \mathcal{F}^{-1}(\varphi_{i} \cdot \widehat{g}) \big\|_{L^{p}} \right)_{i \in I} \in \ell^{q}_{w}(I) \Big\}.$$

Note: $\ell_w^q(I) = \left\{ (c_i)_{i \in I} \in \mathbb{C}^I \, \middle| \, (w_i \cdot c_i)_{i \in I} \in \ell^q(I) \right\}.$

In most (but not all cases) where $O = \mathbb{R}^d$, we can use $S'(\mathbb{R}^d)$ as the reservoir, i.e.,

$$\mathcal{D}(\mathfrak{Q}, L^{p}, \ell^{q}_{w}) = \left\{ g \in \mathfrak{S}'(\mathbb{R}^{d}) \, \middle| \, \left(\left\| \mathfrak{F}^{-1}(\varphi_{i} \cdot \widehat{g}) \right\|_{L^{p}} \right)_{i \in I} \in \ell^{q}_{w}(I) \right\}.$$

Why are decomposition spaces useful?

Many important smoothness spaces are decomposition spaces:

- Besov spaces (homogeneous and inhomogeneous),
- (α)-modulation spaces,
- Shearlet smoothness spaces,
- All wavelet-type coorbit spaces.

Why are decomposition spaces useful?

Many important smoothness spaces are decomposition spaces:

- Besov spaces (homogeneous and inhomogeneous),
- (α)-modulation spaces,
- Shearlet smoothness spaces,
- All wavelet-type coorbit spaces.

Theorem (Führ, Voigtlaender; 2015): Let $H \leq GL(\mathbb{R}^d)$ such that $[\pi(x,h)f](y) = |\det h|^{-1/2} \cdot f(h^{-1}(y-x))$ for $f \in L^2(\mathbb{R}^d)$ defines an irreducible and square-integrable representation of $\mathbb{R}^d \rtimes H$.

Why are decomposition spaces useful?

Many important smoothness spaces are decomposition spaces:

- Besov spaces (homogeneous and inhomogeneous),
- (α)-modulation spaces,
- Shearlet smoothness spaces,
- All wavelet-type coorbit spaces.

Theorem (Führ, Voigtlaender; 2015): Let $H \leq GL(\mathbb{R}^d)$ such that $[\pi(x,h)f](y) = |\det h|^{-1/2} \cdot f(h^{-1}(y-x))$ for $f \in L^2(\mathbb{R}^d)$ defines an irreducible and square-integrable representation of $\mathbb{R}^d \rtimes H$. Then, for a suitable weight $w = w_{m,q}$,

 $\mathrm{Co}(L^{p,q}_m(\mathbb{R}^d\rtimes H))\cong \mathcal{D}(\mathfrak{Q}_H,L^p,\ell^q_w)$
Why are decomposition spaces useful?

Many important smoothness spaces are decomposition spaces:

- Besov spaces (homogeneous and inhomogeneous),
- (α)-modulation spaces,
- Shearlet smoothness spaces,
- All wavelet-type coorbit spaces.

Theorem (Führ, Voigtlaender; 2015): Let $H \leq GL(\mathbb{R}^d)$ such that $[\pi(x,h)f](y) = |\det h|^{-1/2} \cdot f(h^{-1}(y-x))$ for $f \in L^2(\mathbb{R}^d)$ defines an irreducible and square-integrable representation of $\mathbb{R}^d \rtimes H$. Then, for a suitable weight $w = w_{m,q}$,

$$\operatorname{Co}(L^{p,q}_m(\mathbb{R}^d\rtimes H))\cong \mathcal{D}(\mathfrak{Q}_H,L^p,\ell^q_w)$$

with the induced covering

$$\mathfrak{Q}_H := (h_i^{-T}Q)_{i \in I}$$

of the open dual orbit $\mathcal{O} := H^T \xi_0$.

Why are decomposition spaces useful?

Many important smoothness spaces are decomposition spaces:

- Besov spaces (homogeneous and inhomogeneous),
- (α)-modulation spaces,
- Shearlet smoothness spaces,
- All wavelet-type coorbit spaces.

Theorem (Führ, Voigtlaender; 2015): Let $H \leq GL(\mathbb{R}^d)$ such that $[\pi(x,h)f](y) = |\det h|^{-1/2} \cdot f(h^{-1}(y-x))$ for $f \in L^2(\mathbb{R}^d)$ defines an irreducible and square-integrable representation of $\mathbb{R}^d \rtimes H$. Then, for a suitable weight $w = w_{m,q}$,

$$\operatorname{Co}\left(L_m^{p,q}(\mathbb{R}^d\rtimes H)\right)\cong \mathcal{D}\left(\mathfrak{Q}_H,L^p,\ell_w^q\right)$$

with the induced covering

$$\mathfrak{Q}_H := (h_i^{-T}Q)_{i \in I}$$

of the open dual orbit $\mathcal{O} := H^T \xi_0$.

 \rightsquigarrow We can study coorbit spaces using decomposition space theory.

Examples of coverings I: Besov spaces

F. Voigtlaender Shearlets: Theory, Applications, and Generalizations Coherent States Workshop, CIRM 26/34

Examples of coverings II: Shearlet coorbit spaces

Examples of coverings III: Shearlet smoothness spaces

Assume that $\Omega = (Q_i)_{i \in I}$ is a structured admissible covering, i.e.,

• $Q_i = T_i Q + b_i$ for $Q \subset \mathbb{R}^d$ fixed, $T_i \in GL(\mathbb{R}^d)$ and $b_i \in \mathbb{R}^d$,

Assume that $\Omega = (Q_i)_{i \in I}$ is a structured admissible covering, i.e.,

- $Q_i = T_i Q + b_i$ for $Q \subset \mathbb{R}^d$ fixed, $T_i \in \operatorname{GL}(\mathbb{R}^d)$ and $b_i \in \mathbb{R}^d$,
- some additional technical assumptions.

Assume that $\Omega = (Q_i)_{i \in I}$ is a structured admissible covering, i.e.,

• $Q_i = T_i Q + b_i$ for $Q \subset \mathbb{R}^d$ fixed, $T_i \in \operatorname{GL}(\mathbb{R}^d)$ and $b_i \in \mathbb{R}^d$,

• some additional technical assumptions.

Idea: For fixed prototype $\gamma \in L^1(\mathbb{R}^d)$, consider the structured family

$$\Psi^{(\delta)} := \left(\mathsf{T}_{\delta \cdot \mathcal{T}_i^{-\mathsf{T}}_k} \, \gamma^{[i]} \right)_{i \in I, k \in \mathbb{Z}^d} \quad \text{with} \quad \gamma^{[i]} := \left| \det \mathcal{T}_i \right|^{1/2} \cdot \mathsf{M}_{b_i} \left[\gamma \circ \mathcal{T}_i^{\mathsf{T}} \right].$$

Assume that $\Omega = (Q_i)_{i \in I}$ is a structured admissible covering, i.e.,

• $Q_i = T_i Q + b_i$ for $Q \subset \mathbb{R}^d$ fixed, $T_i \in GL(\mathbb{R}^d)$ and $b_i \in \mathbb{R}^d$,

some additional technical assumptions.

Idea: For fixed prototype $\gamma \in L^1(\mathbb{R}^d)$, consider the structured family

$$\Psi^{(\delta)} := \left(\mathsf{T}_{\delta \cdot \mathcal{T}_i^{-\mathsf{T}} k} \, \gamma^{[i]}\right)_{i \in I, k \in \mathbb{Z}^d} \quad \text{with} \quad \gamma^{[i]} := \left|\det \mathcal{T}_i\right|^{1/2} \cdot \mathsf{M}_{b_i}\left[\gamma \circ \mathcal{T}_i^{\mathsf{T}}\right].$$

Note:

•
$$\widehat{\gamma^{[i]}} = |\det T_i|^{-1/2} \cdot \mathbf{T}_{b_i} [\widehat{\gamma} \circ T_i^{-1}].$$

• In particular, if $\hat{\gamma}$ is essentially supported in Q, then $\gamma^{[i]}$ is essentially supported in Q_i .

Theorem (Voigtlaender; 2016): Let $Q = (T_iQ + b_i)_{i \in I}$ and let $w = (w_i)_{i \in I}$ be a suitable weight. For $p, q \in (0, \infty]$, there is an (explicitly given) coefficient space $\mathscr{C}_{p,q,w} \leq \mathbb{C}^{I \times \mathbb{Z}^d}$ such that the following holds:

Theorem (Voigtlaender; 2016): Let $\Omega = (T_iQ + b_i)_{i \in I}$ and let $w = (w_i)_{i \in I}$ be a suitable weight. For $p, q \in (0, \infty]$, there is an (explicitly given) coefficient space $\mathscr{C}_{p,q,w} \leq \mathbb{C}^{I \times \mathbb{Z}^d}$ such that the following holds: If γ satisfies certain technical conditions, then there is $\delta_0 > 0$ such that

$$\Psi^{(\delta)} = \left(\mathsf{T}_{\delta \cdot \mathcal{T}_{i}^{-\mathsf{T}} k} \gamma^{[i]}\right)_{i \in I, k \in \mathbb{Z}^{d}}$$

is a Banach frame for $\mathcal{D}(\mathcal{Q}, L^p, \ell^q_w)$ for all $0 < \delta \leq \delta_0$.

Theorem (Voigtlaender; 2016): Let $Q = (T_iQ + b_i)_{i \in I}$ and let $w = (w_i)_{i \in I}$ be a suitable weight. For $p, q \in (0, \infty]$, there is an (explicitly given) coefficient space $\mathscr{C}_{p,q,w} \leq \mathbb{C}^{I \times \mathbb{Z}^d}$ such that the following holds: If γ satisfies certain technical conditions, then there is $\delta_0 > 0$ such that

$$\Psi^{(\delta)} = \left(\mathsf{T}_{\delta \cdot \mathcal{T}_{i}^{-T} k} \gamma^{[i]}\right)_{i \in I, k \in \mathbb{Z}^{d}}$$

is a Banach frame for $\mathcal{D}(\Omega, L^p, \ell^q_w)$ for all $0 < \delta \leq \delta_0$. Precisely:

The analysis operator

$$A^{(\delta)}: \mathcal{D}(\mathcal{Q}, L^{p}, \ell^{q}_{w}) \to \mathscr{C}_{p,q,w}, f \mapsto \left[\left(f * \gamma^{[i]} \right) \left(\delta \cdot T_{i}^{-T} k \right) \right]_{i \in I, k \in \mathbb{Z}^{d}}$$

is well-defined and bounded.

Theorem (Voigtlaender; 2016): Let $\Omega = (T_iQ + b_i)_{i \in I}$ and let $w = (w_i)_{i \in I}$ be a suitable weight. For $p, q \in (0, \infty]$, there is an (explicitly given) coefficient space $\mathscr{C}_{p,q,w} \leq \mathbb{C}^{I \times \mathbb{Z}^d}$ such that the following holds: If γ satisfies certain technical conditions, then there is $\delta_0 > 0$ such that

$$\Psi^{(\delta)} = \left(\mathsf{T}_{\delta \cdot \mathcal{T}_{i}^{-T} k} \gamma^{[i]}\right)_{i \in I, k \in \mathbb{Z}^{d}}$$

is a Banach frame for $\mathcal{D}(\Omega, L^p, \ell^q_w)$ for all $0 < \delta \leq \delta_0$. Precisely:

The analysis operator

$$\mathcal{A}^{(\delta)}: \mathcal{D}(\mathcal{Q}, L^{p}, \ell^{q}_{w}) \to \mathscr{C}_{p,q,w}, f \mapsto \left[\left(f * \gamma^{[i]} \right) \left(\delta \cdot T_{i}^{-T} k \right) \right]_{i \in I, k \in \mathbb{Z}^{d}}$$

is well-defined and bounded.

• There is a bounded reconstruction operator

$$\begin{aligned} R^{(\delta)} &: \mathscr{C}_{p,q,w} \to \mathcal{D}\left(\mathfrak{Q}, L^{p}, \ell^{q}_{w}\right) \\ \text{satisfying } R^{(\delta)} &\circ A^{(\delta)} = \mathsf{id}_{\mathcal{D}\left(\mathfrak{Q}, L^{p}, \ell^{q}_{w}\right)}. \end{aligned}$$

Theorem (Voigtlaender; 2016): Let $\Omega = (T_iQ + b_i)_{i \in I}$ and $w = (w_i)_{i \in I}$ as above and $p, q \in (0, \infty]$.

Theorem (Voigtlaender; 2016): Let $\Omega = (T_iQ + b_i)_{i \in I}$ and $w = (w_i)_{i \in I}$ as above and $p, q \in (0, \infty]$.

If γ satisfies certain technical conditions, then there is $\delta_0 > 0$ such that $\Psi^{(\delta)}$ forms an atomic decomposition for $\mathcal{D}(\Omega, L^p, \ell^q_w)$ for all $0 < \delta \leq \delta_0$.

Theorem (Voigtlaender; 2016): Let $\Omega = (T_iQ + b_i)_{i \in I}$ and $w = (w_i)_{i \in I}$ as above and $p, q \in (0, \infty]$.

If γ satisfies certain technical conditions, then there is $\delta_0 > 0$ such that $\Psi^{(\delta)}$ forms an atomic decomposition for $\mathcal{D}(\mathfrak{Q}, L^p, \ell^q_w)$ for all $0 < \delta \leq \delta_0$. Precisely,

• The synthesis operator

$$S^{(\delta)}: \mathscr{C}_{p,qw} \to \mathcal{D}(\mathbb{Q}, L^p, \ell^q_w)$$
$$(c_k^{(i)})_{i \in I, k \in \mathbb{Z}^d} \mapsto \sum_{i \in I} \sum_{k \in \mathbb{Z}^d} c_k^{(i)} \cdot \mathsf{T}_{\delta \cdot \mathsf{T}_i^{-\mathsf{T}} k} \gamma^{[i]}$$

is well-defined and bounded.

Theorem (Voigtlaender; 2016): Let $\Omega = (T_iQ + b_i)_{i \in I}$ and $w = (w_i)_{i \in I}$ as above and $p, q \in (0, \infty]$.

If γ satisfies certain technical conditions, then there is $\delta_0 > 0$ such that $\Psi^{(\delta)}$ forms an atomic decomposition for $\mathcal{D}(\mathfrak{Q}, L^p, \ell^q_w)$ for all $0 < \delta \leq \delta_0$. Precisely,

• The synthesis operator

$$S^{(\delta)}: \mathscr{C}_{p,qw} \to \mathcal{D}(\mathcal{Q}, L^{p}, \ell^{q}_{w})$$
$$(c_{k}^{(i)})_{i \in I, k \in \mathbb{Z}^{d}} \mapsto \sum_{i \in I} \sum_{k \in \mathbb{Z}^{d}} c_{k}^{(i)} \cdot \mathsf{T}_{\delta \cdot \mathsf{T}_{i}^{-\mathsf{T}} k} \gamma^{[i]}$$

is well-defined and bounded.

• There is a bounded coefficient operator

$$C^{(\delta)}: \mathcal{D}(\mathcal{Q}, L^{p}, \ell^{q}_{w}) \to \mathscr{C}_{p,q,w}$$

satisfying $S^{(\delta)} \circ C^{(\delta)} = \operatorname{id}_{\mathcal{D}(\mathcal{Q}, L^{p}, \ell^{q}_{w})}$.

Theorem (Voigtlaender; 2016): Let $\Omega = (T_iQ + b_i)_{i \in I}$ and $w = (w_i)_{i \in I}$ as above and $p, q \in (0, \infty]$.

If γ satisfies certain technical conditions, then there is $\delta_0 > 0$ such that $\Psi^{(\delta)}$ forms an atomic decomposition for $\mathcal{D}(\mathfrak{Q}, L^p, \ell^q_w)$ for all $0 < \delta \leq \delta_0$. Precisely,

• The synthesis operator

$$S^{(\delta)}: \mathscr{C}_{p,qw} \to \mathcal{D}(\mathcal{Q}, L^{p}, \ell^{q}_{w})$$
$$(c_{k}^{(i)})_{i \in I, k \in \mathbb{Z}^{d}} \mapsto \sum_{i \in I} \sum_{k \in \mathbb{Z}^{d}} c_{k}^{(i)} \cdot \mathsf{T}_{\delta \cdot \mathsf{T}_{i}^{-\mathsf{T}} k} \gamma^{[i]}$$

is well-defined and bounded.

• There is a bounded coefficient operator

$$C^{(\delta)}: \mathfrak{D}(\mathfrak{Q}, L^{p}, \ell^{q}_{w}) \to \mathscr{C}_{p,q,w}$$

satisfying $S^{(\delta)} \circ C^{(\delta)} = \operatorname{id}_{\mathfrak{D}(\mathfrak{Q}, L^{p}, \ell^{q}_{w})}$.

Each $f \in \mathcal{D}(\mathcal{Q}, L^p, \ell^q_w)$ has a (more or less) sparse expansion w.r.t $\Psi^{(\delta)}$.

Lemma: If Q is the covering associated to Shearlet smoothness spaces $\mathscr{S}_{s}^{p,q}(\mathbb{R}^{2})$ (introduced by Labate et al.), then $(\gamma^{[i]})_{i\in I}$ is a cone-adapted shearlet system.

Lemma: If Q is the covering associated to Shearlet smoothness spaces $\mathscr{S}_{s}^{p,q}(\mathbb{R}^{2})$ (introduced by Labate et al.), then $(\gamma^{[i]})_{i\in I}$ is a cone-adapted shearlet system.

Lemma: If Q is the covering associated to Shearlet smoothness spaces $\mathscr{S}_{s}^{p,q}(\mathbb{R}^{2})$ (introduced by Labate et al.), then $(\gamma^{[i]})_{i\in I}$ is a cone-adapted shearlet system.

$$\mathscr{S}_{\left(\frac{1}{q}-\frac{1}{2}\right)\frac{3}{2}}^{q,q}(\mathbb{R}^2) = \mathcal{D}\left(\mathcal{Q}, L^q, \ell^q_{u^{(q)}}\right)$$

Lemma: If Q is the covering associated to Shearlet smoothness spaces $\mathscr{S}_{s}^{p,q}(\mathbb{R}^{2})$ (introduced by Labate et al.), then $(\gamma^{[i]})_{i\in I}$ is a cone-adapted shearlet system.

$$\mathcal{S}_{\left(\frac{1}{q}-\frac{1}{2}\right)\frac{3}{2}}^{q,q}(\mathbb{R}^{2}) = \mathcal{D}\left(\mathcal{Q}, L^{q}, \ell_{u^{(q)}}^{q}\right) \\ = \left\{ f \in L^{2}(\mathbb{R}^{2}) \left| \left(\left\langle f, \mathsf{T}_{\delta \cdot \mathcal{T}_{i}^{-T}k} \gamma^{[i]} \right\rangle \right)_{i \in I, k \in \mathbb{Z}^{2}} \in \ell^{q}\left(I \times \mathbb{Z}^{2}\right) \right\}$$

Lemma: If Q is the covering associated to Shearlet smoothness spaces $\mathscr{S}_{s}^{p,q}(\mathbb{R}^{2})$ (introduced by Labate et al.), then $(\gamma^{[i]})_{i\in I}$ is a cone-adapted shearlet system.

$$\begin{aligned} \mathscr{S}_{\left(\frac{1}{q}-\frac{1}{2}\right)\frac{3}{2}}^{q,q}(\mathbb{R}^{2}) &= \mathcal{D}\left(\mathcal{Q}, L^{q}, \ell_{u^{(q)}}^{q}\right) \\ &= \left\{ f \in L^{2}(\mathbb{R}^{2}) \left| \left(\left\langle f, \mathsf{T}_{\delta \cdot \mathcal{T}_{i}^{-\mathcal{T}}_{k}} \gamma^{[i]} \right\rangle \right)_{i \in I, k \in \mathbb{Z}^{2}} \in \ell^{q}\left(I \times \mathbb{Z}^{2}\right) \right\} \\ &= \left\{ \sum_{i \in I} \sum_{k \in \mathbb{Z}^{2}} \left(c_{k}^{(i)} \cdot \mathsf{T}_{\delta \cdot \mathcal{T}_{i}^{-\mathcal{T}}_{k}} \gamma^{[i]} \right) \left| (c_{k}^{(i)})_{i \in I, k \in \mathbb{Z}^{2}} \in \ell^{q}\left(I \times \mathbb{Z}^{2}\right) \right\} \end{aligned}$$

Lemma: If Q is the covering associated to Shearlet smoothness spaces $\mathscr{S}_{s}^{p,q}(\mathbb{R}^{2})$ (introduced by Labate et al.), then $(\gamma^{[i]})_{i\in I}$ is a cone-adapted shearlet system.

Corollary (Voigtlaender; 2016): The shearlet smoothness spaces describe sparsity with respect to shearlet frames: If $0 < q \le 2$ and if γ satisfies certain technical conditions, then

$$\begin{aligned} \mathscr{S}_{\left(\frac{1}{q}-\frac{1}{2}\right)\frac{3}{2}}^{q,q}(\mathbb{R}^{2}) &= \mathcal{D}\left(\mathcal{Q}, L^{q}, \ell_{u^{(q)}}^{q}\right) \\ &= \left\{ f \in L^{2}(\mathbb{R}^{2}) \left| \left(\left\langle f, \mathsf{T}_{\delta \cdot \mathcal{T}_{i}^{-\mathcal{T}}_{k}} \gamma^{[i]} \right\rangle \right)_{i \in I, k \in \mathbb{Z}^{2}} \in \ell^{q}\left(I \times \mathbb{Z}^{2}\right) \right\} \\ &= \left\{ \sum_{i \in I} \sum_{k \in \mathbb{Z}^{2}} \left(c_{k}^{(i)} \cdot \mathsf{T}_{\delta \cdot \mathcal{T}_{i}^{-\mathcal{T}}_{k}} \gamma^{[i]} \right) \left| (c_{k}^{(i)})_{i \in I, k \in \mathbb{Z}^{2}} \in \ell^{q}\left(I \times \mathbb{Z}^{2}\right) \right\} \end{aligned}$$

Corollary (Voigtlaender; 2016): The *N*-term approximation of cartoon-like functions w.r.t. the **primal** shearlet frame satisfies

$$\|f-f_N\|_{L^2} \lesssim_{\varepsilon} N^{-(1-\varepsilon)} \quad \forall N \in \mathbb{N} \quad \forall \varepsilon \in (0,1).$$

Let's conclude!

What to take Home?

- Shearlets are a multiscale system based on the quasi-regular representation of the shearlet group.
- They employ parabolic scaling and shearing and provide optimally sparse approximations for curvilinear features.
- Shearlets have a variety of applications, in particular for the regularization of inverse problems.

- Shearlets are a multiscale system based on the quasi-regular representation of the shearlet group.
- They employ parabolic scaling and shearing and provide optimally sparse approximations for curvilinear features.
- Shearlets have a variety of applications, in particular for the regularization of inverse problems.
- Decomposition spaces are defined using certain tilings of the Fourier domain.
- Wavelet-type coorbit spaces are decomposition spaces.
- Membership in decomposition spaces can be characterized by the sparsity of certain frame coefficients/expansions.

- Shearlets are a multiscale system based on the quasi-regular representation of the shearlet group.
- They employ parabolic scaling and shearing and provide optimally sparse approximations for curvilinear features.
- Shearlets have a variety of applications, in particular for the regularization of inverse problems.
- Decomposition spaces are defined using certain tilings of the Fourier domain.
- Wavelet-type coorbit spaces are decomposition spaces.
- Membership in decomposition spaces can be characterized by the sparsity of certain frame coefficients/expansions.

Final remark: Existence of embeddings between decomposition spaces can be decided by comparing the geometry of the coverings.

Consequence: Sparsity in one system \rightsquigarrow sparsity in another system.

Thank you!

Thank you!

Questions, comments, counterexamples?

Embeddings of decomposition spaces – General question

F. Voigtlaender Shearlets: Theory, Applications, and Generalizations Coherent States Workshop, CIRM 36/34

General assumptions

- $\Omega = (Q_i)_{i \in I} = (T_iQ + b_i)_{i \in I}$ and $\mathcal{P} = (P_j)_{j \in J} = (S_jP + c_j)_{j \in J}$ are coverings of $\mathcal{O}, \mathcal{O}' \subset \mathbb{R}^d$.
- We are given weights $w = (w_i)_{i \in I}$ and $v = (v_j)_{j \in J}$.
- We have $p_1, p_2, q_1, q_2 \in (0, \infty]$.

General assumptions

•
$$\Omega = (Q_i)_{i \in I} = (T_i Q + b_i)_{i \in I}$$
 and $\mathcal{P} = (P_j)_{j \in J} = (S_j P + c_j)_{j \in J}$ are coverings of $\mathcal{O}, \mathcal{O}' \subset \mathbb{R}^d$.

• We are given weights $w = (w_i)_{i \in I}$ and $v = (v_j)_{j \in J}$.

• We have $p_1, p_2, q_1, q_2 \in (0, \infty]$.

When do we have

 $\mathcal{D}(\mathcal{Q}, L^{p_1}, \ell^{q_1}_w) \hookrightarrow \mathcal{D}(\mathcal{P}, L^{p_2}, \ell^{q_2}_v)?$
General assumptions

•
$$\Omega = (Q_i)_{i \in I} = (T_iQ + b_i)_{i \in I}$$
 and $\mathcal{P} = (P_j)_{j \in J} = (S_jP + c_j)_{j \in J}$ are coverings of $\mathcal{O}, \mathcal{O}' \subset \mathbb{R}^d$.

• We are given weights $w = (w_i)_{i \in I}$ and $v = (v_j)_{j \in J}$.

• We have $p_1, p_2, q_1, q_2 \in (0, \infty]$.

When do we have

$$\mathcal{D}(\mathcal{Q}, L^{p_1}, \ell^{q_1}_w) \hookrightarrow \mathcal{D}(\mathcal{P}, L^{p_2}, \ell^{q_2}_v)?$$

Strong additional assumption: Ω is almost subordinate to \mathcal{P} , i.e.,

$$\exists N \in \mathbb{N} \,\forall i \in I \,\exists j_i \in J : \qquad Q_i \subset P_{j_i}^{N*}.$$

Roughly: Q is finer than \mathcal{P} .

F. Voigtlaender Shearlets: Theory, Applications, and Generalizations Coherent States Workshop, CIRM 37/34

For $r \in (0,\infty]$ and $j \in J$, let

$$I_j := \{i \in I \mid Q_i \cap P_j \neq \emptyset\}.$$

For $r \in (0,\infty]$ and $j \in J$, let

$$I_j := \{i \in I \mid Q_i \cap P_j \neq \emptyset\}.$$

and

$$\left\| \left(|\det T_i|^{p_1^{-1} - p_2^{-1}} / w_i \right)_{i \in I_j} \right\|_{\ell^{r} (q_1/r)'}$$

For $r \in (0,\infty]$ and $j \in J$, let

$$I_j := \{i \in I \mid Q_i \cap P_j \neq \emptyset\}.$$

and

$$(\blacklozenge_{\mathbf{r}}) := \left\| \left(v_{j} \cdot \left\| \left(|\det T_{i}|^{p_{1}^{-1} - p_{2}^{-1}} / w_{i} \right)_{i \in I_{j}} \right\|_{\ell^{\mathbf{r}} \cdot (q_{1}/r)'} \right)_{j \in J} \right\|_{\ell^{q_{2} \cdot (q_{1}/q_{2})'}},$$

For $r \in (0,\infty]$ and $j \in J$, let

$$I_j := \{i \in I \mid Q_i \cap P_j \neq \emptyset\}.$$

and

$$(\blacklozenge_{\mathbf{r}}) := \left\| \left(v_{j} \cdot \left\| \left(|\det T_{i}|^{p_{1}^{-1} - p_{2}^{-1}} / w_{i} \right)_{i \in \mathbf{I}_{j}} \right\|_{\ell^{\mathbf{r}}(q_{1}/\mathbf{r})'} \right)_{j \in J} \right\|_{\ell^{q_{2}}(q_{1}/q_{2})'},$$

Theorem (Voigtlaender; 2015)

If $\bullet \ \Omega$ is almost subordinate to \mathcal{P} ,

$$\mathcal{D}(\mathcal{Q}, L^{p_1}, \ell^{q_1}_w) \hookrightarrow \mathcal{D}(\mathcal{P}, L^{p_2}, \ell^{q_2}_v).$$

Necessary criteria

Recall: With

$$(\blacklozenge_{r}) := \left\| \left(v_{j} \cdot \left\| \left(|\det T_{i}|^{p_{1}^{-1} - p_{2}^{-1}} / w_{i} \right)_{i \in I_{j}} \right\|_{\ell^{r} \cdot (q_{1}/r)'} \right)_{j \in J} \right\|_{\ell^{q_{2}} \cdot (q_{1}/q_{2})'},$$

it is sufficient for the embedding if

- Q almost subordinate to \mathcal{P} ,
- $p_1 \leq p_2$,

•
$$(\blacklozenge_{p_2^{\bigtriangledown}}) < \infty$$
, where $p_2^{\bigtriangledown} = \min\{p_2, p_2'\}$.

Necessary criteria

Recall: With

$$(\blacklozenge_{r}) := \left\| \left(v_{j} \cdot \left\| \left(|\det T_{i}|^{p_{1}^{-1} - p_{2}^{-1}} / w_{i} \right)_{i \in I_{j}} \right\|_{\ell^{r} \cdot (q_{1}/r)'} \right)_{j \in J} \right\|_{\ell^{q_{2}} \cdot (q_{1}/q_{2})'},$$

it is sufficient for the embedding if

- Q almost subordinate to \mathcal{P} ,
- $p_1 \leq p_2$,
- $(\blacklozenge_{p_2^{\bigtriangledown}}) < \infty$, where $p_2^{\bigtriangledown} = \min{\{p_2, p_2'\}}$.

Theorem (Voigtlaender; 2015)

Conversely, if ${\mathfrak Q}$ is almost subordinate to ${\mathfrak P}$ and if

$$\mathfrak{F}^{-1}(\mathcal{C}^{\infty}_{c}(\mathfrak{O}))\cap \mathfrak{D}(\mathfrak{Q}, L^{p_{1}}, \ell^{q_{1}}_{w}) \hookrightarrow \mathfrak{D}(\mathfrak{P}, L^{p_{2}}, \ell^{q_{2}}_{v}), g \mapsto g$$

is bounded, then $p_1 \leq p_2$ and $(\blacklozenge_{p_2}) < \infty$.

Necessary criteria

Recall: With

$$(\blacklozenge_{r}) := \left\| \left(v_{j} \cdot \left\| \left(|\det T_{i}|^{p_{1}^{-1} - p_{2}^{-1}} / w_{i} \right)_{i \in I_{j}} \right\|_{\ell^{r} \cdot (q_{1}/r)'} \right)_{j \in J} \right\|_{\ell^{q_{2}} \cdot (q_{1}/q_{2})'},$$

it is sufficient for the embedding if

- Q almost subordinate to \mathcal{P} ,
- $p_1 \leq p_2$,
- $(\blacklozenge_{p_2^{\nabla}}) < \infty$, where $p_2^{\nabla} = \min\{p_2, p_2'\}$.

Theorem (Voigtlaender; 2015)

Conversely, if ${\mathfrak Q}$ is almost subordinate to ${\mathfrak P}$ and if

$$\mathfrak{F}^{-1}(\mathcal{C}^{\infty}_{c}(\mathfrak{O}))\cap \mathfrak{D}(\mathfrak{Q}, L^{p_{1}}, \ell^{q_{1}}_{w}) \hookrightarrow \mathfrak{D}(\mathfrak{P}, L^{p_{2}}, \ell^{q_{2}}_{v}), g \mapsto g$$

is bounded, then $p_1 \leq p_2$ and $(\blacklozenge_{p_2}) < \infty$.

Further assumption: Q and w are relatively \mathcal{P} -moderate, i.e.,

Further assumption: Q and w are relatively \mathcal{P} -moderate, i.e., there are sequences $(m_j)_{j \in J}$ and $(w_i^*)_{j \in J}$ satisfying

$$\begin{aligned} |\mathsf{det} \ \mathcal{T}_i| &\asymp m_j \qquad \text{ if } \ \mathcal{Q}_i \cap \mathcal{P}_j \neq \varnothing, \\ w_i &\asymp w_j^\star \qquad \text{ if } \ \mathcal{Q}_i \cap \mathcal{P}_j \neq \varnothing. \end{aligned}$$

Further assumption: Q and w are relatively \mathcal{P} -moderate, i.e., there are sequences $(m_j)_{j \in J}$ and $(w_i^*)_{j \in J}$ satisfying

$$\begin{array}{ll} \det T_i | \asymp m_j & \quad \text{if } Q_i \cap P_j \neq \varnothing, \\ w_i \asymp w_j^* & \quad \text{if } Q_i \cap P_j \neq \varnothing. \end{array}$$

Roughly: Any two "small sets" Q_i, Q_ℓ intersecting the same "large" set P_j have similar measure and similar weight w_i .

Further assumption: Ω and *w* are relatively \mathcal{P} -moderate, i.e., there are sequences $(m_j)_{j \in J}$ and $(w_j^*)_{j \in J}$ satisfying

$ \det T_i \asymp m_j$	$\text{if } Q_i \cap P_j \neq \varnothing,$
$w_i symp w_j^\star$	if $Q_i \cap P_j \neq \emptyset$.

Roughly: Any two "small sets" Q_i, Q_ℓ intersecting the same "large" set P_j have similar measure and similar weight w_i .

A sample application

Theorem (Voigtlaender; 2015)

We have $\mathscr{S}_{s}^{p_{1},q_{1}}\left(\mathbb{R}^{2}\right) \hookrightarrow \mathfrak{B}_{r}^{p_{2},q_{2}}\left(\mathbb{R}^{2}\right)$ if and only if $p_{1} \leq p_{2}$ and

$$\begin{cases} r < s - \frac{3}{2} \left[\frac{1}{p_1} - \frac{1}{p_2} \right] - \frac{1}{2} \left(\frac{1}{p_2^{\vee}} - \frac{1}{q_1} \right)_+, & \text{if } q_2 < q_1, \\ r \le s - \frac{3}{2} \left[\frac{1}{p_1} - \frac{1}{p_2} \right] - \frac{1}{2} \left(\frac{1}{p_2^{\vee}} - \frac{1}{q_1} \right)_+, & \text{if } q_2 \ge q_1. \end{cases}$$

A sample application

Theorem (Voigtlaender; 2015)

We have $\mathscr{S}_{s}^{p_{1},q_{1}}\left(\mathbb{R}^{2}\right) \hookrightarrow \mathfrak{B}_{r}^{p_{2},q_{2}}\left(\mathbb{R}^{2}\right)$ if and only if $p_{1} \leq p_{2}$ and

$$\begin{cases} r < s - \frac{3}{2} \left[\frac{1}{p_1} - \frac{1}{p_2} \right] - \frac{1}{2} \left(\frac{1}{p_2^{\vee}} - \frac{1}{q_1} \right)_+, & \text{if } q_2 < q_1, \\ r \le s - \frac{3}{2} \left[\frac{1}{p_1} - \frac{1}{p_2} \right] - \frac{1}{2} \left(\frac{1}{p_2^{\vee}} - \frac{1}{q_1} \right)_+, & \text{if } q_2 \ge q_1. \end{cases}$$

We have $\mathfrak{B}_r^{p_1,q_1}(\mathbb{R}^2) \hookrightarrow \mathscr{S}_s^{p_2,q_2}(\mathbb{R}^2)$ if and only $p_1 \leq p_2$ and

$$\begin{cases} s \leq r - \frac{1}{2} \left(\frac{1}{q_2} - \frac{1}{p_1^{\pm \Delta}} \right)_+ - \frac{3}{2} \left[\frac{1}{p_1} - \frac{1}{p_2} \right], & \text{if } q_1 \leq q_2, \\ s < r - \frac{1}{2} \left(\frac{1}{q_2} - \frac{1}{p_1^{\pm \Delta}} \right)_+ - \frac{3}{2} \left[\frac{1}{p_1} - \frac{1}{p_2} \right], & \text{if } q_1 > q_2, \end{cases}$$

with $\frac{1}{p^{\pm \triangle}} = \min\left\{\frac{1}{p}, 1 - \frac{1}{p}\right\}.$