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The quasi-regular representation of Rd oGL
(
Rd
)

The quasi-regular representation

π : Rd oGL(Rd)→ U
(
L2 (Rd)

)
,(x ,h) 7→TxDh

with
(Tx f )(y) = f (y −x) and Dhf = |deth|−1/2 · f ◦h−1

is a unitary representation.

Duflo-Moore: Instead of GL
(
Rd
)
, consider H ≤ GL

(
Rd
)
closed, called

dilation group. We get a system of coherent states (π (x ,h)ψ)(x ,h)∈G for
G := Rd oH if π|G is irreducible and square-integrable.

Theorem (Führ)
π|G is irreducible and square-integrable if and only if

1 There is ξ0 ∈ Rd such that the dual orbit O := HTξ0 ⊂ Rd is open
and of full measure.

2 The isotropy group Hξ0 :=
{
h ∈ H

∣∣hTξ0 = ξ0
}
≤ H is compact.
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Wavelets
Definition: Let ψ ∈ L2 (R) be a wavelet, i.e.,

∫
R |ψ̂ (ω)|2 dω

|ω| < ∞. The
associated homogeneous continuous wavelet system is(

|a|−1/2 ·ψ
(
a−1 (•−b)

))
a∈R∗,b∈R

= (π (b,a)ψ)(b,a)∈RoR∗ .

Definition: Let φ ,ψ ∈ L2 (R) be a scaling function and a wavelet. Then
the inhomogeneous discrete wavelet system generated by φ ,ψ is(

φ (•−m)
)
m∈Z
∪
(
2j/2 ·ψ

(
2j •−m

))
j∈N0,m∈Z

.

Definition: Let φ ,ψ as above. A 2D inhomogeneous discrete wavelet
system is defined by(

φ
(1) (•−m)

)
m∈Z2

∪
(
2j ·ψ(`)

(
2j •−m

))
j∈N0,m∈Z2,`∈{1,2,3}

where

φ
(1) := φ ⊗φ , ψ

(1) := φ ⊗ψ, ψ
(2) := ψ⊗φ , ψ

(3) := ψ⊗ψ.
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Approximation properties of Wavelets

For good compression of a signal f , it would be desirable that f can be well
approximated using only a few wavelets:

Theorem: Discrete wavelets provide optimal approximation rates for those
f ∈ L2 (R2) which are C 2 apart from point singularities:

‖f − fN‖L2 . N−1/2 (N → ∞) .
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Living on the point

 

Natural images are governed by curved singularities, not point singularities!

Definition (Donoho; 2001)

With Q := (0,1)2, the set of cartoon-like functions is defined as

E2 (R2) =
{
f0 + f1 ·1B

∣∣∂B ⊂ Q closed C 2 curve and f0, f1 ∈ C 2
c (Q)

}
.

F. Voigtlaender Shearlets: Theory, Applications, and Generalizations Coherent States Workshop, CIRM 6/34



Living on the point edge

 

Natural images are governed by curved singularities, not point singularities!

Definition (Donoho; 2001)

With Q := (0,1)2, the set of cartoon-like functions is defined as

E2 (R2) =
{
f0 + f1 ·1B

∣∣∂B ⊂ Q closed C 2 curve and f0, f1 ∈ C 2
c (Q)

}
.

F. Voigtlaender Shearlets: Theory, Applications, and Generalizations Coherent States Workshop, CIRM 6/34



Living on the point edge

 

Natural images are governed by curved singularities, not point singularities!

Definition (Donoho; 2001)

With Q := (0,1)2, the set of cartoon-like functions is defined as

E2 (R2) =
{
f0 + f1 ·1B

∣∣∂B ⊂ Q closed C 2 curve and f0, f1 ∈ C 2
c (Q)

}
.

F. Voigtlaender Shearlets: Theory, Applications, and Generalizations Coherent States Workshop, CIRM 6/34



Approximation of cartoon-like functions

Theorem: For f ∈ E2 (R2), the best N-term approximation fN

using Fourier basis: ‖f − fN‖L2 . N−1/4,

using Wavelets: ‖f − fN‖L2 . N−1/2.

Theorem (Donoho; 2001): Let (ψn)n∈N be any countable family in
L2 (R2). If

‖f − fN‖L2 . N−θ ∀N ∈ N ∀f ∈ E2 (R2) ,

then θ ≤ 1. Here, we assume polynomial depth search for forming fN .

Hence, Wavelets cannot approximate curvilinear singularities optimally.

Intuitive explanation: This is caused by the scalar dilations:
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Design Goals for a new representation system

Design a representation system Ψ = (ψλ )
λ
⊂ L2 (R2) such that:

Ψ is a frame:
f ∈ L2 7→ (〈f ,ψλ 〉)λ

∈ `2 7→∑
λ

〈f ,ψλ 〉 ψ̃λ = f .

Ψ is an affine system, motivated by coherent states.
Ψ is a multiscale representation system, with an associated tiling of
the Fourier domain.
It should be possibly to choose a compactly supported generator for Ψ.
Ψ should provide optimally sparse approximations of cartoons.
Fast algorithms which treat the analog and digital world uniformly.

Non-exhaustive list of approaches:
Ridgelets (Candès and Donoho; 1999)
Curvelets (Candès and Donoho; 2002)
Contourlets (Do and Vetterli; 2002)
Bandlets (LePennec and Mallat; 2003)
Shearlets (Kutyniok and Labate; 2006)
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Continuous shearlet systems

Instead of the dilation group H = R∗ ·SO
(
Rd
)
leading to wavelets, we

consider the dilation group

H =

{
ε ·
(
a 0
0 a1/2

)
︸ ︷︷ ︸

=:Aa

(
1 s
0 1

)
︸ ︷︷ ︸

=:Ss

∣∣∣∣ε ∈ {±1} , a ∈ (0,∞) , s ∈ R
}
.

For admissible ψ ∈ L2 (R2), the associated continuous shearlet system is
(π (x ,h)ψ)x∈R2,h∈H .

Main properties:
Parabolic scaling
Different orientations via shearing.

Advantages of shearing:
The shearing matrices

(
1 k
0 1
)
leave the digital grid Z2 invariant.

Uniform theory for the analog and digital situation.
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Discretization of continuous shearlet systems

The set {
(SkA2j )

−1 =

[(
1 k
0 1

)(
2j 0
0 2j/2

)]−1

: j ,k ∈ Z

}

is well-spread in the shearlet group H.

Hence, coorbit theory (Feichtinger & Gröchenig) motivates the following
definition:
Definition (Kutyniok, Labate; 2006): For ψ ∈ L2 (R2), the associated
discrete shearlet system is(

2
3
4 j ·ψ (SkA2j •−m)

)
j ,k∈Z,m∈Z2

=

(
D

(SkA2j )
−1Tmψ

)
j ,k∈Z,m∈Z2

.
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The induced frequency tiling

Very different treatment of x-direction and y -direction!

Solution: Use cone-adapted shearlets:
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Cone-adapted Discrete Shearlet Systems

Definition (Kutyniok, Labate; 2006):
The cone-adapted discrete shearlet system SH (φ ,ψ, ψ̃;c) with sampling
density c > 0 generated by φ ,ψ, ψ̃ ∈ L2 (R2) is the union of{

φ (•− c ·m)
∣∣m ∈ Z2} ,{

ψj ,k,m,h := ψ (SkA2j •−c ·m)
∣∣ j ∈ N0, |k | ≤ d2j/2e ,m ∈ Z2} ,{

ψj ,k,m,v := ψ̃

(
ST
k Ã2j •−c ·m

)∣∣∣ j ∈ N0, |k | ≤ d2j/2e ,m ∈ Z2
}
,

where

Sk =

(
1 k
0 1

)
, A2j =

(
2j 0
0 2j/2

)
, Ã2j =

(
2j/2 0
0 2j

)
.
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Conclusion of first part

We have seen:
Wavelets are not optimal for approximation of functions with curvilinear
singularities.

Shearlets are an alternative multiscale system which uses
I parabolic dilations
I shearings

instead of scalar dilations.

Recall: Design goals for shearlet system Ψ:

Ψ is an affine system, motivated by coherent states. X
Ψ is a multiscale representation system, with an associated tiling of the
Fourier domain. X

Fast algorithms treating the analog and digital world uniformly. (X)
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Compactly supported shearlets

Theorem (Kittipoom, Kutyniok, Lim; 2012):
Let φ ,ψ, ψ̃ ∈ L2 (R2) be compactly supported and assume that

ψ̂, ̂̃ψ satisfy certain decay conditions,
we have

|φ̂ (ξ )|2 +∑
j ,k

|ψ̂j ,k (ξ )|2 + |̂̃ψj ,k (ξ )|2 ≥ C > 0 a.e. (†)

Then there is some c > 0 such that SH (φ ,ψ, ψ̃;c) is a frame for L2 (R2).
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j ,k

|ψ̂j ,k (ξ )|2 + |̂̃ψj ,k (ξ )|2 ≥ C > 0 a.e. (†)

Then there is some c > 0 such that SH (φ ,ψ, ψ̃;c) is a frame for L2 (R2).
Remarks

For (†), it suffices to have ψ̃ ((ξ1,ξ2)) = ψ ((ξ2,ξ1)) as well as∣∣∣φ̂ (ξ )
∣∣∣& 1 for ξ ∈ [−1,1]2 ,

|ψ̂ (ξ )|& 1 for ξ1 ∈ [1/3, 3] and |ξ2| ≤ |ξ1| ,

There are special examples with frame bounds B/A≈ 4.
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Optimal Sparse Approximation of Cartoon-like functions

Theorem (Kutyniok, Lim; 2011):
Let φ ,ψ, ψ̃ ∈ L2 (R2) be compactly supported and such that
SH (φ ,ψ, ψ̃;c) is a frame for L2 (R2). Further, assume that ψ̂, ̂̃ψ satisfy
certain decay conditions. Then SH (φ ,ψ, ψ̃;c) provides an optimally sparse
approximation of all f ∈ E2 (R2), i.e.,

‖f − fN‖L2 . N−1 · (logN)3/2 ∀N ∈ N ∀f ∈ E2 (R2) .

Here, fN is a linear combination of (at most) N elements of the dual frame
of SH (φ ,ψ, ψ̃;c).

Remark
The proof shows

∑
n>N

|θ (f )|2n . N−2 · (logN)3 ∀N ∈ N ∀f ∈ E2 (R2) ,

where |θ (f )|n denotes the n-th largest shearlet coefficient. Hence, the
shearlet coefficients are in `p for all p > 2

3 .
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Let’s look at

Applications
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Feature separation in Images

Problem from Neurobiology: Alzheimer Research

Detection of characteristics of Alzheimer

Separation of spines (point-like) and dendrites (curvilinear)

(Confocal-Laser Scanning-Microscopy)
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Numerical results of feature separation

+

(Source: Brandt, Kutyniok, Lim, Sündermann; 2010)
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Separation using Sparsity

General approach:
Let x0 = x0

1 + x0
2 be a signal.

Let Φ1,Φ2 be frames such that x0
i = Φic

0
i with c0

i sparse, i = 1,2.
This yields

x0 =
[

Φ1 Φ2
][c0

1
c0
2

]
.

x0
1 ,x

0
2 ,c

0
1 ,c

0
2 exist, but are unknown!

Idea for determining c0
1 ,c

0
2 and hence x0

1 ,x
0
2 : `

1 minimization (Elad,
Starck, Querre, Donoho; 2005):

(ĉ1, ĉ2) = argmin ‖c1‖`1 +‖c2‖`1 subject to x0 = Φ1c1 + Φ2c2.

Theorems (Donoho, Kutyniok; 2013), (Kutyniok; 2014):
Wavelets: Optimally sparse approximations of points.
Shearlets: Optimally sparse approximations of curves.

 Provable asymptotic separation of points and curves!
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Inpainting using Shearlets

(Source: Lim; 2014)
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MRI reconstruction

SENSE TV Shearlets
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MRI reconstruction

SENSE TV Shearlets
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What are Decomposition spaces?

Given
a suitable (frequency space!) covering Q = (Qi )i∈I of O⊂ Rd ,
a suitable partition of unity Φ = (ϕi )i∈I subordinate to Q,
a suitable weight w = (wi )i∈I ,

we define the associated decomposition space as

D(Q,Lp, `qw ) :=
{
g ∈ ???

∣∣∣(∥∥F−1 (ϕi · ĝ )
∥∥
Lp

)
i∈I ∈ `qw (I )

}
.

Note: `
q
w (I ) =

{
(ci )i∈I ∈ CI

∣∣∣(wi ·ci )i∈I ∈ `q (I )
}
.

In most (but not all cases) where O = Rd , we can use S′
(
Rd
)
as the

reservoir, i.e.,

D(Q,Lp, `qw ) =
{
g ∈ S′ (Rd)

∣∣∣(∥∥F−1 (ϕi · ĝ )
∥∥
Lp

)
i∈I ∈ `qw (I )

}
.
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∥∥
Lp

)
i∈I ∈ `qw (I )

}
.

F. Voigtlaender Shearlets: Theory, Applications, and Generalizations Coherent States Workshop, CIRM 24/34



What are Decomposition spaces?

Given
a suitable (frequency space!) covering Q = (Qi )i∈I of O⊂ Rd ,
a suitable partition of unity Φ = (ϕi )i∈I subordinate to Q,

a suitable weight w = (wi )i∈I ,
we define the associated decomposition space as

D(Q,Lp, `qw ) :=
{
g ∈ ???

∣∣∣(∥∥F−1 (ϕi · ĝ )
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∥∥
Lp

)
i∈I ∈ `qw (I )

}
.

F. Voigtlaender Shearlets: Theory, Applications, and Generalizations Coherent States Workshop, CIRM 24/34



What are Decomposition spaces?

Given
a suitable (frequency space!) covering Q = (Qi )i∈I of O⊂ Rd ,
a suitable partition of unity Φ = (ϕi )i∈I subordinate to Q,
a suitable weight w = (wi )i∈I ,

we define the associated decomposition space as

D(Q,Lp, `qw ) :=
{
g ∈ ???

∣∣∣(∥∥F−1 (ϕi · ĝ )
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Why are decomposition spaces useful?
Many important smoothness spaces are decomposition spaces:

Besov spaces (homogeneous and inhomogeneous),
(α)-modulation spaces,
Shearlet smoothness spaces,
All wavelet-type coorbit spaces.

Theorem (Führ, Voigtlaender; 2015): Let H ≤ GL
(
Rd
)
such that

[π (x ,h) f ] (y) = |deth|−1/2 · f
(
h−1 (y −x)

)
for f ∈ L2 (Rd)

defines an irreducible and square-integrable representation of Rd oH.
Then, for a suitable weight w = wm,q,

Co(Lp,qm (Rd oH))∼= D(QH ,L
p, `qw )

with the induced covering
QH := (h−Ti Q)i∈I

of the open dual orbit O := HTξ0.

 We can study coorbit spaces using decomposition space theory.
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Examples of coverings I: Besov spaces
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Examples of coverings II: Shearlet coorbit spaces
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Examples of coverings III: Shearlet smoothness spaces
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Examples of coverings III: Shearlet smoothness spaces

20

20

21

21

22

22

23

23

F. Voigtlaender Shearlets: Theory, Applications, and Generalizations Coherent States Workshop, CIRM 28/34



Structured Banach frames for decomposition spaces I

Assume that Q = (Qi )i∈I is a structured admissible covering, i.e.,

Qi = TiQ +bi for Q ⊂ Rd fixed, Ti ∈ GL
(
Rd
)
and bi ∈ Rd ,

some additional technical assumptions.

Idea: For fixed prototype γ ∈ L1 (Rd
)
, consider the structured family

Ψ(δ) :=
(
T

δ ·T−Ti k γ
[i ]
)
i∈I ,k∈Zd

with γ
[i ] := |detTi |1/2 ·Mbi [γ ◦TT

i ] .

Note:
γ̂ [i ] = |detTi |−1/2 ·Tbi

[
γ̂ ◦T−1

i

]
.

In particular, if γ̂ is essentially supported in Q, then γ̂ [i ] is
essentially supported in Qi .
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Structured Banach frames for decomposition spaces II

Theorem (Voigtlaender; 2016): Let Q = (TiQ +bi )i∈I and let
w = (wi )i∈I be a suitable weight. For p,q ∈ (0,∞], there is an (explicitly
given) coefficient space Cp,q,w ≤ CI×Zd

such that the following holds:

If γ satisfies certain technical conditions, then there is δ0 > 0 such that

Ψ(δ) =
(
T

δ ·T−Ti k γ
[i ]
)
i∈I ,k∈Zd

is a Banach frame for D
(
Q,Lp, `qw

)
for all 0< δ ≤ δ0.

Precisely:
The analysis operator

A(δ) : D(Q,Lp, `qw )→ Cp,q,w , f 7→
[(

f ∗ γ
[i ]
)(

δ ·T−Ti k
)]

i∈I ,k∈Zd

is well-defined and bounded.

There is a bounded reconstruction operator
R(δ) : Cp,q,w →D(Q,Lp, `qw )

satisfying R(δ) ◦A(δ) = idD(Q,Lp ,`qw).
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Structured Banach frames for decomposition spaces III

Theorem (Voigtlaender; 2016): Let Q = (TiQ +bi )i∈I and w = (wi )i∈I
as above and p,q ∈ (0,∞].

If γ satisfies certain technical conditions, then there is δ0 > 0 such that
Ψ(δ) forms an atomic decomposition for D

(
Q,Lp, `qw

)
for all 0< δ ≤ δ0.

Precisely,
The synthesis operator

S (δ) : Cp,qw →D(Q,Lp, `qw )

(c
(i)
k )i∈I ,k∈Zd 7→∑

i∈I
∑

k∈Zd

c
(i)
k ·Tδ ·T−Ti k γ

[i ]

is well-defined and bounded.

There is a bounded coefficient operator

C (δ) : D(Q,Lp, `qw )→ Cp,q,w

satisfying S (δ) ◦C (δ) = idD(Q,Lp ,`qw).

Each f ∈D
(
Q,Lp, `qw

)
has a (more or less) sparse expansion w.r.t Ψ(δ).
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Structured Banach frames & Shearlets

Lemma: If Q is the covering associated to Shearlet smoothness spaces
S p,q

s

(
R2) (introduced by Labate et al.), then

(
γ [i ]
)
i∈I is a cone-adapted

shearlet system.

Corollary (Voigtlaender; 2016): The shearlet smoothness spaces
describe sparsity with respect to shearlet frames: If 0< q ≤ 2 and if γ

satisfies certain technical conditions, then

S q,q

( 1
q−

1
2) 3

2
(R2) = D

(
Q,Lq, `q

u(q)

)
=

{
f ∈ L2 (R2)

∣∣∣∣(〈f ,Tδ ·T−Ti kγ
[i ]
〉)

i∈I ,k∈Z2
∈ `q

(
I ×Z2)}

=

{
∑
i∈I

∑
k∈Z2

(
c
(i)
k ·Tδ ·T−Ti kγ

[i ]
)∣∣∣∣∣(c(i)k )i∈I ,k∈Z2 ∈ `q

(
I ×Z2)} .

Corollary (Voigtlaender; 2016): The N-term approximation of
cartoon-like functions w.r.t. the primal shearlet frame satisfies

‖f − fN‖L2 .ε N−(1−ε) ∀N ∈ N ∀ε ∈ (0,1) .
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Let’s conclude!



What to take Home?

Shearlets are a multiscale system based on the quasi-regular
representation of the shearlet group.
They employ parabolic scaling and shearing and provide optimally sparse
approximations for curvilinear features.
Shearlets have a variety of applications, in particular for the
regularization of inverse problems.

Decomposition spaces are defined using certain tilings of the Fourier
domain.
Wavelet-type coorbit spaces are decomposition spaces.
Membership in decomposition spaces can be characterized by the sparsity
of certain frame coefficients/expansions.

Final remark: Existence of embeddings between decomposition spaces can
be decided by comparing the geometry of the coverings.
Consequence: Sparsity in one system  sparsity in another system.
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Embeddings of decomposition spaces – General question

General assumptions
Q = (Qi )i∈I = (TiQ +bi )i∈I and P = (Pj)j∈J = (SjP + cj)j∈J are
coverings of O,O′ ⊂ Rd .
We are given weights w = (wi )i∈I and v = (vj)j∈J .
We have p1,p2,q1,q2 ∈ (0,∞].

When do we have
D(Q,Lp1 , `q1

w ) ↪→D(P,Lp2 , `q2
v )?

Strong additional assumption: Q is almost subordinate to P, i.e.,

∃N ∈ N∀i ∈ I ∃ji ∈ J : Qi ⊂ PN∗
ji

.

Roughly: Q is finer than P.
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A sufficient criterion

For r ∈ (0,∞] and j ∈ J, let

Ij := {i ∈ I |Qi ∩Pj 6= ∅} .
and

(�r ) :=

∥∥∥∥∥
(
vj ·
∥∥∥∥(|detTi |p

−1
1 −p

−1
2 /wi

)
i∈Ij

∥∥∥∥
`r ·(q1/r)

′

)
j∈J

∥∥∥∥∥
`q2 ·(q1/q2)

′
,

Theorem (Voigtlaender; 2015)
If Q is almost subordinate to P,

p1 ≤ p2,

(�pO2 ) < ∞, for pO2 := min{p2,p
′
2}

then
D(Q,Lp1 , `q1

w ) ↪→D(P,Lp2 , `q2
v ).

F. Voigtlaender Shearlets: Theory, Applications, and Generalizations Coherent States Workshop, CIRM 37/34



A sufficient criterion

For r ∈ (0,∞] and j ∈ J, let

Ij := {i ∈ I |Qi ∩Pj 6= ∅} .

and

(�r ) :=

∥∥∥∥∥
(
vj ·
∥∥∥∥(|detTi |p

−1
1 −p

−1
2 /wi

)
i∈Ij

∥∥∥∥
`r ·(q1/r)

′

)
j∈J

∥∥∥∥∥
`q2 ·(q1/q2)

′
,

Theorem (Voigtlaender; 2015)
If Q is almost subordinate to P,

p1 ≤ p2,

(�pO2 ) < ∞, for pO2 := min{p2,p
′
2}

then
D(Q,Lp1 , `q1

w ) ↪→D(P,Lp2 , `q2
v ).

F. Voigtlaender Shearlets: Theory, Applications, and Generalizations Coherent States Workshop, CIRM 37/34



A sufficient criterion

For r ∈ (0,∞] and j ∈ J, let

Ij := {i ∈ I |Qi ∩Pj 6= ∅} .
and ∥∥∥∥(|detTi |p

−1
1 −p

−1
2 /wi

)
i∈Ij

∥∥∥∥
`r ·(q1/r)

′

(�r ) :=

∥∥∥∥∥
(
vj ·
∥∥∥∥(|detTi |p

−1
1 −p

−1
2 /wi

)
i∈Ij

∥∥∥∥
`r ·(q1/r)

′

)
j∈J

∥∥∥∥∥
`q2 ·(q1/q2)

′
,

Theorem (Voigtlaender; 2015)
If Q is almost subordinate to P,

p1 ≤ p2,

(�pO2 ) < ∞, for pO2 := min{p2,p
′
2}

then
D(Q,Lp1 , `q1

w ) ↪→D(P,Lp2 , `q2
v ).

F. Voigtlaender Shearlets: Theory, Applications, and Generalizations Coherent States Workshop, CIRM 37/34



A sufficient criterion

For r ∈ (0,∞] and j ∈ J, let

Ij := {i ∈ I |Qi ∩Pj 6= ∅} .
and

(�r ) :=

∥∥∥∥∥
(
vj ·
∥∥∥∥(|detTi |p

−1
1 −p

−1
2 /wi

)
i∈Ij

∥∥∥∥
`r ·(q1/r)

′

)
j∈J

∥∥∥∥∥
`q2 ·(q1/q2)

′
,

Theorem (Voigtlaender; 2015)
If Q is almost subordinate to P,

p1 ≤ p2,

(�pO2 ) < ∞, for pO2 := min{p2,p
′
2}

then
D(Q,Lp1 , `q1

w ) ↪→D(P,Lp2 , `q2
v ).

F. Voigtlaender Shearlets: Theory, Applications, and Generalizations Coherent States Workshop, CIRM 37/34



A sufficient criterion

For r ∈ (0,∞] and j ∈ J, let

Ij := {i ∈ I |Qi ∩Pj 6= ∅} .
and

(�r ) :=

∥∥∥∥∥
(
vj ·
∥∥∥∥(|detTi |p

−1
1 −p

−1
2 /wi

)
i∈Ij

∥∥∥∥
`r ·(q1/r)

′

)
j∈J

∥∥∥∥∥
`q2 ·(q1/q2)

′
,

Theorem (Voigtlaender; 2015)
If Q is almost subordinate to P,

p1 ≤ p2,

(�pO2 ) < ∞, for pO2 := min{p2,p
′
2}

then
D(Q,Lp1 , `q1

w ) ↪→D(P,Lp2 , `q2
v ).

F. Voigtlaender Shearlets: Theory, Applications, and Generalizations Coherent States Workshop, CIRM 37/34



Necessary criteria

Recall: With

(�r ) :=

∥∥∥∥∥
(
vj ·
∥∥∥∥(|detTi |p

−1
1 −p

−1
2 /wi

)
i∈Ij

∥∥∥∥
`r ·(q1/r)

′

)
j∈J

∥∥∥∥∥
`q2 ·(q1/q2)

′
,

it is sufficient for the embedding if
Q almost subordinate to P,
p1 ≤ p2,
(�pO2 ) < ∞, where pO2 = min{p2,p

′
2}.

Theorem (Voigtlaender; 2015)
Conversely, if Q is almost subordinate to P and if

F−1 (C∞
c (O))∩D(Q,Lp1 , `q1

w ) ↪→D(P,Lp2 , `q2
v ),g 7→ g

is bounded, then p1 ≤ p2 and .
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Improvements under additional assumptions

Further assumption: Q and w are relatively P-moderate, i.e.,

there are
sequences (mj)j∈J and (w?

j )j∈J satisfying

|detTi | �mj if Qi ∩Pj 6= ∅,

wi � w?
j if Qi ∩Pj 6= ∅.

Roughly: Any two “small sets” Qi ,Q` intersecting the same “large” set Pj

have similar measure and similar weight wi .

Theorem (Voigtlaender; 2015)
If O = O′ and if

Q is almost subordinate to P,
Q and w are relatively P-moderate,

then

D(Q,Lp1 , `q1
w ) ↪→D(P,Lp2 , `q2

v ) ⇐⇒ p1 ≤ p2 and
(
�pO2

)
< ∞.
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A sample application

Theorem (Voigtlaender; 2015)

We have S p1,q1
s

(
R2) ↪→B

p2,q2
r

(
R2) if and only if p1 ≤ p2 andr < s− 3

2

[
1
p1
− 1

p2

]
− 1

2

(
1
pO2
− 1

q1

)
+
, if q2 < q1,

r ≤ s− 3
2

[
1
p1
− 1

p2

]
− 1

2

(
1
pO2
− 1

q1

)
+
, if q2 ≥ q1.

We have B
p1,q1
r

(
R2) ↪→S p2,q2

s

(
R2) if and only p1 ≤ p2 and

s ≤ r − 1
2

(
1
q2
− 1

p±41

)
+

− 3
2

[
1
p1
− 1

p2

]
, if q1 ≤ q2,

s < r − 1
2

(
1
q2
− 1

p±41

)
+

− 3
2

[
1
p1
− 1

p2

]
, if q1 > q2,

with 1
p±4

= min
{

1
p ,1−

1
p

}
.
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