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Quaternions

The quaternion field is

H = {q = q
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+ q
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i+ q
2

j + q
3

k | q
0

, q
1

, q
2

, q
3

2 R}

where i, j, k are imaginary units such that
i2 = j2 = k2 = �1, ij = �ji = k, jk = �kj = i and
ki = �ik = j.
The quaternionic conjugate of q is

q = q
0

� q
1

i� q
2

j � q
3

k.

The quaternion norm is

|q| = (qq)1/2 =
q
q2
0

+ q2
1

+ q2
2

+ q2
3

.

Also |pq| = |p||q|. for p, q 2 H
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Quaternions

Quaternions by 2⇥ 2 complex matrices:

q = q0�0 + iq · �, (1)

with q0 2 R, q = (q1, q2, q3) 2 R3, �0 = I2, the 2⇥ 2 identity
matrix, and � = (�1,��2, �3), where the �`, ` = 1, 2, 3 are the
usual Pauli matrices. The quaternionic imaginary units are
identified as, i =

p
�1�1, j = �

p
�1�2, k =

p
�1�3. Thus,

q =

✓
q0 + iq3 �q2 + iq1
q2 + iq1 q0 � iq3

◆
(2)

and q = q† (matrix adjoint) .
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Quaternions

Introducing the polar coordinates:

q0 = r cos ✓,

q1 = r sin ✓ sin� cos ,

q2 = r sin ✓ sin� sin ,

q3 = r sin ✓ cos�,

where (r,�, ✓, ) 2 [0,1)⇥ [0,⇡]⇥ [0, 2⇡)2, we may write

q = A(r)ei✓�(bn), (3)

where
A(r) = r�0 (4)
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Quaternions

and
�(bn) =

✓
cos� sin�ei 

sin�e�i � cos�

◆
. (5)

The matrices A(r) and �(bn) satisfy the conditions,

A(r) = A(r)†, �(bn)2 = �0, �(bn)† = �(bn) (6)

and [A(r),�(bn)] = 0.
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Quaternion

Let

S = {I = x1i+ x2j + x3k | x1, x2, x3 2 R, x21 + x22 + x23 = 1},

we call it a quaternion sphere.

Proposition
a For any non-real quaternion q 2 Hr R, there exist, and are unique,
x, y 2 R with y > 0, and Iq 2 S such that q = x+ Iqy.

aGentili, G.,Struppa, D.C., A new theory of regular functions of a
quaternionic variable, Adv. Math. 216 (2007), 279-301.
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Quaternion Slice

For every quaternion I 2 S, the complex line LI = R+ IR passing
through the origin, and containing 1 and I, is called a quaternion slice.
It can be seen that

H =

[

I2S
LI and

\

I2S
LI = R (7)

Further,
1 LI ⇢ H is commutative.
2 Elements from two different quaternion slices, LI and LJ (for

I, J 2 S with I 6= J), do not necessarily commute.
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Right quaternionic Hilbert space

Definition
Let V R

H be a linear vector space under right multiplication by
quaternionic scalars. For f, g, h 2 V R

H and q 2 H, the inner product

h· | ·i : V R
H ⇥ V R

H �! H

satisfies the following properties
(i) hf | gi = hg | fi
(ii) kfk2 = hf | fi > 0 unless f = 0, a real norm
(iii) hf | g + hi = hf | gi+ hf | hi
(iv) hf | gqi = hf | giq
(v) hfq | gi = qhf | gi

where q stands for the quaternionic conjugate.
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Right quaternionic Hilbert spaces

We assume that the space V R
H

1 is complete under the norm given above.
2 together with h· | ·i this defines a right quaternionic Hilbert space.
3 we shall assume it to be separable.

Quaternionic Hilbert spaces share most of the standard properties of
complex Hilbert spaces. In particular, the Cauchy-Schwartz inequality
holds on quaternionic Hilbert spaces as well as the Riesz
representation theorem for their duals. Thus, the Dirac bra-ket notation
can be adapted to quaternionic Hilbert spaces:

| fqi =| fiq, hfq |= qhf | ,

for a right quaternionic Hilbert space, with |fi denoting the vector f
and hf | its dual vector, see for more detail 2 .

2Thirulogasanthar, K., Twareque Ali, S., J. Math. Phys., 54 (2013), 013506.
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Right quaternionic Hilbert spaces

The field of quaternions H itself can be turned into a right quaternionic
Hilbert space with

hq | q0i = q†q0 = qq0.

Further note that, due to the non-commutativity of quaternions the sumP1
m=0 p

mqm/m! cannot be written as exp(pq). However, in any Hilbert
space the norm convergence implies the convergence of the series
and

1X

m=0

|pmqm/m!| = e|p||q|.
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Right quaternionic square integrable functions

Let (X,µ) be a measure space and H the field of quaternions, then
⇢
f : X ! H

����
Z

X
|f(x)|2dµ(x) < 1

�

is a right quaternionic Hilbert space which is denoted by L2
H(X,µ), with

the (right) scalar product

hf | gi =
Z

X
f(x)g(x)dµ(x), (8)

where f(x) is the quaternionic conjugate of f(x), and (right) scalar
multiplication fa, a 2 H, with (fa)(q) = f(q)a 3

3Viswanath, K., Normal operators on quaternionic Hilbert spaces, Trans. Am.
Math. Soc. 162 (1971), 337ı̈¿ 1

2350.
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CS on V R
H

Let {| fmi}1m=0 be an orthonormal basis of V R
H . For q 2 H, the

coherent states are defined as vectors in V R
H in the form

| qi = N(| q |)�
1
2

1X

m=0

| fmi qmp
⇢(m)

, (9)

where N(| q |) is the normalization factor and {⇢(m)}1m=0 is a positive
sequence of real numbers. 4

4Thirulogasanthar, K., Honnouvo, G., Krzyzak, A., Coherent states and Hermite
polynomials on Quaternionic Hilbert spaces, J. Phys.A: Math. Theor. 43 (2010),
385205.
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CS on V R
H

The resolution of the identity is,
Z

D

| qihq | d&(r, ✓,�, ) = IV R
H
, (10)

where IV R
H

is the identity operator on V R
H .

Particularly, if ⇢(m) = m!, then the normalization factor
N(| q |) = e|q|

2. The resolution of the identity is obtained with
d&(r, ✓,�, ) =

r

2⇡
e�r2 sin�drd✓d�d .

When ⇢(m) = m!, the (CS) defined by (9) are called right
quaternionic canonical coherent states. For the purpose of
quantizing the quaternions we shall use these canonical set of
CS.
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Quantization of quaternions

Since (H, d&(r, ✓,�, )) is a measure space, the set
⇢
f : H ! H |

Z

H
|f(q)|2d&(r, ✓,�, ) < 1

�

is the space of right quaternionic square integrable functions and is
denoted by L2

H(H, d&(r, ✓,�, )). 5

5Muraleetharan. B., Thirulogasanthar,coherent state quantization of quaternions, J.
Math. Phys., 56 (2015), 083510.

K. T. Santhar, B. Muralee (CIRM) CS quantization November 13-18, 2016 15 / 90



Quantization of quaternions

Define the sequence of functions {�n}1n=0 such that

�n : H �! H

by

�n(q) =
qnp
n!
, for all q 2 H. (11)

Then �n 2 L2
H(H, d&(r, ✓,�, )), for all n = 0, 1, 2 · · · and

h�m | �ni = �mn . That is,

O = {�n | n = 0, 1, 2 · · · }

is an orthonormal set in L2
H(H, d&(r, ✓,�, )). The right quaternionic

span of O is the space of anti-right-regular functions 6 (the counter part
of complex anti-holomorphic functions).

6Thirulogasanthar, K., Twareque Ali, S., J. Math. Phys., 54 (2013), 013506.
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Quantization of quaternions

Let H be a separable right quaternionic Hilbert space with an
orthonormal basis

E = { | eni | n = 0, 1, 2 · · · }

which is in 1� 1 correspondence with O. Then the coherent states (9)
become

| �qi = e�|q|2/2
1X

m=0

| emi�m. (12)

Using the set of CS (12) we shall establish the coherent state
quantization on H by associating a function

H 3 q 7�! f(q, q).
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Quantization of quaternions

Now let us define the operator on H by

f(q, q) 7! Af , (13)

where Af is given by the operator valued integral

Af =

Z

H
| �qif(q, q)h�q | d&(r, ✓,�, ) =

1X

m=0

1X

l=0

| emiJm,lhel |p
m! l!

; (14)

where the integral Jm,l is given by
ZZZZ

[0,1)⇥[0,⇡]⇥[0,2⇡)2

qmf(q, q)ql

er2
d&(r, ✓,�, ).
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Quantization of quaternions

By direct calculation we can see that if f(q, q) = q, then

Aq =

1X

m=0

p
(m+ 1) | emihem+1 | (15)

and if f(q, q) = q, then

Aq =

1X

m=0

p
(m+ 1) | em+1ihem | . (16)

Moreover if f(q, q) = 1, then A1 = IH.
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Quantization of quaternions

Since
hAqg | fi = hg | Aqfi; for all |fi, |gi 2 H,

Aq is the adjoint of Aq and vice-versa.
Now if H = spanO (right linear span over H), then it is a subspace of
L2
H(H, d&(r, ✓,�, )) and

Af : H �! H by

Af (u) = Af | ui =
Z

H
| �qif(q, q)h�q | uid&(r, ✓,�, ),

for all u 2 H. Moreover, for each u 2 H, Af | ui 2 H.
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Quantization of quaternions

For |ui, |vi 2 H, it can also be considered as a function

Af : H⇥ H �! H by
Af (u, v) = hu | Af | vi

=

Z

H
hu | �qif(q, q)h�q | vid&(r, ✓,�, ).
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Quantization of quaternions

Since | �qi is a column vector and h�q | is a row vector, we can see that
the operator Af is a matrix and the matrix elements with respect to the
basis {| eni} are given by

(Af )mn = hem | Af | eni =
Z

H
hem | �qif(q, q)h�q | enid&(r, ✓,�, ).

We have
hem | �qi = N(| q |)�

1
2 �m(q)

and
h�q | eni = hen | �qi = N(| q |)�

1
2 �n(q).
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Quantization of quaternions

Therefore

(Af )mn =

Z

H
N(| q |)�1�m(q)f(q, q)�n(q).d&(r, ✓,�, ).

Hence, it can easily be seen that

(Aq)k,l = hek|Aq|eli =
⇢ p

k + 1 if l = k + 1

0 if l 6= k + 1,

(Aq)k,l = hek|Aq|eli =
⇢ p

k if l = k � 1

0 if l 6= k � 1.
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Quantization of quaternions

Let us realize the operator Af as annihilation and creation operators.
From (15) and (16) we have Aq | e0i = 0 ,

Aq | emi =
p
m | em�1i ; m = 1, 2, · · ·

and
Aq | emi =

p
m+ 1 | em+1i ; m = 0, 1, 2, · · ·

That is, Aq, Aq are annihilation and creation operators respectively.
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Quantization of quaternions

Moreover, one can easily see that Aq | �qi =| �qiq, which is in
complete analogy with the action of the annihilation operator on the
ordinary harmonic oscillator CS. We can also write

| eni =
(Aq)

n

p
n!

| e0i.
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Quantization of quaternions

Now a direct calculation shows that

AqAq =

1X

m=0

(m+ 1) | emihem |

and

AqAq =

1X

m=0

(m+ 1) | em+1ihem+1 | .

Therefore the commutator of Aq, Aq takes the form

[Aq, Aq] = AqAq �AqAq

=

1X

m=0

| emihem |= IH.
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Quantization of quaternions

Remark
The operator Af in (14) is formed by the vector | �qif(q, q), which is
the right scalar multiple of the vector | �qi by the scalar f(q, q), and the
dual vector h�q |. Instead if one takes

Af =

Z

H
f(q, q) | �qih�q | d&(r, ✓,�, ), (17)

then it is formed by f(q, q) | �qi (a left scalar multiple of a right Hilbert
space vector) and the dual vector h�q |, which is unconventional .
Further, due to the non-commutativity of quaternions, an Af in the
form (17) would have caused severe technical problems in the follow
up computations.
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Number, position, momentum operators and
Hamiltonian

Let N = AqAq, then we have

N | eki = AqAq | eki

=

1X

m=0

| em+1ihem+1 | eki(m+ 1)

= | ekik.

Thereby N acts as the number operator and the Hilbert space H is the
quaternionic Fock space 7

7Alpay, D., Colombo, F., Sabadini, I., Salomon, G., The Fock space in the slice
hyperholomorphic setting, Hypercomplex Analysis: New perspective and applications,
Trends in Mathematics, Birkhüser, Basel (2014), 43-59.
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Number, position, momentum operators and
Hamiltonian

As an analogue of the usual harmonic oscillator Hamiltonian, if we take
Hh = N + IH, then Hh | eni =| eni(n+ 1), which is a Hamiltonian in
the right quaternionic Hilbert space H with spectrum (n+ 1) and
eigenvector | eni.
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Number, position, momentum operators and
Hamiltonian

Following the complex formalism, for q 2 H if we take q =

1p
2

(q+ q),

then we can have a self-adjoint position operator as

Q =

1p
2

(Aq +Aq).
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Remark

In the complex quantum mechanics, for the canonical CS | zi, z 2 C,
the lower symbol or the expectation value of the number operator,
hz|N |zi, is precisely |z|2. The position and momentum coordinates are
q =

1p
2
(z + z) and p =

�ip
2
(z � z) and by linearity one infers that the

position and momentum operators as Q =

1p
2
(Az +Az) and

P =

�ip
2
(Az �Az). The CS quantized classical harmonic oscillator,

Hc =
1
2(q

2
+ p2), is AHc = A|z|2 = N + IHc , where IHc is the identity

operator of the complex Fock space Hc. The operators Q and P satisfy
the commutation rule [Q,P ] = iIHc and are self-adjoint. If one simply
takes the canonical quantization of the classical Hamiltonian it
becomes ˆHc =

1
2(Q

2
+ P 2

) = N +

1
2IHc . a

aGazeau, J-P., Coherent states in quantum physics, Wiley-VCH, Berlin
(2009).
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Non-self-adjointness of P

In the case of the momentum operator, the complex formalism does
not transfer to quaternions. In the case of quaternions we have three
imaginary units, i, j and k, and if we try to duplicate the complex
momentum coordinate with one of i, j or k, that is, if we take

p =

�ip
2

(q� q),

then the operator P becomes

P =

�ip
2

(Aq �Aq)

and due to the non-commutativity of quaternions P is not self-adjoint.
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Non-self-adjointness of P

Further, a simple calculation shows that, the analogue of the complex
operator Hc in remark (4) is Hh =

1
2(q

2
+ p2) 6= |q|2. However, the lower

symbol of N is h�q | N | �qi = |q|2 and through a rather lengthy
calculation we can see that A|q|2 = N + IH.
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Non-self-adjointness of P

For a complex scalar ↵ 2 C and an operator T in a complex Hilbert
space, the adjoint of the scalar multiple, ↵T , is taken as

(↵T )† = ↵T †.

However, in general, this is not true for a non-real quaternionic scalar
multiple of an operator on a quaternionic Hilbert space.
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Non-self-adjointness of P

The quaternion field H with the inner product hp|qi = pq; p, q 2 H, is a
right quaternionic Hilbert space. The identity operator, I, on H is
self-adjoint. For a fixed ↵ 2 H \ R, if (↵I)† = ↵ I†, then for p, q 2 H, we
have

hp|(↵I)(q)i = hp|I(q)↵i = hp|q↵i = pq↵

and

h(↵I)†(p)|qi = h(↵I†)(p)|qi = h(↵I)(p)|qi = hI(p)↵|qi = hp↵|qi
= p↵q = ↵ pq.
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Non-self-adjointness of P

Example

For example, if ↵ = i+ 2j, q = j, p = k, then we get

hp|(↵I)(q)i = 1� 2k and h(↵I)†(p)|qi = 1 + 2k.

Therefore
(↵I)† 6= ↵I†.
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Solution with quaternion slice

However, if we restrict ourselves to a quaternion slice, then we can
have self-adjoint position and momentum operators with all the
expected properties of their complex counterparts.
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Solution with quaternion slice

In order to exhibit this, let us see the structure of CS on a slice.
• Since elements in a quaternion slice commute, a quaternion slice

is isomorphic to the complex plane. That is, for each I 2 S, LI is
isomorphic to C.

• While we are on a slice, LI , the set of CS is formed with elements
from the slice LI and the CS belongs to the right quaternionic
Hilbert space over the field LI and we denote this Hilbert space by
HLI .

• Let qI 2 LI , qI = reI✓; r > 0, 0  ✓ < 2⇡, then the normalization
factor of the CS, over the slice LI , is given by N(qI) = e|qI |

2 and a
resolution of the identity is obtained with the measure
dµI(r, ✓) =

1
2⇡ re

�r2drd✓.
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Solution with quaternion slice

Even though a quaternion slice is isomorphic to C, Hilbert space over
a slice is not similar to a complex Hilbert space. In particular, the inner
product of two elements from a slice-Hilbert space does not commute
with the elements of the slice. For qI 2 LI , let us define the position
and momentum coordinates by

qI =

1p
2

(qI + qI) and pI =

�Ip
2

(qI � qI),

then, since commutativity holds among I, q and q, the Hamiltonian can
be calculated as

HI =

1

2

�
q2I + p2I

�
= |qI |2.
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Solution with quaternion slice

Recall that on a right quaternionic Hilbert space operators are
multiplied on the left by quaternion scalars. From the position and
momentum coordinates, using linearity, we get the position operator,
QI , and the momentum operator, PI , as

QI =

1p
2

�
AqI +AqI

�
and PI =

�Ip
2

�
AqI �AqI

�
.

Since (AqI )
†
= AqI and (�I)† = I, the operators PI and QI are

self-adjoint. Using the fact (qOR)|fi = (OR|fi)q we can see that
AqI (IAqI ) = IAqIAqI .
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Solution with quaternion slice

With the aid of this we get

QIPI = = �1

2

I [AqI
2
+AqIAqI �AqAqI �AqI

2
]

and

PIQI = = �1

2

I [AqI
2 �AqIAqI +AqIAqI �AqI

2
].
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Solution with quaternion slice

Thereby we have the commutator

[QI , PI ] = QIPI � PIQI = I [AqI , AqI ] = IIHLI
.

We also have

Q2
I =

1

2

[AqI
2
+AqIAqI +AqIAqI +AqI

2
] and

P 2
I = �1

2

[AqI
2 �AqIAqI �AqIAqI +AqI

2
]
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Hence

ˆHI =

Q2
I + P 2

I

2

=

1

2

[AqIAqI +AqIAqI ]

= AqIAqI +
1

2

[AqIAqI �AqIAqI ] = NI +
1

2

IHLI
,

which is in complete analogy with the complex case in the sense of
canonical quantization, which simply replaces the classical coordinates
by quantum observables (corresponding self-adjoint operators).
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Heisenberg Uncertainty on slices

In the following we shall show that the RQCS saturate the Heisenberg
uncertainty relation and thereby they form a set minimum uncertainty
states.
For Notational simplicity we use the same symbols for the operators
and vectors as for H. However they are now restricted to a slice-Hilbert
space. For example:

Aq = Aq|V R
LI
.
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Heisenberg Uncertainty on slices

In order to compute the expectation values of the involved operators
recall that Aq|e0i = 0,

Aq|emi =

p
m|em�1i; m = 1, 2, · · ·

Aq̄|emi =

p
m+ 1|em+1i; m = 0, 1, · · ·

and
Aq|�qi = |�qiq. (18)
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Heisenberg Uncertainty on slices

Using (18) we can easily see that

A2
q|�qi = Aq|�qiq = |�qiq2.

Hence, as h�q|�qi = 1, we get

h�q|Aq|�qi = q and h�q|A2
q|�qi = q2.

Let am =

p
m+ 1 and bm =

p
(m+ 1)(m+ 2). The action of the

operators, Aq̄, A2
q̄, Aq̄Aq and AqAq̄ on the RQCS takes the form

Aq̄|�qi = e�|q|2/2
1X

m=0

Aq̄|emi qmp
m!

= e�|q|2/2
1X

m=0

|em+1iam
qmp
m!

,
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Heisenberg Uncertainty on slices

and similarly,

A2
q̄|�qi = e�|q|2/2

1X

m=0

|em+2ibm
qmp
m!

,

Aq̄Aq|�qi = e�|q|2/2
1X

m=0

|em+1iam
qm+1

p
m!

and

AqAq̄|�qi = e�|q|2/2
1X

m=0

|emia2m
qmp
m!

.
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Heisenberg Uncertainty on slices
The dual of the CS is

h�q| = e�|q|2/2
1X

m=0

¯qmp
m!

hem|.

Thereby we get the expectation values

h�q|Aq̄|�qi

= e�|q|2
1X

m=0

1X

n=0

¯qmp
m!

hem|en+1ian
qnp
n!

= e�|q|2
1X

m=0

¯qm+1qm

m!

= e�|q|2
¯q

1X

m=0

|q|2m

m!

=

¯q,
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Heisenberg Uncertainty on slices

and similarly,

h�q|A2
q̄|�qi =

¯q2,

h�q|Aq̄Aq|�qi =

¯qq = |q|2,
h�q|AqAq̄|�qi = 1 + |q|2.
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Heisenberg Uncertainty on slices

Using the above expectation values we can get the expectation values
of Q and Q2 as follows.

h�q|Q|�qi =

1p
2

h�q|Aq +Aq̄|�qi

=

1p
2

[h�q|Aq|�qi+ h�q|Aq̄|�qi]

=

1p
2

(q+ ¯q),

and hence
h�q|Q|�qi2 =

1

2

(q2 + 2|q|2 + ¯q2).
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Heisenberg Uncertainty on slices
Now for Q2

h�q|Q2|�qi

=

1

2

h�q|A2
q +AqAq̄ +Aq̄AqA

2
q̄|�qi

=

1

2

[q2 + 1 + |q|2 + |q|2 + ¯q2]

=

1

2

[q2 + 1 + 2|q|2 + ¯q2].

Therefore the variance of Q becomes

h�Qi2 = h�q|Q2|�qi � h�q|Q|�qi2

= 1/2.

That is,
h�Qi = 1p

2

.
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Heisenberg Uncertainty on slices
For the momentum operator P , we have

P |�qi =

✓
�Ip
2

[Aq �Aq̄]

◆
|�qi

= ([Aq �Aq̄]|�qi)
✓
�Ip
2

◆

= ([Aq �Aq̄]|�qi)
✓

Ip
2

◆
.

Thereby we get

h�q|P |�qi = h�q|Aq �Aq̄|�qi
Ip
2

= [h�q|Aq|�qi � h�q|Aq̄|�qi]
Ip
2

= (q� ¯q)
Ip
2

,
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Heisenberg Uncertainty on slices
hence, as I2 = �1, we obtain

h�q|P |�qi2 =
1

2

(�q2 + 2|q|2 � ¯q2).

Now for P 2

h�q|P 2|�qi

= �1

2

h�q|A2
q �AqAq̄ �Aq̄Aq +A2

q̄|�qi

= �1

2

[q2 � 1� |q|2 � |q|2 + ¯q2]

= �1

2

[q2 � 1� 2|q|2 + ¯q2].

Therefore the variance of P becomes

h�P i2 = h�q|P 2|�qi � h�q|P |�qi2

= 1/2.
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Heisenberg Uncertainty on slices

That is,
h�P i = 1p

2

.

As the conclusion of the above, we have

h�Qih�P i = 1

2

.

Further, since [Q,P ] = IIH, we have

[Q,P ]|�qi = (IIH)|�qi = (IH|�qi)¯I
= |�qi(�I).
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Heisenberg Uncertainty on slices

Therefore
h�q|[Q,P ]|�qi = h�q|�qi(�I) = �I.

Hence
1

2

|h[Q,P ]i| = 1

2

|� I| = 1

2

.

The above can be recapitulated in one line as

h�Qih�P i = 1

2

|h[Q,P ]i| = 1

2

.

That is, the RQCS |�qi saturate the Heisenberg uncertainty, which is in
complete analogy with the canonical CS of CQM.
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Left Scalar Multiplications on V R
H

Solution with left scalar multiplication:
The left scalar multiple of vectors on a right quaternionic Hilbert space
is an extremely non-canonical operation associated with a choice of
preferred Hilbert basis.
Since the Hilbert space V R

H is separable it has a Hilbert basis

O = {'k | k 2 N}, (19)

where N is a countable index set.
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Left Scalar Multiplications on V R
H

The left scalar multiplication ‘·’ on V R
H induced by O is defined as the

map H⇥ V R
H 3 (q,�) 7�! q · � 2 V R

H given by

q · � :=

X

k2N
'kqh'k | �i, (20)

for all (q,�) 2 H⇥ V R
H . Since all left multiplications are made with

respect to some basis, assume that the basis O given by (19) is fixed in
the rest of this presentation.
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Left Scalar Multiplications on V R
H

Proposition
[17] The left product defined in (20) satisfies the following properties.
For every �, 2 V R

H and p, q 2 H,
(a) q · (�+  ) = q · �+ q ·  and q · (�p) = (q · �)p.
(b) kq · �k = |q|k�k.
(c) q · (p · �) = (qp · �).
(d) hq · � |  i = h� | q ·  i.
(e) r · � = �r, for all r 2 R.
(f) q · 'k = 'kq, for all k 2 N .
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Left Scalar Multiplications on V R
H

Remark
One can trivially see that (p+ q) · � = p · �+ q · �, for all p, q 2 H and
� 2 V R

H . Moreover, with the aid of (b) in above Proposition (6), we can
have, if {�n} in V R

H such that �n �! �, then q · �n �! q · �. Also ifP
n �n is a convergent series in V R

H , then q · (
P

n �n) =
P

n q · �n.
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Left Scalar Multiplications on V R
H

For any fixed q 2 H and a given right H-linear operator
A : D(A) �! V R

H , the left scalar multiplication ‘·’ of A is defined as a
map q ·A : D(A) �! V R

H by the setting

(q ·A)� := q · (A�) =
X

k2N
'kqh'k | A�i, (21)

for all � 2 D(A). It is straightforward that q ·A is a right H-linear
operator.
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Left Scalar Multiplications on V R
H

If q · � 2 D(A), for all � 2 D(A), one can define right scalar
multiplication ‘·’ of the right H-linear operator A : D(A) �! V R

H as a
map A · q : D(A) �! V R

H by the setting

(A · q)� := A(q · �), (22)

for all � 2 D(A). It is also right H-linear operator. One can easily obtain
that, if q · � 2 D(A), for all � 2 D(A) and D(A) is dense in V R

H , then

(q ·A)

†
= A† · q and (A · q)† = q ·A†. (23)
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Action with left multiplication

Further, real numbers commute with quaternions. Therefore according
to (21), for example, we have

(q ·Aq)
2 | e0i = (q ·Aq)(q ·Aq)|e0i

= (q ·Aq)(q ·Aq|e0i)
= (q ·Aq)(q · |e1i)

p
1

= (q ·Aq)|e1iq
= q · (Aq|e1i)q
= q · (|e2i

p
2)q

= |e2iq2
p
2!.

That is,
(q ·Aq)

2 | e0ip
2!

= |e2iq2. By induction, for each n = 0, 1, 2, · · · ,

we have
(q ·Aq)

n | e0ip
n!

= |eniqn.
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Action with left multiplication

Using this one can see that

(e�|q|2/2 · eq·Aq
)|e0i = e�|q|2/2 · (eq·Aq |e0i)

= e�|q|2/2 ·
" 1X

n=0

(q ·Aq)
n | e0i

n!

#

= e�|q|2/2 ·
" 1X

n=0

|eni
qnp
n!

#

= | �qi.

That is, | �qi = (e�|q|2/2 · eq·Aq
)|e0i.
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Action with left multiplication

The following Proposition gives the commutativity between quaternions
and the operator Aq under the operations of left (21) and right (22)
scalar multiplication of right linear operators. This result plays an
important role in having momentum operator.

Proposition

For each x 2 H, we have x ·Aq = Aq · x.

Proof.
For an arbitrary x 2 H, calculating x ·Aq and Aq · x manually, the
equality can be obtained.
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Proof in detail.

Let x 2 H, and � 2 H, now

(x ·Aq)� =

1X

n=0

|enixhen|Aq�i

=

1X

n=0

|enix
 1X

m=0

p
m+ 1hen|emihem+1|�i

!

=

1X

n=0

p
n+ 1 |enixhen+1|�i
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Proof in detail.....

and

(Aq · x)� = Aq(x · �)

=

1X

n=0

p
n+ 1|enihen+1|x · �i

=

1X

n=0

p
n+ 1|eni

 1X

m=0

hen+1|emixhem|�i
!

=

1X

n=0

p
n+ 1 |enixhen+1|�i.

That is, (x ·Aq)� = (Aq · x)�. Since � 2 H is arbitrary, we have
x ·Aq = Aq · x. Similarly x ·Aq̄ = Aq̄ · x can be obtained. Hence the
result follows.
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Momentum Operator with left multiplication

In the case of the momentum operator, the complex formalism does
not transfer to quaternions. In the case of quaternions we have three
imaginary units, i, j and k, and if we try to duplicate the complex
momentum coordinate with i, j or k, that is, if we take

q =

1p
2

(q+ q) and

pi =
�ip
2

(q� q),

pj =
�jp
2

(q� q)

and
pk =

�kp
2

(q� q)
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Momentum Operator with left multiplication

then the momentum operators with respect to the above coordinates
becomes

Pi =
�ip
2

· (Aq �Aq),

Pj =
�jp
2

· (Aq �Aq)

and
Pk =

�kp
2

· (Aq �Aq)

respectively.
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Momentum operator with left multiplication

Now for each ⌧ 2 {i, j, k}, the operators Q and P⌧ are self-adjoint. For,
It is trivial to say that the position operator Q is self-adjoint. Since Aq is
the adjoint of Aq and vice-versa, we have, for any ⌧ 2 {i, j, k},

P †
⌧ =


�⌧p
2

· (Aq �Aq)

�†

= (A†
q �A†

q) ·
⌧p
2

by (23)

= (Aq �Aq) ·
⌧p
2

=

�⌧p
2

· (Aq �Aq) by Proposition 8

= P⌧ .

Thus for each ⌧ 2 {i, j, k}, the operators P⌧ is self-adjoint.
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Number, position, momentum operators and
Hamiltonian

Thus for each ⌧ 2 {i, j, k}, the operators P⌧ is self-adjoint. We can
have the generalized Hamiltonian with respect to ⌧ 2 {i, j, k} that
H⌧ =

1
2

�
| q |2 + | p⌧ |2

�
= |q|2. Moreover, there is another Hamiltonian

which we can have as a combined one in terms of all of above three
coordinates, as follows

Hc =
1

2

�
q2 � p2i � p2j � p2k

�
= |q|2.

The lower symbol of N is h�q | N | �qi = |q|2 and through a rather
lengthy calculation we can see that A|q|2 = N + IH.
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Number, position, momentum operators and
Hamiltonian

Now for each ⌧ 2 {i, j, k}, it can be obtained that

QP⌧� =


(Aq +Aq)p

2

� 
(�⌧) · (Aq �Aq)p

2

�
�

=


(Aq +Aq)p

2

� 
(�⌧) ·

✓
(Aq �Aq)p

2

�

◆�

=


(Aq +Aq)p

2

· (�⌧)
� ✓

(Aq �Aq)p
2

�

◆�
by (22)

=


(�⌧) ·

✓
(Aq +Aq)p

2

◆�✓
(Aq �Aq)p

2

�

◆�
by Proposition 8

= �1

2

⌧ · [Aq
2
+AqAq �AqAq �Aq

2
]�
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Number, position, momentum operators and
Hamiltonian
and

P⌧Q� =


�⌧ · (Aq �Aq)p

2

� 
(Aq +Aq)p

2

�
�

= �1

2

⌧ · [Aq
2 �AqAq +AqAq �Aq

2
]�,

for all � 2 V R
H . Thereby for each ⌧ 2 {i, j, k}, we have the commutator

that
[Q,P⌧ ] = QP⌧ � P⌧Q = ⌧ · [Aq, Aq] = ⌧ · IH.

We can also obtain, in a similar fashion, for each ⌧ 2 {i, j, k},

Q2
=

1

2

[Aq
2
+AqAq +AqAq +Aq

2
] and

P 2
⌧ = �1

2

[Aq
2 �AqAq �AqAq +Aq

2
]
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Number, position, momentum operators and
Hamiltonian

Hence for each ⌧ 2 {i, j, k},

ˆH⌧ =

Q2
+ P 2

⌧

2

=

1

2

[AqAq +AqAq]

= AqAq +
1

2

[AqAq �AqAq]

= N +

1

2

IH,

which does not depend on the choice of ⌧ 2 {i, j, k}, and is in
complete analogy with the complex case in the sense of canonical
quantization, which simply replaces the classical coordinates by
quantum observables (corresponding self-adjoint operators).
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Number, position, momentum operators and
Hamiltonian

Let us try with the momentum coordinate

p⇤ = �(i+ j + k)p
3

· (q� q)p
2

to define another momentum operator P as

P ⇤
= �(i+ j + k)p

3

· (Aq �Aq)p
2

.

One can realize that P ⇤ is self-adjoint, and the Hamiltonian H becomes

H⇤
=

1

2

�
| q |2 + | p⇤ |2

�
= |q|2.
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Number, position, momentum operators and
Hamiltonian
Furthermore, we have

[Q,P ⇤
] =

(i+ j + k)p
3

· IH

and
ˆH⇤

=

Q2
+ P ⇤2

2

= N +

1

2

IH.

In more general, we can define the momentum coordinate for each
I 2 S, such that

pI =

�Ip
2

(q� q), q 2 H

and the momentum operator

PI =

�Ip
2

· (Aq �Aq).
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Number, position, momentum operators and
Hamiltonian

Then the Hamiltonian HI =

1
2

�
| q |2 + | pI |2

�
= |q|2. Also we can have

[Q,P ] = I · IH

and
ˆHI =

Q2
+ P 2

I

2

= N +

1

2

IH.

In quaternion case, we have a set of self-adjoint momentum operators
as

P =

⇢
PI =

�Ip
2

· (Aq �Aq) | I 2 S
�
.
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Heisenberg Uncertainty

As before, we have

h�q|Aq|�qi = q

h�q|A2
q|�qi = q2

h�q|A2
q̄|�qi =

¯q2,

h�q|Aq̄Aq|�qi =

¯qq = |q|2,
h�q|AqAq̄|�qi = 1 + |q|2.

and

h�Qi2 = h�q|Q2|�qi � h�q|Q|�qi2

= 1/2.
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Heisenberg Uncertainty

Let I 2 S, then for the momentum operator PI , we have

PI |�qi =

✓
�Ip
2

· [Aq �Aq̄]

◆
|�qi

=

�Ip
2

· ([Aq �Aq̄]|�qi)

=

�Ip
2

· (Aq|�qi �Aq̄|�qi) .
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Heisenberg Uncertainty

Now one can see that

I ·Aq =

1X

m=0

p
(m+ 1) | emiIhem+1 | .

Thus

(I ·Aq) | �qi = e�|q|2/2
1X

m=0

p
(m+ 1) | emiI

1X

n=0

hem+1|eni
qnp
n!

= e�|q|2/2
1X

m=0

p
(m+ 1) | emiI qm+1

p
m+ 1!
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Heisenberg Uncertainty

and

h�q | (I ·Aq) | �qi = e�|q|2/2
1X

m=0

p
(m+ 1)h�q | emiI qm+1

p
m+ 1!

= e�|q|2
1X

m=0

p
(m+ 1)

1X

n=0

¯qnp
n!
hen|emiI qm+1

p
m+ 1!

= e�|q|2
1X

m=0

p
(m+ 1)

¯qmp
m!

I
qm+1

p
m+ 1!

=

 
e�|q|2

1X

m=0

¯qmIqm

m!

!
q = CIq;
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Heisenberg Uncertainty

where CI = e�|q|2
1X

m=0

¯qmIqm

m!

and this series absolutely converges to

1, i.e. |CI |  1. It is nice to note that, ¯CI = �CI and |CI |2 = �C2
I . From

this, one can say that, there exist I 2 S and r 2 [0, 1] such that CI = rI.
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Heisenberg Uncertainty

Also we can find that

(I ·Aq̄) | �qi = e�|q|2/2
1X

m=0

p
(m+ 1) | em+1iI

qmp
m!

and

h�q | (I ·Aq̄) | �qi = ¯q

 
e�|q|2

1X

m=0

¯qmIqm

m!

!
=

¯qCI .
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Heisenberg Uncertainty

So,

h�q|PI |�qi =

1p
2

[h�q|(I ·Aq)|�qi � h�q|(I ·Aq̄)|�qi]

=

1p
2

(CIq� ¯qCI).
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Heisenberg Uncertainty

We obtain

h�q|PI |�qi2 =

1

2

(CIq� ¯qCI)
2

=

1

2

(CIq+ CIq)
2

=

1

2

[(CIq)
2
+ 2|CIq|2 + (CIq)

2
].
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Heisenberg Uncertainty

Since I2 = �1, we have

h�q|P 2|�qi

= �1

2

h�q|A2
q �AqAq̄ �Aq̄Aq +A2

q̄|�qi

= �1

2

[q2 � 1� |q|2 � |q|2 + ¯q2]

= �1

2

[q2 � 1� 2|q|2 + ¯q2].
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Heisenberg Uncertainty

Therefore the variance of PI becomes

h�PIi2 = h�q|P 2
I |�qi � h�q|PI |�qi2

= �1

2

[q2 � 1� 2|q|2 + ¯q2]� 1

2

[(CIq)
2
+ 2|CIq|2 + (CIq)

2
].
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Heisenberg Uncertainty

Since h�Qi, h�PIi 2 R, we have

h�Qi2h�PIi2

= �1

4

[(q2 � 1� 2|q|2 + ¯q2) + ((CIq)
2
+ 2|CIq|2 + (CIq)

2
)]

� �1

4

[(q2 � 1� 2|q|2 + ¯q2) + ((CIq)
2
+ 2|q|2 + (CIq)

2
)] as |CI |  1

=

1

4

� 1

4

[(q2 + ¯q2) + ((CIq)
2
+ (CIq)

2
)]
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Heisenberg Uncertainty

From this,

|h�Qi2h�PIi2| � 1

4

� 1

4

(|q|2(1 + |CI |2) + |¯q|2(1 + |CI |2|))

� 1

4

� 1

2

|q2| (1 + CI |2)

� 1

4

� |q2| as |CI |  1.

Thus |h�Qi2h�PIi2| � 1
4 � |q|2. Likewise, it is not difficult to see that

|h�Qi2h�PIi2|  1
4 + |q|2.
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Heisenberg Uncertainty

As a summary, we have

| |h�Qi2h�PIi2|�
1

4

|  |q|2.

From this, one can say that

lim

|q|�!0
|h�Qih�PIi| =

1

2

.

Further, since [Q,PI ] = I · IH, we have

[Q,PI ]|�qi = (I · IH)|�qi = I · (IH|�qi)
= |I · �qi.
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Heisenberg Uncertainty

Therefore

h�q|[Q,PI ]|�qi = h�q|I · �qi = e�|q|2
1X

m=0

¯qmIqm

m!

= CI = rI.

Hence
1

2

|h[Q,PI ]i| =
1

2

|rI| = 1

2

r  1

2

,

as r  1. As a conclusion we can say that

lim

|q|�!0
|h�Qih�PIi| �

1

2

|h[Q,PI ]i|.
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functions in the plane and n-dimensional spaces, Birkhäuser
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