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Sign

... quanto maior é a diferença, maior será igualdade,
e quanto maior é a igualdade, maior a diferença será ...

José Saramago

to have a motto is very fashionable nowadays



What are coherent states?

The classical coherent states (CSs in short) are 1 simply

cz
def
=

exp(−|z|2/2)

∞∑
n=0

zn√
n!
hn, z ∈ C,

with hn’s being the Hermite functions they are settled in L 2(R).
Later on 2

cz
def
= exp(−|z|2/2)

∞∑
n=0

zn√
n!
hn, z ∈ C,

They bear different names like canonical, standard, orthodox etc.

though the most explicative way is to call them Gaussian coherent
states

1 Schrödinger 1926
2 Glauber, Klauder, Sudarshan 1963

they look harmless

and they are at hand

Immediate properties of Gaussian coherent states

(a) they are normalised;

(b) they are continuos functions in z;

(c) they are never orthogonal, more 〈cz, cw〉 = e|z−w|
2

...

and the most celebrated 3

(d) I =
∫
C |cz〉〈cz|

d2 z
π .

It is called resolution of the identity, sometimes referred to as
(over)completeness. Some authors even see in it the reproducing
kernel property which, if provided with mathematical correctness,
in this case is nothing but the trivial (or rather “idem per idem”)
side of the RKHS story.

3 I use Dirac notation sporadically

these are canons for coherent states enthusiasts

and postulates for the followers



How to arrive at (Gaussian) CSs

According to Glauber (1963) there are three ways of constructing
coherent states:

(A) the (normalized) eigenvectors of the annihilation operator;

(B) the orbit of the vacuum under a (square integrable) unitary
group;

(C) minimising the Heisenberg uncertainty relation.

It turns out that for the Gaussian CSs these three lead to the same
provided in (B) the group is that of the displacement operator.

this is the beginning

let us go further on, next pages please

Generalisations. Why not?

Keeping in mind the postulates (a) – (d) and following any of the
directives (A), (B), (C) MPs try to find generalisations of CSs.

The most popular way (and sometimes dangerous if not performed
with enough care) is that guided by (B).

The case (A) may lead to somehow interesting results though it is
not too often in use.

The case (C), a bit aside, is discussed from time to time.

always tempting

even among MPs



Generalisations á la Kauder-Gazeau

This refers to the very first definition

cz
def
= exp(−|z|2/2)

∞∑
n=0

zn√
n!
hn, z ∈ C,

with replacements

· hn′s 7→ arbitrary orthonormal basic vectors in some Hilbert
space (in which the would-be coherent states have to resides);

· n! 7→ x0 . . . xn in the way which ensures convergence;

· exp(−|z|2/2) 7→ a suitable normalisation factor.

Everything happens in the presence of a measure which makes the
resolution of identity possible. It comes in practice from a Stieltjes
moment sequence allowing one 4 (sic!) of the representing measure
to be rotationally invariant.

4 MPs are reluctant to accept existence of more than one

Our starting point in a sense

taken à rebours

More activity in the matter

Further examples of coherent states are mushrooming nowadays
either among MPs or people at the frontiers.
Always existence of measure is presupposed.

In conclusion

existence of more than one measure or a lack of any may be
painful for them.

My point is to propose a cure.

Some tools follow first.

Our starting point in a sense

taken à rebours



Scenario

I the tool;

I Horzela Szafraniec approach including Segal-Bargmann design;

I assorted examples;

I more properties of H-Sz coherent states.

You deserve to know it in advance

RKHS

A set X granted

Given a Hilbert space H of complex functions on X and a
function K : X ×X 7→ C (called a kernel). The couple (H ,K) is
called a reproducing kernel one if

· Kx
def
= K( · , x) ∈H , x ∈ X;

· f(x) = 〈f,Kx〉, f ∈H , x ∈ X.

There is a list of properties coming out of this definition and each
of them may work for construction the couple.

educational material

be gentle please and do not try to consider it boring



Zaremba’s formula (1907)

Given a sequence (Φn)
∞
n=0 of complex functions on X such that∑

n

|Φn(x)|2 < +∞, x ∈ X.

Then

K(x, y)
def
=
∑
n

Φn(x)Φn(y), x, y ∈ X

is a positive definite kernel and, consequently, due to Aronszajn’s
construction for instance, it uniquely determines its partner HK so
that they both together constitute a reproducing kernel couple.

This may serve as a very practical way of constructing RKHS.

Whether (Φn)
∞
n=0 is a basis in HK or not is discussed next.

educational material

be gentle please and do not try to consider it boring

What is the role played by the functions Φn?

1o. For any ξ = (ξn)n in `2, the series∑
n
ξnΦn(x)

is absolutely convergent for any x, the function

fξ : x→
∑

n
ξnΦn(x)

is in H with ‖fξ‖ ≤ ‖ξ‖`2 ; moreover
∑

n ξαΦn is convergent in

H to fξ. In particular
∑

n Φn(x)Φn is convergent in H to Kx,
the functions Φn are in H and ‖Φn‖ ≤ 1.
2o The sequence (Φn)n is always complete in H 5. TFCAE

(i) ξ ∈ `2 and
∑

n ξnΦn(x) = 0 for every x yields ξ = 0;

(ii) the sequence (Φn)n is orthonormal in H .

This connects pointwise and norm convergence in RKHS.

5 Notice completeness of (Φn)n appears a posteriori.

educational material

be gentle please and do not try to consider it boring



Integrability

A sample definition

If X is a (subset of a) topological space (think of C or Cd) and
there is a positive measure µ on the completion X of X such that
H is embedded isometrically in “a natural way” in L 2(µ) we say
that (H ,K) is integrable.
If suppµ ⊂ X then the embedding in a “natural way” is just the
inclusion; this happens more often.

WARNING. There are non-integrable RKHSpaces.

educational material

be gentle please and do not try to consider it boring

Resetting

TABULA RASA

like electronic devices

though the default is blank



Given data (the only)

RKHS

X a set, Φ
def
= (Φn)n sequence of functions on X such that∑

n
|Φn(x)|2 < +∞, x ∈ X.

K a kernel on X got via Zaremba’s, HK its RKHS.

The space for CSs

H is a Hilbert space of the same dimension as that of HK .

Fix an orthonormal basis e
def
= (en)n in H .

And that’s all ! They are the only initial parameters.
starting from the scratch

YOU are invited to enjoy

Coherent states now

They are at hand

cx
def
=
∑

n
Φn(x)en x ∈ X.

That’s it !

Notice

they may be normalised if there is any need, just because they
belong to H . They inherit selected properties from those of K
(like continuity, differentiability and so on).

the most economical definition of CS’s is done

YOU are invited to enjoy



The Segal-Bargmann transform

The transform

Bh
def
=
∑

n
〈h, en〉H Φn, h ∈H

is well defined and maps H 7→HK (notice Ben = Φn). In general
it is a contraction 6 with a dense range.
Due to the reproducing property we have

(Bh)(x) = 〈Bh,Kx〉HK
=
∑

n
〈h, en〉H Φn(x).

Moreover if (Φn)n is ONB then

〈Bh,Bg〉HK
= 〈h, g〉H

hence B is unitary and the corresponding Segal-Bargmann space
turns out to be the whole of HK .

6 The reproducing kernel property and the RKHS test have to be used for
that.

the most economical definition of CS’s is done

YOU are invited to enjoy

Basic reference

A. Horzela and F.H. Szafraniec, A measure free approach to
coherent states, J. Phys. A: Math. Theor. 45 (2012) 244018

A. Horzela and F.H. Szafraniec, A measure free approach to
coherent states refined, in Proceedings of the XXIX International
Colloquium on Group-Theoretical Methods in Physics 2012.

F.H. Szafraniec, The reproducing kernel property and its space:
the basics, in Operator Theory vol. 1, D. Alpay Ed., 3–30,
SpringerReference, 2015.

F.H. Szafraniec, The reproducing kernel property and its space:
more or less standard examples of applications, in Operator Theory
vol. 1, D. Alpay Ed., 31–58, SpringerReference, 2015.

K. Górska, A. Horzela, F.H. Szafraniec, Squeezing of arbitrary
order: the ups and downs. Proc. R. Soc. Lond. Ser. A Math.
Phys. Eng. Sci. 470 (2014), no. 2172, 20140205, 21 pp.

just to let you know



Back to CS

Simultaneously,

· the transform B is unitary;

· the family (cx)x of coherent states is complete

all this if (Φn)n is an basis in HK . In the Gaussian case, that is
when

Φn =
zn√
n!

or K(z, w) = ezw

and
en = hn are Hermite functions

the transform B becomes precisely that of Segal-Bargmann.

to make the story complete

At least something important happens here

Resolution of the identity for malcontents a

a
Dirac’s notation appears here occasionally, just to refer to MP and make its community content. µ is any

admissible measure

〈h|
∫
X
|x〉H 〈x|µ(dx)|g〉H =

∫
X
〈h|x〉H 〈x|g〉H µ(dx)

=

∫
X
(Bh)(x)(Bg)(x)µ(dx)

= 〈Bh|Bg〉L 2(µ)

= 〈Bh|Bg〉HK
= 〈h|g〉H

Nothing lost

we are back in a sense

and for a while



Three cases to be thought about

This is what may happen

1o HK is integrable and the measure is unique;

2o HK is integrable and the measure is not unique;

3o HK is not integrable.

assorted examples follow

Rotationally invariant kernels

Suppose a sequence (kn)n of non-negative numbers is given such
that X = {z ∈ C :

∑
n kn|z|2n} < +∞ 6= ∅. This set is

rotationally invariant and so is the kernel

K(x, y)
def
=
∑

n
knz

nwn, z, w ∈ X.

Because K is PD, we got HK . Suppose for a while HK is
integrable and write

k−2m+n =
( ∫

X
|zm+n|2µ(dz)

)2
=
( ∫

X
|z2m||z2n|µ(dz)

)2
6 k−12mk

−1
2n

∫
X
|k

1
2
2mz

2m|2µ(dz)
∫
X
|k

1
2
2nz

2n|2µ(dz) = k−12mk
−1
2n .

1o, 2o and 3o are merging here



Rotationally invariant kernels cont.

What we have got from the above heuristic reasoning is

k−2m+n 6 k−12mk
−1
2n

which is just logarithmic convexity of (k−1n )n.

Important

Logarithmic convexity is a necessary condition for integrability.

Manipulating (k−1n )n may lead at once to examples of
non-integrable HK ; this is the first attempt toward the problem.

Logarithmic convexity ensures limn k
−1/n
n to exist which

contributes to X 6= ∅.

1o, 2o and 3o are merging here

Rotationally invariant kernels cont.

Start from a measure ν representing a Stieltjes moment sequence
(an)

∞
n=0, that is

an =

∫ +∞

0
xnν(dx), n = 0, 1, . . .

and define the rotationally invariant measure µ on C

µ(σ)
def
= (2π)−1

∫ 2π

0

∫ +∞

0
χσ(r e

i t)m(dr) dt, σ Borel subset of C

makes ∫
C
znµ(dz) =

∫ +∞

0
xn/2ν(dx)

The way back is possible due to the transport of measure by
C 3 z 7→ |z| ∈ [0,+∞).

The monomials Φn
def
= k

1/2
n ZN besides being orthonormal in Hk

are orthonormal in L (µ) as well. Hence HK is integrable.

now only 1o and 2o merge

integrability enters the scene



Rotationally invariant kernels cont.

In other words, we have the formula

µ =
(
µ ◦ φ−1 ⊗ (2π dm)

)
◦ j−1, j(t, ξ) =

√
tξ

which points up rotational invariance of µ.

Warning

If the Stieltjes moment problem for (an)
∞
n=0 is indeterminate,

besides rotationally invariant µ’s, non-rotationally invariant
measures exist too - despite the fact the kernel itself is rotationally
invariant.
This never happens when ν is determinate, in particular if it has a
compact support.

As an opening let me suggests q-moments: determinate if
0 < q 6 1 and indeterminate if q > 1.

now only 1o and 2o merge

integrability enters the scene

Rotationally invariant kernels, a handful of further instances

Segal-Bargmann

Here Φn = 1√
n!
Zn and

K(z, w) = ezw, z, w ∈ C

with H ⊂ L 2(C, (π)1/2 e−|z|2 dz).

Bergman

For this Φn =
√
n+ 1Zn and

K(z, w) =
1

1− zw
, z, w ∈ D.

In this case HK ⊂ L 2(dz).

now only 1o and 2o merge

integrability enters the scene



Rotationally invariant kernels, still one more case to mention

Szegő ⇐⇒ Hardy

With Φn = Zn the kernel (Szegő) is

K(z, w) =
1

1− zw
, z, w ∈ D

Here HK“ ⊂ ”L 2(T,dm) (Hardy), “ ⊂ ” come from Fatou one
way and Poisson the other. This means we have to do with
integrability in an extended sense.
The resulting CSs may be considered X as those on the unit circle
(sic!).

now only 1o and 2o merge

integrability enters the scene

Rather unknown

van Eijndhoven–Meyers orthogonality, my favourite

Xα, 0 < α < 1, the Hilbert space of entire functions f∫
R2

|f(x+ i y)|2 exp
[
αx2 − 1

α
y2
]
dxdy < +∞

With Hn standing for Hermite polynomials and

bn(A) =
π
√
α

1−A

(
2
1 + α

1− α

)n
n!

the functions

Φαn(z) = bn(α)
−1/2 e−z

2/2Hn(z), z ∈ C,

form an orthonormal basis in Xα.

it is a right time to mention non-rotationally invariant kernels

diversity of cases

uniqueness happens



From indeterminate Hamburger moment problem

Suppose now ν represents an indeterminate Hamburger moment
sequence. If Φn stands now for the polynomials orthonormal with
respect to ν, then∑

n
|Φn(z)|2 < +∞, z ∈ C

which gives a rise to H-Sz CSs over C via Zaremba.

The space HK is integrable and ν is one of its representing
measure.
Notice integrability of HK is over R.

it is a right time to mention non-rotationally invariant kernels

integrable with no uniqueness

Further examples

Among the spaces I would like to touch upon one can find:

- de Branges spaces including Paley-Wiener;

- Rovnyak-de Branges

- and so forth.

just to mention



Thought-provoking example

Consider
Φn(z)

def
=

n!

z(z + 1) · · · (z + n)

Then

K(z, w) =
∑∞

n=0

n!

z(z + 1) · · · (z + n)

n!

w(w + 1) · · · (w + n)

= 3F2 (1, 1, 1; z + 1, w + 1; 1) , <z,<w > 1/2.

and the space HK is not integrable over
X = {(z, w) : <z,<w > 1/2} though H-Sz coherent states make
sense.

K.F. Klopfenstein, A note on Hilbert spaces of factorial functions, Indiana

Univ. Math. J. 25 (1976) 1073-1081.

HK = {
∑

n ξnΦn : (ξn)n ∈ `2} is the Segal-Bargmann type space
of holomorphic functions on {(z, w) : < z,<w > 1/2}.

a kind of surprise

still within holomorphic functions

More on the transform

Besides the aforesaid equality 〈Bh,Bg〉HK
= 〈h, g〉H we have

〈Bcx, Bcy〉HK
= K(x, y) = 〈Ky,Kx〉HK

.

This suggest to proceed as follows 7

BCecx = B
∑

n
Φ(x)en =

∑
n
Φ(x)Φn = Kx

CΦBcx = B
∑

n
Φ(x)en =

∑
n
Φ(x)Φn = Kx

which results in a kind of triviality

BCe = CΦB, consequently CΦBCe = B and CeB
∗CΦ = B∗.

All this allows us to recapture the kernel of the Segal-Bargmann
transform.

7 Ce and CΦ are complex conjugations defined by the respective bases

some interesting facts discovered



Why H-Sz coherent states are so intriguing?

Recall the definition cx
def
=
∑

n Φn(x)en. What does happen if one
has another representation of cx’s

cx =
∑
n

Φ′n(x)e
′
n ?

Due to the Parseval equality

〈cx, cy〉H =
∑

Φn(x)Φn(y) = K(x, y).

This applied to primed data gives

K(x, y) = K ′(x, y).

Conclusion

The kernel K (and its RKHS) becomes
a kind of invariant for coherent states.

one more reason

How to detect CSs

Fix X and H .

If is any set in H which is complete there, then for an arbitrary
ONB (en)n in H one gets

cx =
∑

n
〈cx, en〉en, x ∈ X

and ∑
n
|〈cx, en〉en|2 < +∞.

Now the H-Sz procedure may be initiated with Φn(x) = 〈cx, en〉
and, in particular, the findings of the previous slide apply.

Because {cx}x∈X is complete (Φn)n is automatically an ONB in
the corresponding HK .

another way around

still to be intensified



À propos: discrete case

For α > 0 define the Charlier sequences (c
(α)
n )∞n=0,

c̃
(α)
n (x)

def
= α−

n
2 (n!)−

1
2C

(α)
n (x)e−

a
2α

x
2

{
(x!)−

1
2 , for x > 0

1 for x < 0
;

c
(α)
n

def
= c̃

(α)
n |N, n = 0, 1, . . .

The kernel is

K(m,n) =
∑

k,l
c
(α)
k (m)c

(α)
l (n) = δm,n =

∑
k,l
δk,mδl,n.

Notice the two ONB’s determine different CSs though they come
from the same kernel.

By the way,
lin(c(α)n )n ∩ lin(c(α)n )n = ∅.

Related to Poison distribution

Open question

In medicine two branches of anatomy are conventionally
distinguished

I topographical anatomy;

I pathological anatomy.

The question which fragments of my talk belong to a respective
branch is what I would like to leave with each of You. None of
those is void here.

You deserve it



Zaremba’s formulae from 1907

I am glad you have joined me

you deserve for more

here is a bonus

References of Zaremba’s

S. Zaremba, L’équation biharmonique et une class remarquable de
functions fondamentales harmoniques, Bulletin International de
l’Académie des Sciences de Cracovie, Classe des Sciences
Mathématiques et Naturelles, 1907, 147–196.

S. Zaremba, Sur le calcul numérique des fonctions demandées dans
le problème de Dirichlet et le problème hydrodynamique, ibidem
1909, 125–195.

I am glad you have joined me

here is a bonus
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