

Reproducing Pairs and Gabor Systems at Critical Density

Michael Speckbacher

Joint work with Peter Balazs

(Acoustics Research Institute, Vienna)

Coherent States and their Applications, 2016

Reproducing Pairs

Frames: $\Psi = \{\psi_k\}_{k \in \mathcal{I}}$ is a frame for \mathcal{H}

$$A\|f\|^2 \le \sum_{k \in \mathcal{I}} |\langle f, \psi_k \rangle|^2 \le B\|f\|^2, \ \forall f \in \mathcal{H}$$

$$\Leftrightarrow$$

$$S_{\Psi}f = \sum_{k \in \mathcal{I}} \langle f, \psi_k \rangle \psi_k \in GL(\mathcal{H})$$
.

Many complete systems do not satisfy both frame bounds: ⇒ New concepts needed, e.g. semi-frames, or:

Definition 1 (Balazs & S., 2015)

Two families (Ψ, Φ) in \mathcal{H} are called a **reproducing pair** if $S_{\Psi, \Phi} \in GL(\mathcal{H})$, where

$$\langle S_{\Psi,\Phi} f, g \rangle := \sum_{k \in \mathcal{I}} \langle f, \psi_k \rangle \langle \phi_k, g \rangle.$$

Reproducing Pairs

Examples:

- $\Phi = \{e_1, 2e_2, 1/3e_3, 4e_4...\}$ and $\Psi = \{e_1, 1/2e_2, 3e_3, 1/4e_4...\}$
- ullet cross admissiblility a) nonstationary Gabor systems b) wavelets on $\mathbb R$ or S^2

New spaces replacing $\ell^2(\mathcal{I})$ are needed:

• Let
$$\mathcal{V}_{\Phi}(\mathcal{I}) := \{ \xi : \mathcal{I} \to \mathbb{C} \text{ such that } (1) \text{ holds} \},$$

$$\left| \sum_{k \in \mathcal{I}} \xi[k] \langle \phi_k, g \rangle \right| \le c \|g\|, \forall g \in \mathcal{H}. \tag{1}$$

- \Rightarrow synthesis operator $D_{\Phi}\xi:=\sum_{k\in\mathcal{I}}\xi[k]\phi_k$ is weakly well-defined.
- On $\mathcal{V}_{\Phi}(\mathcal{I})/\mathsf{Ker}\,D_{\Phi}$ one can introduce the inner product $\langle \xi, \eta \rangle_{\Phi} := \langle D_{\Phi}\xi, D_{\Phi}\eta \rangle.$

Reproducing Pairs

Examples:

- $\Phi = \{e_1, 2e_2, 1/3e_3, 4e_4...\}$ and $\Psi = \{e_1, 1/2e_2, 3e_3, 1/4e_4...\}$
- ullet cross admissiblility a) nonstationary Gabor systems b) wavelets on $\mathbb R$ or S^2

New spaces replacing $\ell^2(\mathcal{I})$ are needed:

- Let $\mathcal{V}_{\Phi}(\mathcal{I}) := \{ \xi : \mathcal{I} \to \mathbb{C} \text{ such that (1) holds} \},$ $\left| \sum_{k \in \mathcal{I}} \xi[k] \langle \phi_k, g \rangle \right| \le c \|g\|, \forall g \in \mathcal{H}. \tag{1}$
- \Rightarrow synthesis operator $D_{\Phi}\xi := \sum_{k \in \mathcal{I}} \xi[k]\phi_k$ is weakly well-defined.
- On $\mathcal{V}_{\Phi}(\mathcal{I})/\mathsf{Ker}\,D_{\Phi}$ one can introduce the inner product $\langle \xi, \eta \rangle_{\Phi} := \langle D_{\Phi}\xi, D_{\Phi}\eta \rangle.$

Gabor systems/ coherent states

Take the Weyl-Heisenberg group and consider the following representation on $L^2(\mathbb{R})$:

$$\pi(x,\omega)g(t) := e^{2\pi i\omega(t-x)}g(t-x), \ (x,\omega) \in \mathbb{R}^2$$

Gabor system: $G(g, a, b) := \{\pi(an, bm)g\}_{n,m \in \mathbb{Z}}$

- ullet For ab < 1 oversampling: \exists well-localized Gabor frames
- ullet Interesting case: critical density ab=1 (von Neumann lattice)

Theorem 2 (Amalgam Balian-Low Theorem (BLT))

If a Gabor system G(g, a, b) at critical density (ab=1) is a frame then either $g \notin W_0(\mathbb{R})$ or $\hat{g} \notin W_0(\mathbb{R})$, where

$$W_0(\mathbb{R}) := \Big\{ f \in C(\mathbb{R}) : \sum_{n \in \mathbb{Z}} \operatorname{ess\,sup}_{x \in [0,1]} |f(x+n)| < \infty \Big\}.$$

Gabor systems/ coherent states

Take the Weyl-Heisenberg group and consider the following representation on $L^2(\mathbb{R})$:

$$\pi(x,\omega)g(t) := e^{2\pi i\omega(t-x)}g(t-x), \ (x,\omega) \in \mathbb{R}^2$$

Gabor system: $G(g, a, b) := \{\pi(an, bm)g\}_{n, m \in \mathbb{Z}}$

- ullet For ab < 1 oversampling: \exists well-localized Gabor frames
- ullet Interesting case: critical density ab=1 (von Neumann lattice)

Theorem 2 (Amalgam Balian-Low Theorem (BLT))

If a Gabor system G(g, a, b) at critical density (ab=1) is a frame then either $g \notin W_0(\mathbb{R})$ or $\hat{g} \notin W_0(\mathbb{R})$, where

$$W_0(\mathbb{R}):=\Big\{f\in C(\mathbb{R}): \ \sum_{n\in\mathbb{Z}} \operatorname{ess\,sup}_{x\in[0,1]}|f(x+n)|<\infty\Big\}.$$

- We consider two cases: the reproducing partner is
 - a) another Gabor system (\leadsto Zak transform methods, more BLTs)
 - b) an arbitrary system (→ reproducing pairs result)
- ullet For b) we investigate the system $\mathcal{G}:=\mathcal{G}(arphi,1,1)$: integer time-frequency shifts of the Gaussian

$$\varphi(t) = 2^{1/4}e^{-\pi t^2}$$

→ classical coherent state system on the von Neumann lattice

Zak transform methods

Zak transform:

$$Zf(x,\omega) := \sum_{k \in \mathbb{Z}} f(x-k)e^{2\pi i\omega k}$$

Properties:

- $Z: L^2(\mathbb{R}) \to L^2([0,1]^2)$ is an isometric isomorphism
- ullet Diagonalization of Gabor frame operator: $Z(S_{g,\gamma}f)=\overline{Zg}\cdot Z_{\gamma}\cdot Z_{f}$

How to "trick" Balian-Low: Choose a nice window and calculate the dual (not well localized)

Choose
$$g \in L^2(\mathbb{R})$$
, s.t.: (i) $g, \hat{g} \in W_0(\mathbb{R})$, (ii) $1/Zg \in L^2([0,1]^2)$

$$\Rightarrow \gamma := Z^{-1}(1/\overline{Zg}) \in L^2(\mathbb{R}) \quad \& \quad S_{g,\gamma} = I$$

Example: for $(x, \omega) \in [0, 1]^2$ set

$$Zg(x,\omega) = e^{2\pi i x \cdot \omega} \omega^{1/4} (1-\omega)^{1/4}$$

Limits of Zak transform approach

Proposition 3 (Some extensions of the BLT)

Let $(G(g,1,1),G(\gamma,1,1))$ be a reproducing pair, then

- $g \notin M_2^2(\mathbb{R})$ and $\gamma \notin M_2^2(\mathbb{R})$ [Daubechies & Janssen, 93]
- ullet $g
 otin M_1^1(\mathbb{R})$ and $\gamma
 otin M_1^1(\mathbb{R})$

where
$$\|f\|_{M^p_s}^p:=\int_{\mathbb{R}^2}|\langle f,\pi(x,\omega)arphi
angle|^p(1+|x|+|\omega|)^{ps}dxd\omega$$

Idea of proofs: One shows that if g satisfies the property then $1/Zg \notin L^2([0,1]^2) \Rightarrow$ not a reproducing pair.

- ⇒ Rather mild decay on the TF-plane exclude the possibility of reproducing pairs consisting of **2 Gabor** systems
- \leadsto consider arbitrary dual systems

Canonical coherent states ${\cal G}$

Q1: Is the system \mathcal{G} complete in $L^2(\mathbb{R})$? (von Neumann) **Yes:** See [Perelomov 71, Bargmann et al., 71, Bacry et al., 75].

Q2: Is there a linear coefficient map $A: L^2(\mathbb{R}) \to \mathbb{C}^{\mathbb{Z} \times \mathbb{Z}}$, s.t.

$$f = \sum_{k,l \in \mathbb{Z}} (Af)[k,l] T_k M_l \varphi, \ \forall f \in L^2(\mathbb{R}),$$

with convergence in some sense? (Gabor)

Yes: See [Janssen, 81].

Q4: Is there a dual window $\gamma \in L^2(\mathbb{R})$ for the Gaussian φ , s.t.

$$f = \sum_{k,l \in \mathbb{Z}} \langle f, T_k M_l \gamma \rangle T_k M_l \varphi, \ \forall f \in L^2(\mathbb{R}) \ ?$$

No: Proposition 3.

Canonical coherent states ${\cal G}$

Q1: Is the system \mathcal{G} complete in $L^2(\mathbb{R})$? (von Neumann)

Yes: See [Perelomov 71, Bargmann et al., 71, Bacry et al., 75].

Q2: Is there a linear coefficient map $A: L^2(\mathbb{R}) \to \mathbb{C}^{\mathbb{Z} \times \mathbb{Z}}$, s.t.

$$f = \sum_{k,l \in \mathbb{Z}} (Af)[k,l] T_k M_l \varphi, \ \forall f \in L^2(\mathbb{R}),$$

with convergence in some sense? (Gabor)

Yes: See [Janssen, 81].

Q4: Is there a dual window $\gamma \in L^2(\mathbb{R})$ for the Gaussian φ , s.t.

$$f = \sum_{k,l \in \mathbb{Z}} \langle f, T_k M_l \gamma \rangle T_k M_l \varphi, \ \forall f \in L^2(\mathbb{R}) ?$$

No: Proposition 3.

Canonical coherent states $\mathcal G$

Q1: Is the system \mathcal{G} complete in $L^2(\mathbb{R})$? (von Neumann)

Yes: See [Perelomov 71, Bargmann et al., 71, Bacry et al., 75].

Q2: Is there a linear coefficient map $A: L^2(\mathbb{R}) \to \mathbb{C}^{\mathbb{Z} \times \mathbb{Z}}$, s.t.

$$f = \sum_{k,l \in \mathbb{Z}} (Af)[k,l] T_k M_l \varphi, \ \forall f \in L^2(\mathbb{R}),$$

with convergence in some sense? (Gabor)

Yes: See [Janssen, 81].

Q4: Is there a dual window $\gamma \in L^2(\mathbb{R})$ for the Gaussian φ , s.t.

$$f = \sum_{k,l \in \mathbb{Z}} \langle f, T_k M_l \gamma \rangle T_k M_l \varphi, \ \forall f \in L^2(\mathbb{R}) ?$$

No: Proposition 3.

New Question:

Q3: Can the coefficient map be calculated using inner products with an arbitrary family in $L^2(\mathbb{R})$, i.e., is there $\Psi:=\{\psi_{k,l}\}_{k,l\in\mathbb{Z}}\subset L^2(\mathbb{R})$, s.t.

$$f = \sum_{k,l \in \mathbb{Z}} \langle f, \psi_{k,l} \rangle T_k M_l \varphi, \ \forall f \in L^2(\mathbb{R}) ?$$

Equivalent formulations:

- Is there a reproducing partner for G?
- Is there a dual system for the upper semi-frame G?
- ullet Is there a dual system for the complete Bessel system \mathcal{G} ?

Existence of reproducing partners

Theorem 4 (Antoine, Trapani & S., 2016)

Let $\Phi = \{\phi_k\}_{k \in \mathcal{I}} \subset \mathcal{H}$ and $\mathcal{E} = \{e_k\}_{k \in \mathcal{I}}$ an ONB of \mathcal{H} . There exists Ψ , s.t. (Ψ, Φ) is a reproducing pair if and only if

(A) Ran
$$D_{\phi} = \mathcal{H}$$

(B) there exists a family $\{\xi_k\}_{k\in\mathcal{I}}\subset\mathcal{V}_{\Phi}(\mathcal{I})$, s.t.

$$D_{\Phi}\xi_k = e_k, \ \forall \ k \in \mathcal{I}, \quad and \quad \sum_{k \in \mathcal{I}} |\xi_k[n]|^2 < \infty, \ \forall \ n \in \mathcal{I}.$$

In particular, $\psi_n := \sum_{k \in \mathcal{T}} \xi_k[n] e_k$ gives a reproducing partner.

- (A) is not trivial: ∃ complete system, s.t. (A) does not hold
- Interpretation: (i) (A) \Leftrightarrow Q2, (B) \Rightarrow Q3 (ii) $\{\xi_k\}_{k\in\mathcal{I}}$ is an ONB of a RKHS w.r.t. $\langle\cdot,\cdot\rangle_{\Phi}$


```
\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \\ \cdots \quad \xi_{2}[-2] \quad \xi_{2}[-1] \quad \xi_{2}[0] \quad \xi_{2}[1] \quad \xi_{2}[2] \quad \cdots \quad \xi_{2} \\ \cdots \quad \xi_{1}[-2] \quad \xi_{1}[-1] \quad \xi_{1}[0] \quad \xi_{1}[1] \quad \xi_{1}[2] \quad \cdots \quad \xi_{1} : \quad D_{g}\xi_{1} = e_{1} \\ \cdots \quad \xi_{0}[-2] \quad \xi_{0}[-1] \quad \xi_{0}[0] \quad \xi_{0}[1] \quad \xi_{0}[2] \quad \cdots \quad \xi_{0} \\ \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots
```



```
\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \\ \cdots \quad \xi_{2}[-2] \quad \xi_{2}[-1] \quad \xi_{2}[0] \quad \xi_{2}[1] \quad \xi_{2}[2] \quad \cdots \quad \xi_{2}
\sum \quad \boxed{\cdots \quad \xi_{1}[-2] \quad \xi_{1}[-1] \quad \xi_{1}[0] \quad \xi_{1}[1] \quad \xi_{1}[2] \quad \cdots } \quad \xi_{1} \notin \ell^{2}(\mathbb{Z})
\cdots \quad \xi_{0}[-2] \quad \xi_{0}[-1] \quad \xi_{0}[0] \quad \xi_{0}[1] \quad \xi_{0}[2] \quad \cdots \quad \xi_{0}
\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots
```



```
\in \ell^2(\mathbb{Z})
```



```
\vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ \cdots \ \xi_{2}[-2] \ \xi_{2}[-1] \ \xi_{2}[0] \ \xi_{2}[1] \ \xi_{2}[2] \ \cdots \quad \xi_{2} \notin \ell^{2}(\mathbb{Z})
\cdots \xi_1[-2] \xi_1[-1] \xi_1[0] \xi_1[1] \xi_1[2] \cdots \xi_1 \notin \ell^2(\mathbb{Z})
\cdots \; \xi_0[-2] \; \xi_0[-1] \; \xi_0[0] \; \xi_0[1] \; \xi_0[2] \; \cdots \quad \xi_0 \notin \ell^2(\mathbb{Z})
              \in \ell^2(\mathbb{Z})
```



```
 \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \\ \cdots \quad \xi_{2}[-2] \quad \xi_{2}[-1] \quad \xi_{2}[0] \quad \xi_{2}[1] \quad \xi_{2}[2] \quad \cdots \quad \xi_{2} \notin \ell^{2}(\mathbb{Z}) \\ \cdots \quad \xi_{1}[-2] \quad \xi_{1}[-1] \quad \xi_{1}[0] \quad \xi_{1}[1] \quad \xi_{1}[2] \quad \cdots \quad \xi_{1} \notin \ell^{2}(\mathbb{Z}) \\ \cdots \quad \xi_{0}[-2] \quad \xi_{0}[-1] \quad \xi_{0}[0] \quad \xi_{0}[1] \quad \xi_{0}[2] \quad \cdots \quad \xi_{0} \notin \ell^{2}(\mathbb{Z}) 
                                                 \in \ell^2(\mathbb{Z})
```


Shift invariance

ullet Take a Gabor ONB, e.g. $\gamma=\chi_{[-1/2,1/2]}$. One has to solve for

$$D_{\mathcal{G}}\xi_{k,l}=\pi(k,l)\gamma=T_kM_l\gamma$$

• Let ξ_0 be s.t. $D_{\mathcal{G}}\xi_0=\gamma$, then

$$T_k M_l \gamma = T_k M_l D_{\mathcal{G}} \xi_0 = \sum_{n,m} \xi_0[n,m] T_{n+k} M_{m+k} \varphi$$
$$= \sum_{n,m} \xi_0[n-k,m-l] T_n M_m \varphi = D_{\mathcal{G}}(T_{k,l} \xi_0),$$

where $\mathcal{T}_{k,l}$ denotes the index shift operator.

Hence: For some $p_{k,l} \in \text{Ker } D_{\mathcal{G}}$, $\xi_{k,l}$ is given by

$$\xi_{k,l} = \mathcal{T}_{k,l}\xi_0 + p_{k,l}.$$

Bastiaans dual: Calculate ξ_0

Defining $\beta:=Z^{-1}(1/Z\varphi)$ yields Bastiaans dual window

$$\beta(t) = K \cdot e^{\pi t^2} \cdot \sum_{k > |t| - 1/2} (-1)^n e^{-\pi (k+1/2)^2} \notin L^2(\mathbb{R}),$$

[Janssen, 82]: Under some assumptions on $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ the coefficient map is given by:

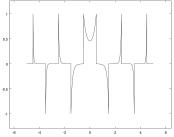


Figure: Bastiaans' dual window

(AC)(I, I) / (T M Q)

$$(Af)(k,l) = \langle f, T_k M_l \beta \rangle$$

Assumptions hold for γ

Thus, set $\xi_0[k,l] := \langle \gamma, T_k M_l \beta \rangle$

$$\Rightarrow D_{\mathcal{G}}\xi_0 = \gamma$$

Characterization of Ker $D_{\mathcal{G}}$

• Take a closer look at ξ_0 :

$$\xi_0[k,l] \simeq (1+k^2+l^2)^{-1}(-1)^{k+l}H_k$$

 H_k converges quickly \rightsquigarrow choose appropriate elements in Ker $D_{\mathcal{G}}!$

• [Janssen, 81]: Every $p \in \text{Ker } D_{\mathcal{G}}$ is of the form

$$p[n,m] = (-1)^{n+m} \sum_{0 \le s+t \le N} c_{s,t} \cdot n^s \cdot m^t,$$

ullet Use constant polynomials, i.e. $p_{k,l}[n,m]=(-1)^{n+m}c_{k,l}$, where.

$$c_{k,l} := (2\pi)^{-1} e^{-\pi/4} \operatorname{sgn}(k) \mathcal{F}(\mathcal{F}^{-1}(h_k)\varphi^{-1})[l],$$

where
$$h_k[I] = (-1)^{k+I}(k+iI)^{-1}$$
.

Conclusion

Then, for all $(n, m) \in \mathbb{Z}^2$

$$\sum_{k,l \in \mathbb{Z}} |\xi_{k,l}[n,m]|^2 = \sum_{k,l \in \mathbb{Z}} |\xi_0[n-k,m-l] + (-1)^{n+m} c_{k,l}|^2 < \infty,$$

which by Theorem 4 yields the result:

Theorem 5 (One result, multiple languages)

- There exists a reproducing partner for G.
- There exists a dual system for the classical coherent states sampled on the von Neumann lattice.
- ullet There exists a dual system for the complete Bessel sequence ${\cal G}.$
- The coefficient map A can be calculated using inner products.

Some plots of $\psi_{k,l}$

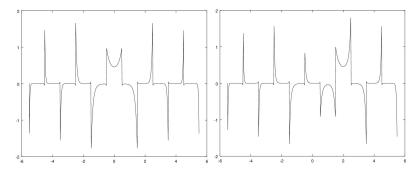


Figure : Left: $\psi_{0,0}$, Right: $\psi_{2,0}$

Some plots of $\psi_{k,l}$

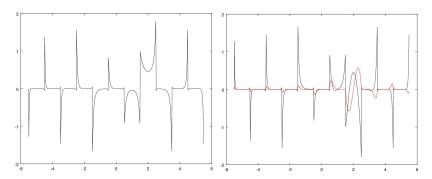


Figure : Left: $\psi_{2,0}$, Right: $\psi_{2,1}$

Thank you for your attention!

Questions, Comments...

Bibliography

References:

- [1] J.-P. Antoine, M. Speckbacher, and C. Trapani. Reproducing pairs of measurable functions. 2016 arxiv.org/abs/1505.04187
- [2] A.J.E.M. Janssen. Gabor representation of generalized functions. J. Math. Anal. Appl., 1981
- [3] A.J.E.M. Janssen. Bargmann transform, Zak transform, and coherent states. J. Math. Phys., 1982
- [4] M. Speckbacher and P. Balazs. Reproducing pairs and Gabor systems at critical density. 2016