Spacetime Replication of Quantum Information

Barry C. Sanders

Patrick Hayden, Sepehr Nezami, Grant Salton, Yadong Wu, Abdullah Khalid and Masoud Habibi

17 November 2016

- Generalize no-cloning to a relativistic setting.
- Establish quantum secret sharing as the underlying cryptographic protocol for state replication.
- Interpret spacetime replication as an adversarial game.
- Cast continuous-variable quantum secret sharing as a ramp quantum secret sharing scheme.

Spacetime replication of quantum information

$\mathrm{HW}(\mathrm{n}) times\mathrm{Sp}(2\mathrm{n},\mathbb{R})$			
$X(s)\coloneqq \exp{(\mathrm{i} s\cdot \hat{x})}$	$\mathcal{S}_k(r) \coloneqq \exp\left(\mathrm{i} r (\hat{x}_k \hat{p}_k + \hat{p}_k \hat{x}_k) ight)$		
$ extsf{P}(t) \coloneqq \exp\left(\mathrm{i}t\cdot oldsymbol{\hat{p}} ight)$	$ \operatorname{QND}_{jk}(g) \coloneqq \exp\left(\mathrm{i}g\hat{x}_{j}\hat{p}_{k} ight)$		
	$\operatorname{FT}_k := \exp(\mathrm{i} \frac{\pi}{4} (\hat{x}_k^2 + \hat{p}_k^2))$		

Bartlett Sanders Braunstein Nemoto Phys. Rev. Lett. 88 (2002) 10/b7sftd 4 / 26

Continuous-variable stabilizer error correction code

 $S \cup \mathcal{E}$: errors corrected by $S \leq HW(n)$

The replication game

Interactive protocol

Hayden May J. Phys. A 49 (2016) 10/bsfk

Spacetime replication is possible iff each pair of causal diamonds is causally connected.

Jeong Kim Lee Phys. Rev. A 64 (2001) 10/bpgqr2

Honest-prover strategies

- DV codeword-stabilized codes¹
- CV codeword-stabilized codes²
- (2,3) quantum secret sharing and teleportation codes

Cheating-prover strategies

- Return random state
- Return partial clone
- Return state prepared using knowledge from tomography
- ¹ Hayden May *J. Phys. A* **49** (2016) 10/bsfk
- ² Hayden Nezami Salton Sanders New J. Phys. 18 (2016) 10/bsfm

Hayden Nezami Salton Sanders New J. Phys. 18 (2016)

 $11 \, / \, 26$

$$\mathcal{C}_v \perp \mathcal{C}_A \Rightarrow s \cdot t = 0 \Rightarrow [X(s), P(t)] = 0$$

$$S = \langle X(\boldsymbol{s}_{23}), X(\boldsymbol{s}_{24}), X(\boldsymbol{s}_{34}), P(\boldsymbol{t}_2), P(\boldsymbol{t}_3) \rangle$$

$$|x\rangle_{enc} = \int \mathrm{d}y \mathrm{d}z \, |x+z, x+y, x+y+z, y-z, y, z\rangle$$

$$oldsymbol{s}_{23}\cdotoldsymbol{\hat{x}}\left|x
ight
angle_{ ext{enc}}=\left(\hat{x}_{1}-\hat{x}_{2}+\hat{x}_{4}
ight)\left|x
ight
angle_{ ext{enc}}=0$$

A five-mode ad hoc code

 $S = \langle X(s_1), X(s_2), P(t_1), P(t_2) \rangle$

$$\begin{split} |x\rangle_{\mathsf{enc}} &:= \int \mathrm{d}y \mathrm{d}z \, |x+y, y-x, y-z, z+y, z\rangle \\ s_1 \cdot \hat{x} \, |x\rangle_{\mathsf{enc}} &= \left(-\hat{x}_1 - \hat{x}_2 + \hat{x}_3 + \hat{x}_4\right) |x\rangle_{\mathsf{enc}} = 0 \end{split}$$

Encoding and decoding

Optical implementation

- Design algorithm to convert a complete directed graph to optical circuits for implementation.
- Establish upper bounds on resources required to simulate spacetime replication.
- Three primitive:
 - (2,3) quantum secret sharing
 - Teleportation
 - Graph decomposition algorithm

The (2,3) QSS primitive: request

The (2,3) QSS primitive: reveal

The teleportation primitive

Graph decomposition primitive

Quantum secret sharing + teleportation codes

Graph decomposition primitive

(2,3) continuous-variable quantum ramp secret sharing

$Player \to$	$\sum_{\ell \in \mathscr{L}} \left[(2k_\ell - 3) \lceil d_\ell \log_2 3 \rceil + 2k_\ell - 4 ight]$ bits
Request agents	
Request agents \rightarrow	$\sum_{\ell\in\mathscr{L}}(k_\ell-2)(k_\ell+1)$ reals and
Reveal agents	$1 + \sum_{\ell \in \mathscr{L}} \left[\frac{(k_{\ell} - 2)(k_{\ell} + 1)}{2} \left\lceil d_{\ell} \log_2 3 \right\rceil + \left\lceil d_{\ell} \log_2 3 \right\rceil \right] \text{ bits}$

$\begin{array}{l} Player \rightarrow \\ Request \ agents \end{array}$	$ \mathscr{L} + \sum_{\ell \in \mathscr{L}} 2(k_\ell - 2)$ fields
$\begin{array}{l} {\sf Request \ agents} \rightarrow \\ {\sf Reveal \ agents} \end{array}$	$\sum_{\ell \in \mathscr{L}} min[k_\ell - 1, 2]$ fields

Single-mode squeezing	$3(\mathscr{N} - \mathscr{L}) + 2\sum_{\ell \in \mathscr{L}} (k_{\ell} - 2)$
Homodyne measurements	$ \mathscr{N} - \mathscr{L} + 2\sum_{\ell \in \mathscr{L}} (k_\ell - 2)$

Lance Symul Bowen Tyc Sanders Lam New J. Phys. 5 (2003) 10/c5zggd

Comparison between ad hoc code and QSS&T code

3>	$\langle 3 \rangle \longrightarrow$	
1		
1		$\langle 2 \rangle$

	Ad hoc code	QSS&T scheme
Single-mode squeezing	9	5
Homodyne measurements	4	3

		Ad hoc code	QSS&T scheme
Quantum	$Alice \to Request$	5 fields	5 fields
	$Request \to Reveal$	5 fields	4 fields
Classical	$Alice \to Request$	3 bits	12 bits
	$Request \to Reveal$	5 bits	4 reals and 12 bits