Fermionic coherent states in infinite dimensions

Robert Oeckl

Centro de Ciencias Matemáticas Universidad Nacional Autónoma de México Morelia, Mexico

Coherent States and their Applications CIRM, Marseille, France 18 November 2016

Coherent states

A coherent state

- provides a good approximation to a classical state.
- minimizes joint uncertainty relations.
- arises trough "shifting" of a ground state.
- diagonalizes annihilation operators.
- evolves to a coherent state.

Coherent states

- span a dense subspace of the state space.
- satisfy completeness relations.
- factorize correlation functions.
- have reproducing properties.

(Not all of these need apply!)

▶ < 프 ▶ < 프 ▶

Bosonic coherent states

Let *L* be a the linear **phase space** of a simple **classical system**. *L* carries an anti-symmetric **symplectic form** $\omega : L \times L \rightarrow \mathbb{R}$. To **quantize** the system we make *L* into a **complex Hilbert space** with inner product $\{\cdot, \cdot\}$ so that its imaginary part coincides with 2ω .

The Hilbert space \mathcal{H} of the quantum system is then the space of complex **square-integrable** and **holomorphic** wave functions on *L*.

Bosonic coherent states

Let *L* be a the linear **phase space** of a simple **classical system**. *L* carries an anti-symmetric **symplectic form** $\omega : L \times L \rightarrow \mathbb{R}$. To **quantize** the system we make *L* into a **complex Hilbert space** with inner product $\{\cdot, \cdot\}$ so that its imaginary part coincides with 2ω .

The Hilbert space \mathcal{H} of the quantum system is then the space of complex **square-integrable** and **holomorphic** wave functions on *L*.

For each $\xi \in L$ there is a **coherent state** $K_{\xi} \in \mathcal{H}$ with wave function,

$$K_{\xi}(\phi) = \exp\left(\frac{1}{2}\{\xi,\phi\}\right).$$

 K_0 is the ground state or **vacuum**.

Bosonic coherent states

These have properties,

$$\langle K_{\xi}, \psi \rangle = \psi(\xi)$$
 (reproducing property),

$$\langle K_{\xi}, K_{\xi'} \rangle = \exp\left(\frac{1}{2}\{\xi', \xi\}\right)$$
 (inner product),

$$\langle \psi, \eta \rangle = \int_{\hat{L}} \langle \psi, K_{\xi} \rangle \langle K_{\xi}, \eta \rangle \, d\nu(\xi)$$
 (completeness),

$$a_{\phi}K_{\xi} = \frac{1}{\sqrt{2}}\{\xi, \phi\}K_{\xi}$$
 (diagonalizing),

$$\exp\left(\frac{1}{\sqrt{2}}a_{\xi}^{\dagger}\right)K_{0} = K_{\xi}$$
 (shift of vacuum).

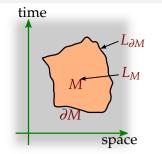
If $\xi(t)$ describes the **classical evolution** in phase space and $U(t_1, t_2)$ the **quantum evolution operator** from time t_1 to time t_2 , then

$$U(t_1, t_2)K_{\xi(t_1)} = K_{\xi(t_2)}.$$

Robert Oeckl (CCM-UNAM)

Fermionic coherent states

Amplitude formula for coherent states

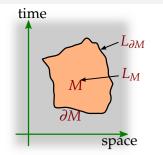


Linear field theory

- interior solutions L_M
- boundary solutions $L_{\partial M}$
- $J: L_{\partial M} \to L_{\partial M}$ complex structure
- $L_{\partial M} = L_M \oplus JL_M$

For $\xi \in L_{\partial M}$ decompose $\xi = \xi^c + \xi^n$ where $\xi^c \in L_M$ classically allowed and $\xi^n \in JL_M$ classically forbidden.

Amplitude formula for coherent states



Linear field theory

- interior solutions L_M
- boundary solutions $L_{\partial M}$
- $J: L_{\partial M} \to L_{\partial M}$ complex structure
- $L_{\partial M} = L_M \oplus JL_M$

For $\xi \in L_{\partial M}$ decompose $\xi = \xi^c + \xi^n$ where $\xi^c \in L_M$ classically allowed and $\xi^n \in JL_M$ classically forbidden.

The amplitude for the associated normalized coherent state \tilde{K}_{ξ} is:

$$\rho_M(\tilde{K}_{\xi}) = \exp\left(i\,\omega_{\partial M}(\xi^n,\xi^c) - \frac{1}{2}g_{\partial M}(\xi^n,\xi^n)\right)$$

[RO 2010] This has a simple and compelling physical interpretation.

Robert Oeckl (CCM-UNAM)

Fermionic coherent states

2016-11-18 5 / 29

An analogous construction in terms of shift operators for fermions leads to **Grassmann coherent states**, parametrized by **Grassmann numbers**. These are useful for formal manipulations with the fermionic path integral.

But, they are elements of an **extension** of the Hilbert space with Grassmann numbers. They are **not states**.

Group theoretic approach to coherent states

[Gilmore, Perelomov]

Suppose there is a "dynamical group" *G* acting unitarily on the Hilbert space \mathcal{H} of states. Choose a special state $\psi_0 \in \mathcal{H}$, e.g., the ground state. The **coherent states** are then the states generated from ψ_0 by application of *G*. Write:

 $\psi_g := g \triangleright \psi_0 \qquad \text{for } g \in G.$

Group theoretic approach to coherent states

[Gilmore, Perelomov]

Suppose there is a "dynamical group" *G* acting unitarily on the Hilbert space \mathcal{H} of states. Choose a special state $\psi_0 \in \mathcal{H}$, e.g., the ground state. The **coherent states** are then the states generated from ψ_0 by application of *G*. Write:

 $\psi_g := g \triangleright \psi_0 \qquad \text{for } g \in G.$

Let $H \subseteq G$ be the subgroup that maps ψ_0 to a multiple of itself. Then the space of coherent states is (projectively) equivalent to the **homogeneous space** *G*/*H*.

$$\psi_{gh} = \lambda_h \psi_g$$
 for $g \in G$, $h \in H$.

This yields a rich **geometric structure** for coherent states. If \mathcal{H} is finite-dimensional, G is usually a **Lie group**. Often G arises by **exponentiation** of a **Lie algebra** g.

Robert Oeckl (CCM-UNAM)

Fermionic coherent states

2016-11-18 7 / 29

The CAR-algebra

Start with a complex Hilbert space *L* with inner product {·, ·}. ("one-particle Hilbert space" or "space of classical solutions")

The state space of **fermionic quantum field theory** is the fermionic **Fock space** \mathcal{F} over *L*. For each $\xi \in L$ there is an

- **annihilation operator** a_{ξ} and a
- creation operator a_{ξ}^{\dagger} acting on \mathcal{F} .

These generate the unital canonical anti-commutation relation (CAR) algebra \mathcal{A} with

• linearity relations

$$a_{\xi+\tau} = a_{\xi} + a_{\tau}, \quad a_{\lambda\xi} = \lambda a_{\xi},$$

and anti-commutation relations

$$a_{\xi}a_{\tau} + a_{\tau}a_{\xi} = 0, \quad a_{\xi}^{\dagger}a_{\tau} + a_{\tau}a_{\xi}^{\dagger} = \{\xi, \tau\} \mathbf{1}.$$

< ロ > < 同 > < 三 > < 三 > 三 三 < つ へ の</p>

The CAR-algebra is a \mathbb{Z} -graded (integer-graded) algebra by declaring

- an **annihilation operator** to have **degree** –1,
- a creation operator to have degree +1.
- We denote the subalgebras of \mathcal{A}
 - of elements of degree 0 by \mathcal{A}_0 ,
 - of elements of even degree by \mathcal{R}_{e} .

We denote the algebras completed in the operator norm topology by $\mathcal{A}', \mathcal{A}'_0, \mathcal{A}'_e$.

Let $\mathcal{T}(L)$ be the algebra of **trace class operators** on *L*. Given $\lambda \in \mathcal{T}(L)$ define the operator $\hat{\lambda} : \mathcal{F} \to \mathcal{F}$ by,

$$\hat{\lambda} := \frac{1}{2} \sum_{i \in I} \left(a_{\zeta_i}^{\dagger} a_{\lambda(\zeta_i)} - a_{\lambda(\zeta_i)} a_{\zeta_i}^{\dagger} \right) = \sum_{i \in I} a_{\zeta_i}^{\dagger} a_{\lambda(\zeta_i)} - \frac{1}{2} \operatorname{tr}_L(\lambda) \mathbf{1},$$

where $\{\zeta_i\}_{i \in I}$ is an ON-basis of *L*. This is also called a **fermionic current** operator.

▲□▶▲圖▶▲필▶▲필▶ 필目 釣요@

Let $\mathcal{T}(L)$ be the algebra of **trace class operators** on *L*. Given $\lambda \in \mathcal{T}(L)$ define the operator $\hat{\lambda} : \mathcal{F} \to \mathcal{F}$ by,

$$\hat{\lambda} := \frac{1}{2} \sum_{i \in I} \left(a_{\zeta_i}^{\dagger} a_{\lambda(\zeta_i)} - a_{\lambda(\zeta_i)} a_{\zeta_i}^{\dagger} \right) = \sum_{i \in I} a_{\zeta_i}^{\dagger} a_{\lambda(\zeta_i)} - \frac{1}{2} \operatorname{tr}_L(\lambda) \mathbf{1},$$

where $\{\zeta_i\}_{i \in I}$ is an ON-basis of *L*. This is also called a **fermionic current** operator. These operators form a **complex Lie algebra** $\mathfrak{h}^{\mathbb{C}}$ with the Lie bracket given by the commutator:

$$[\hat{\lambda}, \hat{\lambda}'] = \hat{\lambda''},$$
 with $\lambda'' = \lambda'\lambda - \lambda\lambda'.$

Restricting to **skew-adjoint** operators $\hat{\lambda}$ generated by **skew-adjoint** $\lambda \in \mathcal{T}(L)$ yields a **real Lie algebra** \mathfrak{h} . If dim L = n, then $\mathfrak{h} = \mathfrak{u}(n; \mathbb{R})$, $\mathfrak{h}^{\mathbb{C}} = \mathfrak{u}(n; \mathbb{C})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 のなる

Let $\mathcal{T}(L)$ be the algebra of **trace class operators** on *L*. Given $\lambda \in \mathcal{T}(L)$ define the operator $\hat{\lambda} : \mathcal{F} \to \mathcal{F}$ by,

$$\hat{\lambda} := \frac{1}{2} \sum_{i \in I} \left(a_{\zeta_i}^{\dagger} a_{\lambda(\zeta_i)} - a_{\lambda(\zeta_i)} a_{\zeta_i}^{\dagger} \right) = \sum_{i \in I} a_{\zeta_i}^{\dagger} a_{\lambda(\zeta_i)} - \frac{1}{2} \operatorname{tr}_L(\lambda) \mathbf{1},$$

where $\{\zeta_i\}_{i \in I}$ is an ON-basis of *L*. This is also called a **fermionic current** operator. These operators form a **complex Lie algebra** $\mathfrak{h}^{\mathbb{C}}$ with the Lie bracket given by the commutator:

$$[\hat{\lambda}, \hat{\lambda}'] = \hat{\lambda''},$$
 with $\lambda'' = \lambda'\lambda - \lambda\lambda'.$

Restricting to **skew-adjoint** operators $\hat{\lambda}$ generated by **skew-adjoint** $\lambda \in \mathcal{T}(L)$ yields a **real Lie algebra** \mathfrak{h} . If dim L = n, then $\mathfrak{h} = \mathfrak{u}(n; \mathbb{R})$, $\mathfrak{h}^{\mathbb{C}} = \mathfrak{u}(n; \mathbb{C})$.

Proposition

 $\mathcal{H}'_0 = \mathrm{U}'(\mathfrak{h}^{\mathbb{C}}) = \mathrm{U}'(\mathfrak{h})^{\mathbb{C}}.$

A real linear map $\Lambda : L \to L$ is anti-symmetric iff for all $\xi, \tau \in L$,

 $\{\xi, \Lambda \tau\} = -\{\tau, \Lambda \xi\}.$

Then Λ is **conjugate linear**, not complex linear.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト ショー ション

A real linear map $\Lambda : L \to L$ is anti-symmetric iff for all $\xi, \tau \in L$,

 $\{\xi,\Lambda\tau\}=-\{\tau,\Lambda\xi\}.$

Then Λ is **conjugate linear**, not complex linear. Moreover, Λ^2 is **complex linear**, **self-adjoint**, and **(strictly) negative**,

$$\{\xi, \Lambda^2 \tau\} = -\{\Lambda \tau, \Lambda \xi\} = \{\Lambda^2 \xi, \tau\}, \{\xi, \Lambda^2 \xi\} = -\{\Lambda \xi, \Lambda \xi\} \le 0.$$

Let $\Xi(L)$ be the vector space of **anti-symmetric maps** $\Lambda : L \to L$ such that Λ^2 is **trace class**.

Given $\Lambda \in \Xi(L)$ define the operator $\hat{\Lambda} : \mathcal{F} \to \mathcal{F}$,

$$\hat{\Lambda} := \frac{1}{2} \sum_{i \in I} a_{\zeta_i} a_{\Lambda(\zeta_i)}.$$

These operators form a complex **abelian Lie algebra** \mathfrak{m}_+ .

Given $\Lambda \in \Xi(L)$ define the operator $\hat{\Lambda} : \mathcal{F} \to \mathcal{F}$,

$$\hat{\Lambda} := \frac{1}{2} \sum_{i \in I} a_{\zeta_i} a_{\Lambda(\zeta_i)}.$$

These operators form a complex **abelian Lie algebra** \mathfrak{m}_+ . The adjoint of $\hat{\Lambda}$ is,

$$\hat{\Lambda}^{\dagger} = \frac{1}{2} \sum_{i \in I} a^{\dagger}_{\Lambda(\zeta_i)} a^{\dagger}_{\zeta_i}.$$

These operators form a complex **abelian Lie algebra** \mathfrak{m}_- . Set $\mathfrak{m}^{\mathbb{C}} := \mathfrak{m}_+ \oplus \mathfrak{m}_-$. Let \mathfrak{m} be the real subspace of **skew-adjoint** operators of the form $\hat{\Lambda} - \hat{\Lambda}^{\dagger}$.

Robert Oeckl (CCM-UNAM)

Fermionic coherent states

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 わなび

Combining $\mathfrak{g}_{e}^{\mathbb{C}} := \mathfrak{h}^{\mathbb{C}} \oplus \mathfrak{m}^{\mathbb{C}}$ yields a complex **Lie algebra** with additional relations,

$[\hat{\lambda},\hat{\Lambda}]=\hat{\Lambda'},$	with	$\Lambda' = -\lambda\Lambda - \Lambda\lambda^*$
$[\hat{\lambda},\hat{\Lambda}^{\dagger}]=\hat{\Lambda'}^{\dagger},$	with	$\Lambda' = \lambda^* \Lambda + \Lambda \lambda$
$[\hat{\Lambda'},\hat{\Lambda}^{\dagger}]=\hat{\lambda},$	with	$\lambda = \Lambda' \Lambda.$

 $g_e := \mathfrak{h} \oplus \mathfrak{m}$ is the real Lie subalgebra of skew-adjoint operators. If dim L = n, then $g_e = \mathfrak{so}(2n; \mathbb{R}), g_e^{\mathbb{C}} = \mathfrak{so}(2n; \mathbb{C}).$

Combining $\mathfrak{g}_{e}^{\mathbb{C}} := \mathfrak{h}^{\mathbb{C}} \oplus \mathfrak{m}^{\mathbb{C}}$ yields a complex **Lie algebra** with additional relations,

$[\hat{\lambda},\hat{\Lambda}]=\hat{\Lambda'},$	with	$\Lambda' = -\lambda\Lambda - \Lambda\lambda^*$
$[\hat{\lambda}, \hat{\Lambda}^{\dagger}] = \hat{\Lambda'}^{\dagger},$	with	$\Lambda' = \lambda^* \Lambda + \Lambda \lambda$
$[\hat{\Lambda'},\hat{\Lambda}^{\dagger}]=\hat{\lambda},$	with	$\lambda = \Lambda' \Lambda.$

 $g_e := \mathfrak{h} \oplus \mathfrak{m}$ is the real Lie subalgebra of skew-adjoint operators.

If dim L = n, then $\mathfrak{g}_e = \mathfrak{so}(2n; \mathbb{R})$, $\mathfrak{g}_e^{\mathbb{C}} = \mathfrak{so}(2n; \mathbb{C})$.

Proposition

 $\mathcal{A}'_{\mathrm{e}} = \mathrm{U}'(\mathfrak{g}_{\mathrm{e}}^{\mathbb{C}}) = \mathrm{U}'(\mathfrak{g}_{\mathrm{e}})^{\mathbb{C}}.$

 \mathfrak{n}_+ be the complex vector space spanned by the **annihilation operators**, \mathfrak{n}_- be the complex vector space spanned by the **creation operators**. Set $\mathfrak{n}^{\mathbb{C}} := \mathfrak{n}_+ \oplus \mathfrak{n}_-$. Define $\hat{\xi} := 1/\sqrt{2}a_{\xi}$ and note $\hat{\xi}^{\dagger} = 1/\sqrt{2}a_{\xi}^{\dagger}$. Set \mathfrak{n} to be the **real subspace** of **skew-adjoint** operators of the form $\hat{\xi} - \hat{\xi}^{\dagger}$.

The direct sum $g := \mathfrak{h} \oplus \mathfrak{m} \oplus \mathfrak{n}$ is a **real Lie algebra** of **skew-adjoint** operators and $g^{\mathbb{C}} = \mathfrak{h}^{\mathbb{C}} \oplus \mathfrak{m}^{\mathbb{C}} \oplus \mathfrak{n}^{\mathbb{C}}$ is its **complexification**.

If dim L = n, then $\mathfrak{g} = \mathfrak{so}(2n + 1; \mathbb{R})$, $\mathfrak{g}^{\mathbb{C}} = \mathfrak{so}(2n + 1; \mathbb{C})$.

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖圖 のQ@

The dynamical Lie algebras: full

The additional relations are,

$$\begin{aligned} [\hat{\lambda}, \hat{\xi}] &= \hat{\xi}', \\ [\hat{\lambda}, \hat{\xi}^{\dagger}] &= \hat{\xi}'^{\dagger}, \\ [\hat{\Lambda}^{\dagger}, \hat{\xi}] &= \hat{\xi}'^{\dagger}, \\ [\hat{\Lambda}, \hat{\xi}^{\dagger}] &= \hat{\xi}', \\ [\hat{\xi}, \hat{\xi}'] &= \hat{\Lambda}, \\ [\hat{\xi}^{\dagger}, \hat{\xi}'^{\dagger}] &= \hat{\Lambda}^{\dagger}, \\ [\hat{\xi}^{\dagger}, \hat{\xi}'] &= \hat{\lambda}, \end{aligned}$$

with
$$\xi' = -\lambda \xi$$
,
with $\xi' = \lambda^* \xi$,
with $\xi' = \Lambda \xi$,
with $\xi' = -\Lambda \xi$,
with $\Lambda = \xi' \{\cdot, \xi\} - \xi \{\cdot, \xi'\}$,
with $\Lambda = \xi \{\cdot, \xi'\} - \xi' \{\cdot, \xi\}$,
with $\lambda = \xi' \{\xi, \cdot\}$.

Robert Oeckl (CCM-UNAM)

2016-11-18 15/29

The dynamical Lie algebras: full

The additional relations are,

$$\begin{aligned} [\hat{\lambda}, \hat{\xi}] &= \hat{\xi}', \\ [\hat{\lambda}, \hat{\xi}^{\dagger}] &= \hat{\xi}'^{\dagger}, \\ [\hat{\Lambda}^{\dagger}, \hat{\xi}] &= \hat{\xi}'^{\dagger}, \\ [\hat{\Lambda}, \hat{\xi}^{\dagger}] &= \hat{\xi}', \\ [\hat{\xi}, \hat{\xi}'] &= \hat{\Lambda}, \\ [\hat{\xi}^{\dagger}, \hat{\xi}'^{\dagger}] &= \hat{\Lambda}^{\dagger}, \\ [\hat{\xi}^{\dagger}, \hat{\xi}'] &= \hat{\lambda}, \end{aligned}$$

with
$$\xi' = -\lambda \xi$$
,
with $\xi' = \lambda^* \xi$,
with $\xi' = \Lambda \xi$,
with $\xi' = -\Lambda \xi$,
with $\Lambda = \xi' \{\cdot, \xi\} - \xi \{\cdot, \xi'\}$,
with $\Lambda = \xi \{\cdot, \xi'\} - \xi' \{\cdot, \xi\}$,
with $\lambda = \xi' \{\xi, \cdot\}$.

Proposition

$$\mathcal{A}' = \mathrm{U}'(\mathfrak{g}^{\mathbb{C}}) = \mathrm{U}'(\mathfrak{g})^{\mathbb{C}}$$

Robert Oeckl (CCM-UNAM)

Fermionic coherent states

2016-11-18 15 / 29

Let $H^{\mathbb{C}}$ be the exponential of $\mathfrak{h}^{\mathbb{C}}$, i.e, the set of operators on \mathcal{F} of the form $\exp(\hat{\lambda})$ for $\lambda \in \mathcal{T}(L)$. Denote by H the restriction to λ **skew-adjoint**. H consists of **unitary** operators.

Proposition

 $H^{\mathbb{C}}$ is a group: Given $\lambda_1, \lambda_2 \in \mathcal{T}(L)$ there is $\lambda_3 \in \mathcal{T}(L)$ s.t., $\exp(\hat{\lambda}_1) \exp(\hat{\lambda}_2) = \exp(\hat{\lambda}_3)$. Similarly, *H* is a group.

<ロ> <同> <同> <日> <同> <日> <同> <日> <同> <日</p>

Let $H^{\mathbb{C}}$ be the exponential of $\mathfrak{h}^{\mathbb{C}}$, i.e, the set of operators on \mathcal{F} of the form $\exp(\hat{\lambda})$ for $\lambda \in \mathcal{T}(L)$. Denote by *H* the restriction to λ **skew-adjoint**. *H* consists of **unitary** operators.

Proposition

 $H^{\mathbb{C}}$ is a group: Given $\lambda_1, \lambda_2 \in \mathcal{T}(L)$ there is $\lambda_3 \in \mathcal{T}(L)$ s.t., $\exp(\hat{\lambda}_1) \exp(\hat{\lambda}_2) = \exp(\hat{\lambda}_3)$. Similarly, *H* is a group.

Here, *H* is the **compact Lie group** U(n) if *L* is finite-dimensional of dimension *n*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 のなる

The dynamical group

Define $G_{alg}^{\mathbb{C}}$ to be the group consisting of all **finite products of exponentials** of elements of $\mathfrak{g}^{\mathbb{C}}$ as operators on \mathcal{F} . Let $G_{alg}^{\prime\mathbb{C}}$ be the completion of $G_{alg}^{\mathbb{C}}$ in the operator norm topology. Define $G^{\mathbb{C}}$ as the intersection of $G_{alg}^{\prime\mathbb{C}}$ with the **invertible operators** on \mathcal{F} .

Proposition

$$G^{\mathbb{C}}$$
 is a group and the subgroup $G_{\text{alg}}^{\mathbb{C}} \subseteq G^{\mathbb{C}}$ is dense.

Define *G* to the subgroup of $G^{\mathbb{C}}$ consisting of **unitary** operators.

If *L* is finite-dimensional of dimension *n*, *G* is isomorphic to the compact Lie group SO(2n + 1).

(日)

The dynamical group: special subgroups

Set $\mathfrak{p}_+ := \mathfrak{m}_+ \oplus \mathfrak{n}_+$ and $\mathfrak{p}_- := \mathfrak{m}_- \oplus \mathfrak{n}_-$. Define P_-, P_+ to be the image of the **exponential map** applied to \mathfrak{p}_- and \mathfrak{p}_+ respectively.

Lemma

Let $\xi_1, \xi_2 \in L$ and $\Lambda_1, \Lambda_2 \in \Xi(L)$. Define $\Lambda' := \xi_2\{\cdot, \xi_1\} - \xi_1\{\cdot, \xi_2\}$. Then $\Lambda' \in \Xi(L)$ and,

$$\exp\left(\hat{\Lambda}_1 + \hat{\xi}_1\right)\exp\left(\hat{\Lambda}_2 + \hat{\xi}_2\right) = \exp\left(\hat{\Lambda}_1 + \hat{\Lambda}_2 + \frac{1}{2}\hat{\Lambda}' + \hat{\xi}_1 + \hat{\xi}_2\right).$$

Proposition

$$P_-$$
, P_+ are subgroups of $G^{\mathbb{C}}$.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト ショー ション

Decomposition of the dynamical group

The dynamical Lie algebra decomposes as $\mathfrak{g}^{\mathbb{C}} = \mathfrak{p}_{-} \oplus \mathfrak{h}^{\mathbb{C}} \oplus \mathfrak{p}_{+}$. This has an analogue in the group.

Decomposition Theorem

The map

$$P_- \times H^{\mathbb{C}} \times P_+ \to G^{\mathbb{C}}$$

given by the product in $G^{\mathbb{C}}$ is injective and its image dense in the operator norm topology.

<ロ> <同> <同> <三> <三> <三> <三</p>

Decomposition of the dynamical group

The dynamical Lie algebra decomposes as $\mathfrak{g}^{\mathbb{C}} = \mathfrak{p}_{-} \oplus \mathfrak{h}^{\mathbb{C}} \oplus \mathfrak{p}_{+}$. This has an analogue in the group.

Decomposition Theorem

The map

$$P_- \times H^{\mathbb{C}} \times P_+ \to G^{\mathbb{C}}$$

given by the product in $G^{\mathbb{C}}$ is injective and its image dense in the operator norm topology.

For $g \in G^{\mathbb{C}}$ and $\epsilon > 0$ there is

$$g' = \exp\left(\hat{\Lambda}^{\dagger} + \hat{\xi}^{\dagger}\right) \exp\left(\hat{\lambda}\right) \exp\left(\hat{\Lambda}' + \hat{\xi}'\right).$$

with $||g' - g|| < \epsilon$.

Denote the image of the map by $G_{dec'}^{\mathbb{C}}$ its intersection with *G* by G_{dec} .

Let $\psi_0 \in \mathcal{F}$ be the standard **vacuum state**. The Decomposition Theorem almost implements **normal ordering**, adapted to evaluate the action of $G^{\mathbb{C}}$ on ψ_0 . The subgroup $P_+ \subset G^{\mathbb{C}}$ acts trivially, while $H^{\mathbb{C}}$ acts by multiplication with a scalar. Explicitly,

$$\exp\left(\hat{\Lambda}^{\dagger} + \hat{\xi}^{\dagger}\right) \exp\left(\hat{\lambda}\right) \exp\left(\hat{\Lambda}' + \hat{\xi}'\right) \psi_{0}$$
$$= \exp\left(-\frac{1}{2}\operatorname{tr}_{L}(\lambda)\right) \exp\left(\hat{\Lambda}^{\dagger} + \hat{\xi}^{\dagger}\right) \psi_{0}.$$

The states so obtained are the **coherent states**.

Robert Oeckl (CCM-UNAM)

Fermionic coherent states

Holomorphic approach

Start with the complexified dynamical group $G^{\mathbb{C}}$, even though it does not act unitarily. As we have seen, the subgroup mapping ψ_0 to a multiple of itself is generated by P_+ and $H^{\mathbb{C}}$. Call this subgroup X_+ . Then, **coherent states** are in correspondence with elements of the **homogeneous space** $G^{\mathbb{C}}/X_+$. Start with the complexified dynamical group $G^{\mathbb{C}}$, even though it does not act unitarily. As we have seen, the subgroup mapping ψ_0 to a multiple of itself is generated by P_+ and $H^{\mathbb{C}}$. Call this subgroup X_+ . Then, **coherent states** are in correspondence with elements of the **homogeneous space** $G^{\mathbb{C}}/X_+$.

However, there is a **phase ambiguity** in identifying an element of $G^{\mathbb{C}}/X_+$ with a coherent state due to the action of X_+ in terms of phase factors. To fix this we choose a **representative** in each equivalence class. From the complex Decomposition Theorem we can do this by simply restricting to the subgroup $P_- \subset G^{\mathbb{C}}_{dec}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

We have identified coherent states with elements of P_- . P_- arises by **exponentiation** from the complex Lie algebra \mathfrak{p}_- . Use the latter to **parametrize coherent states**. Given $\Lambda \in \Xi(L)$ and $\xi \in L$, set

$$K: \mathfrak{p}_{-} \to \mathcal{F}, \quad (\Lambda, \xi) \mapsto \exp\left(\hat{\Lambda}^{\dagger} + \hat{\xi}^{\dagger}\right) \psi_{0}.$$

Robert Oeckl (CCM-UNAM)

Properties of p_-

Since *G* is compact (at least in the finite-dimensional case), its Lie algebra \mathfrak{g} carries a **Killing form** yielding a positive definite real inner product. This extends to a positive definite sesquilinear inner product on the complexification $\mathfrak{g}^{\mathbb{C}}$, making it into a **complex Hilbert space**. Explicitly, this **inner product** is,

$$\langle \langle \hat{\lambda_1} + \hat{\Lambda_1}^{\dagger} + \hat{\Lambda_1}' + \hat{\xi_1}^{\dagger} + \hat{\xi_1}', \hat{\lambda_2} + \hat{\Lambda_2}^{\dagger} + \hat{\Lambda_2}' + \hat{\xi_2}^{\dagger} + \hat{\xi_2}' \rangle \rangle = 2 \operatorname{tr}_L(\lambda_1^*\lambda_2) - \operatorname{tr}_L(\Lambda_2'\Lambda_1') - \operatorname{tr}_L(\Lambda_1\Lambda_2) + 2\{\xi_2,\xi_1\} + 2\{\xi_1',\xi_2'\}.$$

 $\mathfrak{p}_{-} \subset \mathfrak{g}^{\mathbb{C}}$ is thus also a complex Hilbert space.

Properties of p_{-}

Since *G* is compact (at least in the finite-dimensional case), its Lie algebra \mathfrak{g} carries a **Killing form** yielding a positive definite real inner product. This extends to a positive definite sesquilinear inner product on the complexification $\mathfrak{g}^{\mathbb{C}}$, making it into a **complex Hilbert space**. Explicitly, this **inner product** is,

$$\langle \langle \hat{\lambda_1} + \hat{\Lambda_1}^{\dagger} + \hat{\Lambda_1}' + \hat{\xi_1}^{\dagger} + \hat{\xi_1}', \hat{\lambda_2} + \hat{\Lambda_2}^{\dagger} + \hat{\Lambda_2}' + \hat{\xi_2}^{\dagger} + \hat{\xi_2}' \rangle$$

= 2 tr_L($\lambda_1^* \lambda_2$) - tr_L($\Lambda_2' \Lambda_1'$) - tr_L($\Lambda_1 \Lambda_2$) + 2{ ξ_2, ξ_1 } + 2{ ξ_1', ξ_2' }.

 $\mathfrak{p}_{-} \subset \mathfrak{g}^{\mathbb{C}}$ is thus also a complex Hilbert space.

Proposition

The map *K* is continuous, holomorphic and injective.

The norm of a coherent state can be expressed using the **Fredholm determinant**.

Proposition

$$\begin{split} \|K(\Lambda,\xi)\|_{\mathcal{F}} &= \left(1 + \frac{1}{2}b\right)^{\frac{1}{2}} \det\left(\mathbf{1}_{L} - \Lambda^{2}\right)^{\frac{1}{4}}, \qquad b := \{\xi, (\mathbf{1}_{L} - \Lambda^{2})^{-1}\xi\},\\ &1 \leq \|K(\Lambda,\xi)\|_{\mathcal{F}} \leq \exp\left(\frac{1}{4}\|(\Lambda,\xi)\|_{\mathfrak{p}_{-}}\right). \end{split}$$

Robert Oeckl (CCM-UNAM)

Fermionic coherent states

2016-11-18 24 / 29

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト ショー ション

Inner product

Proposition

Let $\Lambda_1, \Lambda_2 \in \Xi(L)$ and $\xi_1, \xi_2 \in L$. If $\mathbf{1}_L - \Lambda_1 \Lambda_2$ is invertible set

 $b := \{\xi_2, (\mathbf{1}_L - \Lambda_1 \Lambda_2)^{-1} \xi_1\}.$

Then,

$$\langle K(\Lambda_1,\xi_1), K(\Lambda_2,\xi_2) \rangle = \left(1 + \frac{1}{2}b\right) \det\left(\mathbf{1}_L - \Lambda_1\Lambda_2\right)^{\frac{1}{2}}.$$

The correct branch of the square root is obtained by analytic continuation from $\Lambda_1 = \Lambda_2$. If $\mathbf{1}_L - \Lambda_1 \Lambda_2$ is not invertible, the inner product vanishes.

Denseness and reproducing property

The coherent states really cover the whole Fock space:

Proposition The image of *K* spans a dense subspace of \mathcal{F} .

★ E ► ★ E ►

Denseness and reproducing property

The coherent states really cover the whole Fock space:

Proposition

The image of *K* spans a dense subspace of \mathcal{F} .

We can associate to a state a **holomorphic wave function**. It automatically satisfies the **reproducing property**.

Proposition

Given $\psi \in \mathcal{F}$ define the function

 $f_{\psi}: \mathfrak{p}_{-} \to \mathbb{C} \quad \text{by} \quad f_{\psi}(\Lambda, \xi) := \langle K(\Lambda, \xi), \psi \rangle.$

Then, f_{ψ} is continuous and anti-holomorphic.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト ショー ション

(1)

A reproducing kernel Hilbert space

Let $Hol(p_{-})$ denote the complex vector space of **continuous** and **anti-holomorphic** functions on p_{-} .

Theorem

The complex linear map

 $f: \mathcal{F} \to \operatorname{Hol}(\mathfrak{p}_{-})$ given by $\psi \mapsto f_{\psi}$

is injective and thus realizes the Fock space \mathcal{F} as a **reproducing kernel Hilbert space** of continuous anti-holomorphic functions on the Hilbert space \mathfrak{p}_{-} .

Conclusions and Outlook

Fermionic coherent states share many properties with their bosonic counterparts,

- denseness
- holomorphicity properties
- reproducing property
- generated by "shift operator" (element of *P*₋)
- coherence is preserved under evolution (not shown here)

Important differences:

- Parametrized not by *L* but by a larger space $L \oplus \Xi(L)$
- not semiclassical?

Outlook:

- measure, completeness?
- factorization of correlation functions?

▶ ▲ 臣 ▶ ▲ 臣 ▶

References

R. Balian, E. Brezin, *Nonunitary Bogoliubov Transformations and Extension of Wick's Theorem*, Nuovo Cimento B **10** (1969) 37–55.

F. A. Berezin, *Models of Gross-Neveu Type are Quantization of a Classical Mechanics with Nonlinear Phase Space*, Commun. Math. Phys. **63** (1978) 131–153.

W. M. Zhang, D. H. Feng, R. Gilmore, *Coherent states: theory and some applications*, Rev. Modern Phys. **62** (1990) 867–927.

Main reference

R. O., *Coherent states in the fermionic Fock space*, J. Phys. A **48** (2015) 035203, arXiv:1408.2760.