Classical and quantum Kummer shapes
in memory of S. Twareque Ali (1942-2016)

Anatol Odzijewicz
in cooperation with
Elwira Wawreniuk

Institute of Mathematics
University in Bialystok
K. Ciotkowskiego 1M, 15-245 Bialystok, Poland

CIRM Marseille, November 15, 2016

nd quantum Kummer shape

ation with




© 1 Classical Kummer shape

© 11 Quantum Kummer shape

@ 111 Coherent states, *product and reduction
@ Covariant symbols and Moyal *-product
@ Reduced coherent states and reduced #-product
@ Reproducing measure for the reduced coherent states

d quantum Kumm



Motivation:

K

(M, w) (CP(H), wrs) U (H),{ }p)
= Us Ady,
(M, w) (CP(H), wrs) U H) L dee) ()

e (M, w) - symplectic manifold, 3 - symplectomorphism of (M, w),
e wrg - Fubini-Study form,

o U'(H) 3 piff p* = p and ||p||1 := Tr|p| < oo,

e U®(H) D X iff XT = —X and || X||eo < o0,

o {F,GYrp(p) :=iTr(p[DF(p), DG(p)]), where F,G € C=(U"(H)),
e DF(p), DG(p) € U'(H)* =2 U (H)-Banach-Lie algebra.

See [5], [6] and [7].
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sical Kummer shape

Settings

e We assume
OV = {(20,...,28)T € CNTL |2, >0, for k=0,1,..., N} as the phase
space with the standard Poisson bracket

{f,g}—z'ﬁ;(af -] 2)

Ozn 0Zp,  Ozp OZn

of f,g € C=(QN*1) i.e. for coordinate function we have

{Zk,il}:i(skl, {zk,zl}:O, {Zk,il}:().
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o We will take

H = ho(l20]*, |21, ..., l2n ) + go (|20, |22, . lew )22t - 20+
+ g0z, |2af*, o e P)zg 02 2yt (3)

as Hamiltonian for (N + 1)-harmonic oscillators.
e In (3) the following convention is assumed

(4)

for z; € Cand l; € Z.

e In the Kummers paper [3] a Hamiltonian system, in which the interaction
between harmonic oscillators is described by Hamiltonian (3), where ho is a
polynomial of degree smaller than |lo| + ...+ |In| and go is a constant, was
integrated.
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I Classical Kummer shape

Classical reduction

e In our approach we integrate the system given by Hamiltonian (3) passing
to the new canonical coordinates

N N
Ioi=> prslzil®s = kudy, (5)
7=0 =0

where z; = |z;|€'®, k,1 =0,...,N and the real (N + 1) x (N + 1) matrix
p = (pij) satisfies resonance condition

N
detp#0 and Zpijlj = doi- (6)

=0

K = (kij) is the inverse of p = (pi;).
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I Classical Kummer shape

o ONV*1 is invariant with respect to the Hamiltonian flows

iprot iprNt

or(t)(z0,...,2n) = (e 20,...,€ ZN), (7

generated by I, wheret € Rand r =0,1,..., N.
e The resonance condition (6) implies that the flows o, are periodic

or(t +Tr) = 0r(t) (8)

forr=1,2,...,N.
e We assume that T1,...,Tn are minimal periods.
e Expressing o,(¢) in the coordinates (Io,...,In,%o,...,¥n) we find that

Ur(t)(low"7IN7¢07"~71/)N):(107"'7IN,w07"'7wT+t7~~~7¢N)' (9)

e Because of (6) the variable ¥ depends on ¢o,...,dn as follows

N
o= lid;. (10)
j=0
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I Classical Kummer shape

From the above it follows that one can assume

0<¢r <Tr, 27 Y Li<to<2m» L, (11)
iEN, iEN,
where r =1,2,...,N, N, :={0<i< N :l; <0} and
N, :={0< i< N :l; >0}. The coordinates (Io,...,In) belong to the cone
ANTL © RN*1 defined by inequalities

N
lodo + Z Iioj[j >0,
j=1
(12)
N
InIo + ZHN]'I]' >0.

j=1
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In coordinates (5) the Poisson bracket (2) assumes the form

N /af ag  dg of
U9 = (3o~ ot o0n) 13)

n=0

so, one has
U Iy = {¥n, i} = 0, {Ti, i} = O, (14)
where k,l =0,...,N.
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Hamiltonian (3) in coordinates (5) is given by

H:Ho(lo,...,IN)—FQ go([o,...,lj\])COS@/}o7 (15)

where the functions Ho(lo,...,In) and Go(lo,...,In) are defined as the
superposition of functions ho(|20|?, ..., |2x|?) and

lgo(|z0]2, - .., |2n |2 (Jz0 20! . . |2 ?'™V 1) with the linear map
N
‘Zj|2 = ankfk, (16)
k=0
ie.

N N 2
go(]o,...,[]\]) ‘= go <Zﬁoj1j,...72/€]\]j]j> X
j=0 §=0
N lto] N lin]
X (Zh}oj[j) (ZKNjIj> . (17)
Jj=0 j=0
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e Since,

{1k, H} =0, (18)
for k=1,..., N, we will consider the integrals of motion I;,...,In as the
components of the momentum map

L

J(Iov"wINawOv"'?,le): ) (19)
In

where we identified RY with the dual of Lie algebra of the N-dimensional
torus TV =S x ... x S'.

e The momentum map J : Q¥ — RY is a submersion. So, the level set
J ety .. en) of (e1,. .. en)T € J(QNT) is a real submanifold of QN+
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e Notice that

a<lIp<b 0<1o<2m (20)
where
1 & 1
a:=maxy—r ;Kijcj ;b= min g-r ;mg‘q .o (2D

if (In, In,...,IN,%0,%1,...,0N) €T e, ..., eN).

e We have J~!(c1,...,cn)/TY =]a, b[xS*.

e J Y(c,...,en) = I e, ..., en)/TY is a trivial TN -pricipal bundle over
the reduced symplectic manifold J~*(c1,...,en)/TV.
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I Classical Kummer shape

e In coordinates (Io, o) on I~ (c1,...,cn)/TY, the reduced Poisson
bracket of F,G € C*°(J™!(c1,...,cn)/TV) is given by

_OF 0G 3G OF

=& O 22
{ra Oly 0o Olp Oy (22)
and Hamiltonian (15) reduces to
Ho(Ip,c1,...,¢en) + 2+4/Go(lo,c1,...,cn) costhg = E = const. (23)
e Hamilton equations are
dI .
7: =2 go(lo,cl...,C]\])Soln’lﬂo7 (24)
dypo  OHp 9Go cos o
— = I . — (I .. 2
dt 810(0761 7CN)+ 810(0701 7CN) gO(IO7017‘.'7CN)7 (5)

and one can integrate them by quadratures. Namely, from (24) and (23)
one obtains

(‘”0 (t)> — 4Go(Io(8), c1, . en) — (E — Ho(Io(t), 1, en))? . (26)

dt
Substituting Io(t) into (25) we find o(t). We find 1y integrating
dwk aHo 8@0 COS ’(/)0
— = . — (L, e .27
dt oc (o, 1, en) + 8ck( 0;€1,- -5 N) Go(Io,c1,y...,¢N) @7)

Anatol Odzijewicz in ¢
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Classical Kummer shape

e In order to visualize the geometry of the reduced symplectic manifold

JY(e1,...,en)/TV let us introduce a map F : Q¥ — C given by
z=x+iy=F(20,-..,2n) = go(|z0]*, |21]% - .., [2an D)2l - 2 =

=/Go(lo,...,In)e™, (28)

which is constant on the orbits of TV and thus, can be considered as a
function of arguments Io, ..., In,%o.

e The variables Iy, I1,...,In,x and y are functionally closed with respect
to the Poisson bracket, i.e. one has

{I(],w} =Y, {[07y} =,
10
{1’7y} = 5%(107111-“[]\])7 (29)
{Ikvm} = {Ik7y} =0,

for k,1 =1,2,...,N. So, they generate Poisson subalgebra Kg, (2" ') of
the standard Poisson algebra (C*(QV1), {-,-}).
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I Classical Kummer shape

e Since functions z,y, Ip € C* (QN“) are invariants of TV, they define the
corresponding functions on the reduced phase space J~'(c1,...,cn)/TV.
Hence, there is a map

\/go(lo,cl, N ,CN)COS’(L’O
Dy ,.en (Lo, 0) := Go(Io,ci1,...,cn)sinty (30)
Iy

of Ja, b[xS" onto the circularly symmetric surface C~'(0) in R*x]a, b[ given
by the equation

1
C(z,y, Io) := —5(552 +y* = Go(Io,c1,...,en)) =0 (31)

on (z,y,Io)" € R*x]a,b].
e We call C7'(0) the Kummer shape.
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I Classical Kummer shape

o Consider the Poisson algebra (C°°(R?), {-,-}¢) with the Nambu bracket

{f,g}c :=det[VC,V f,Vg| (32)

T
as the Poisson bracket, where f,g € C°°(R?) and Vf = (%, 2—57 %) .

e The Kummer shape C~*(0) is a symplectic leaf and
Deyen I e, .. .7cN)/']I‘N — Cil(O) is a symplectic Zﬁ\]:o |1;]-fold
covering of C~*(0).

e The functions z,y, lo € Kg, (QY 1) after reduction to J~*(c1,...,cn)/TV
satisfy
{107 l’} =Y {IO7 y} =, (33)
1 0Go
=_—-—(I e . 34
{‘ruy} 28]-0(07617 7CN) ( )
Thus they generate a Poisson algebra Kg,(c1,...,cn) isomorphic to

(C*°(R?),{-,-}¢). This Poisson algebra is the reduction of the Poisson
subalgebra Kg, (V1) c C=(QN ).
e We shall call Kg,(c1,...,cn) the classical Kummer shape algebra.
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II Quantum Kummer

Quantum system

Quantum Hamiltonian:

* * * * ! l
H = ho(agao, -..,anan) + go(agao, ...,anan)ay ...ay +

+ aalo...a]_\,lNgo(aSao, ., anan), (35)

where .
L) oaf if l; >0
@ = { (@)™l il <0 (36)
and
[aia a;} = héiﬁ [ai7 aj} = 03 [a:a a;] =0. (37)

Hamiltonians of such types model many physcial phenomena in nonlinear
quantum optics, e.g. parametric amplification, parametric conversion, Kerr
effect for a certain choice of Iy, ...,Ix and functions go, ho-
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II Quantum Kummer shape

Quantum reduction

We introduce the operators

A := go(agao, ..., a}“VaN)af)O...aéf,V, (38)
N

Ai =" pidja, (39)
j=0

where ¢ = 0,1, ..., N. They satisfy
[Ao, A] = —hA, [Ag, A] = hA™,
[A, Ai] = [A", Ai] = [Ai, A;] = 0,
AA" = Gr(Ao, Ay, ..., AN), (40)
A*A = Gu(Ao — b, A, ..., AN),

where i =1,2,.... N, j=0,...,N.
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II Quantum Kummer shape

The function Gy is defined by

gh(A(), .. .,AN) =

N N 2 N N
go <Z KojAj,...,ZliNjAj> Plg (Z IiojAj) ...PZN (Z KNjAj> s
Jj=0 Jj=0 j=0 j=0
(41)

where
(x+h)...(l‘+l¢ﬁ) ifl; >0
Pr(x):=14 1 ifl; =0 (42)
z(z—h)...(x— (-l —1h) ifl; <0
In terms of the operators Ag, A1, ..., An, A, A* the Hamiltonian (35) is
written as follows

H = Ho(Ao, A1,...,An) + A+ A", (43)

where the function Hy is defined as the superposition of the function hg
with the linear map inverse to (39).
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II Quantum Kummer

e [t is easy to see that
(A H] = 0 (44)

fori=1,2,..., N. So, we have commuting integrals of motion: Ai,..., An,
which also commute with Ag.

e Notice here that the operators Ag, A1,..., Ay are diagonalized in the
standard Fock basis

1 —Ln n £\ M *\n
Ino, 1, ..., N 1= —eee i B (PO RN (Y0 (RN 0, L 0),
no! .nN'

(45)
where n; € Z4 U {0}, with the eigenvalues co, c1, ..., cn related to
n0,N1,...,NN by

N
ci=hY_ pyn, i=0,1,...,N. (46)
j=0
We will use them for a new parametrization {|co, c1,...,cn)} of the Fock

basis {|no,n1,...,nN)}.
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II Quantum Kummer shape

e We can reduce the quantum system described by the Hamiltonian (35) to
the Hilbert subspace He,,...,cr C H spanned by the eigenvectors

{leo + i, cr, .., en) oo, (47)

L = minjen, {[— 7]}, of Ao, with fixed eigenvalues c1,...,cn of the
operators Ai,..., An.
e Equivalently one can write (47) as follows

{lvo + nlo, ..., vn + nln)}r—o,
where
1 X
V = ﬁ Z REkj5Cj. (48)
=0
e In the following we assume that co satisfies
gﬁ(Co—h,Cl,n.,CN):o7 (49)
which is equivalent to the assumption that |co,c1,...,cn) is a vacuum state

of the annihilation operator A, i.e. one has

Alco,c1,y...,en) =0. (50)
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II Quantum Kummer shape

Quantum Kummer shape

e The operators Ao, A, A* after reduction to Hc,,...,c, are given by

Aolco + hn, e, ..., en) = (co + hn)|co + hn, c1, ..., eN) (51)

A|Co —|—hn,cl,...,cN) =
= \/gh(co +hn—=1),c1,...,¢en)|co+h(n —1),c1,...,en)  (52)

A%|co + hAn,c1,y ... eN) = \/Qh(co+hn,cl,...,cN)\co+h(n+1),c1,...,cN).

We denote by Qg, (He;,...,cny) the operator algebra generated by the
reduced operators A, A* and Ao.

e In accordance with the classical case, we will call this algebra a quantum
Kummer shape algebra.
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II Quantum Kumm

e The reduced operators Ag, A and A* satisfy

[Ag, A] = —hA, [Aog, A"] = hA™,
A"A =Gr(Ao — Ryc1,...,cn), (54)
AA* = gh(AAO7 Cly... ,CN).

and Hamiltonian (35) is given by

H:H()(A(),C1,,..,CN)+A+A*. (55)

um Kumm.



II Quantum Kummer shape

e One can assume that
1(Ag—c
gh(A07clv-“7CN):R(qa(Ao 0))7 (‘56)

where 0 < ¢ < 1 and « is a constant which has action dimension. Taking
the bounded operator

Q=g (home), (57)
instead of Ao we rewrite the relations (54) as follows
Lk * Ao
AQ=¢~QA, QA" =¢~A'Q, (58)
* iy *
A"A=R(q ~Q), AA"=R(Q). (59)

The operator C*-algebras defined by the above relations were investigated
in O.A., Quantum Algebras and g-Special Functions Related to Coherent
States Maps of the Disc, Commun. Math. Phys. 192, 183-215, 1998 .
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Reproducing measure reducec

@ 111 Coherent states, *product and reduction
@ Covariant symbols and Moyal *-product
@ Reduced coherent states and reduced *-product
@ Reproducing measure for the reduced coherent states
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riant symbols and Moyal *-product
Reduced coherent states and reduced *-product
III Coherent st #-product and reduction Reproducing measure for the reduced coherent states

Covariant symbols and Moyal *-

e Glauber coherent states for a system of N + 1 non-interacting modes
(harmonic oscillators):

> z e (n "
|Z0,...,ZN> = Z 0 N fL ot.tnN) |’I”L0,...7’I11\7>7 (60)
vn .nn!
where 2o,...,zxy € C and |no,...,nn) are the elements of the Fock basis of
the Hilbert space H.
e The covariant symbol (F) : CN* — C of an operator

F= > Frguecimig o (@5) () "N af..al (61)

mMQ,...,;MN,NQ,---, N N=0

is defined by the mean value of F' on the coherent states:

ng,...,nny=0

<Z(), ...,ZN|F|Z()7 7ZN>
(205 -y ZN |20, oy ZN)

(F)Y(Z0, ey ZNy 20y oy ZN ) i=

oo
= ) Frrim i (20) ™ e (B )™ 250 .23

MQ,-..,MN 10,5, Ny =0
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#-product and reduction

The *p-product of covariant symbols f,g € C*°(CV ™) of the operators F
and G is defined in the following way:

(f *r 9)(Z0,---sZN, 20, .oy 2N) = (FG)(Z0, ..., ZN, 20, .-y ZN ). (63)
Using the resolution

/ |w0,...,wN><w0,...,wN|
CN+1

d 00, .-, WN, gy aeny = ]]_7 64
(wo, ..., WN| WO, ..., WN) Vi (W0, +.o; WN, WO, -y WN ) (64)

of identity 1, where dvy, is the Liouville measure normalized by a factor, one
obtains from (63) the standard formula for *p-product

(f %1 9)(Z0y ooy ZNy 20y ooy 2N ) =

:/]\H—1 f(éo,...,ZN,’LUo,...,wN)g(’LUo,...,IDN,ZQ,...,ZN)X
C

1 2 2
—#(zo—wo|*+...+|zn—wn - - —
x e wl | I ! >d1/h(wo,...7wN,wo,...,wN) =

el piot--tin oo 8IN
= —_— — ... - 204+, 2 X
§ ]0' 8ZJO 62‘71\’ f(Z07 y ZN 5 20, 7ZN)
J0s- i N=0 0 N
oo §IN

9(Zoy. -, ZN, 20, -, ZN)- (65)

20 " 92N
07z} oz}




t

IIT Coherent product and red

e Note here that

fong = f-g (66)
—0
and )
N
lim —=(f *n g — g *n f) = {f, 9}, (67)
—0 h
i.e. in the limit & — 0 we come back to the Poisson algebra of real smooth

functions on CN*1,

e In particular case one obtains the correspondences

(Ax) = I, (68)
(4) — 2, (69)
(H) = H. (70)

e In the limit i — 0 commutation relations (40) expressed by their
covariant symbols give the relations (29) for the corresponding classical
quantities which define classical Kummer shape algebra.

e Summing up, the system of N 4+ 1 quantum harmonic oscillators
converges in the classical limit & — 0 to its classical counterpart.
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Covariant symbols and yal *-product
Reduced coherent sta nd reduced *-product
III Coherent st *-product and reduction Reproducing measure for the reduced coherent

Reduced coherent states and reduced *-product

Now we will apply the classical and quantum reduction procedures to the
construction of the reduced coherent state map

Keyrion 37 M ery o en) )TN = CP(Hey.. on)- (71)

Note that the Glauber coherent state map K¢ : Q¥ Tt — # has
equivariance property

iprot iprNt

it
le 20y...,€ Zn) = e z0,. .. 2N ), (72)

where Kg(zo0,...,2n8) = |20,...,2n), 7=1,...,N and t € R.
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Jovariant symbols
educed coher

*-product and reduction Reproducing

e We also recall that Ig, I1,...,In are invariants of the Hamiltonian flows
generated by them.

e Passing in (72) from the complex canonical coordinates

(z0,...,2N, Z0,...,2nN) to the real canonical coordinates

(Lo, In, ...y IN, %0, 91, ..., ¥N) we find that, for r =1,..., N, one has

Pcl,m,cNuOyCh---7CN71/}07---71/}7‘ -|—t,...,1[)N> =
= e%CTtPCL“-yCN'IOvClv . -:CNMZ)O, .. '7w’r7' . 'awN>v (73)

if (z0,...,2N,%0,...,2n8)T € I (c1, ..., cn), where
Pei..oeny t H = Hey,...,cn is the orthogonal projection of H on He,,....cn -

um Kumm.



Covariant symbol
Reduced coherent

Reproducing

Let us assume that go is a constant and define the complex analytic map
Kepyon :C3 2 |z5c1,...,eN) € Hey,.oien DY

|z;¢1,. .., en >i=

5 z

X
n=0 (h%(loJr"'JrlN)go)n\/(’Uo + ’I’Llo)' - (UN + nlN)!
X |vo + nlo, ..., on +nln), (74)

n

where L + 1 =dimHe,,....cy and vg = %Z;V:O Krjcj for k=0,..., N,
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yval *-product
r n duced *-product
product and reduction the reduced coherent

Suppose that go = const, then

. Y o o BN
(2) Pey,..enlz0,- -, ZN>|J71(61,...,CN) = \/ﬁ% Cly .- 5 CN) =
eizé\’:O %w]. N ’UTO N UTN
= —— Hoo]o—ﬁ-ZHojCj ... | knolo +ZK'Njcj X
1/h'ug-‘,m.m‘—'z)N = =
X |z;e1, ..., en),  (75)
(ii) The map
1.
HiENP z;' 1

Z = go = X
M. 2 . 1
JENR %] [en, (Kiolo+ 25— Kjrck

x v/Go(Io,c1,...,cn)e®  (76)

[

defines the isomorphism ]a, b[xS' = C\{0}.
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Jovariant symbols
educed coher

*-product and reduction Reproducing

o Notice that if dimc He,,...,c,, = 00 and go is any positive function, then
the coherent states (74) can be generalized by

1
Z;Cly...,C = — Voy...,U +
[zer, osew) = =g Ivo - vn)
+Z z |vo + nlo, ..., on +nln) |, (77)

=1 VGr(0). . Gr(n — 1)
where Gr(n) := Gr(co + hn, c1, ..., cn), what is equivalent to

Alz;ci,...,eN) = z|z501, ..., eN). (78)
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Jovariant symbols
educed coher

*-product and reduction Reproducing

e In the subsequent considerations we will postulate the existence of the
resolution

Loyon = / zen o)z en s enldien, en(F,2)  (79)
C

for Ty, . ,en = Pey,..oen ey, cp, With respect to some measure
dfbey,....cn (27 Z)

e We define the covariant symbol

N

(z5¢1,...,en|Flz5e1,. .. en)

(z;¢1,...,¢en|z;¢1,. ., CN)

<F> (27 Z) = ’ (80)
for an operator F : D(F) — Hey,.on -

e Since one has one-to-one correspondence between the operators F, G and
their symbols, we can define the *x-product of covariant symbols

(z;¢1,...,en|FGlz5c1,...,cn)
(z;¢1,...,¢en|2;¢1,. .., CN)

(F) %1 (G))(Z, 2) =

) (81)

um Kumm.



Covariant symbols and
Reduced coherent sta

III Coherent states, *-product and reduction Reproducing measure for

From (81) and (79) we obtain

'7CN|F‘w§Cl7 aCN>

(<F>*h<G>><z,z>:/ zer, ew)

Dg, (z;¢1,...,en | wict, ..., CN)

(wier,...,en | G| zyer,...,en)
(wier,...,en | z5¢1,...,0n)

|acr...oen (2, W) [*dVe, . en (@,0),  (82)

where

(z;¢1,...,en|wicr, ... en)

Aey,en (2, W) 1=

[N

<z;cl,...,cN|z;cl,...,cN>%<w;c1,...,cN|w;c1,...,cN)
(83)
and

dVClw-»CN (Uj}, ’I_U) = <w; Cly...,CN|W;C1,y. .., CN>d/LLC1,<~7CN (wvw) (84)
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The #p-product (81) of the covariant symbols f(2,2) = >o5_, fr.2"2' and
9(Z,2) = > 1o g, Z°2" of operators F = > ri=o fe A Al and
G:=> " _,9r:A" A’ respectively, is given by

(f *h g)(Z, Z) =

1 _
= Z,0 zZ 5C1, .- ;C1, .-
(z;cl,...,cN|z;C1,...,czv)ﬂz7 o) (92, 2) (=i er, . senlzien, o en))
(85
where, by definition, the operator dg, acts on the monomial z™ in the
following way
0g, 2" = Gr(n —1)2" 1, (86)
if n > 1 and g, 2™ = 0 if n = 0. The operator f(Z, g, ) is defined by
f(27 59;‘7) = Z fE,leélgn (87)

k,1=0

and acts on the complex coordinate Z only.
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Covariant symbols
Reduced coherent st

III Coherent states, *-product and reduction Reproducing measure

e One defines the Lie bracket {f, g}g, of the covariant symbols f and g by

{f.9Ya = im =X (Fon g —gon f). (39)

e When exponents o, ...,In are nonnegative we find that the covariant
symbols of A, A* are z, zZ,respectively. If additionally function Gy is
invertible as a function of Ay (for example when go is constant) the
covariant symbol of Ag in the limit &7 — 0 gives Io.

o We have
{Iﬂv Z}go = ’iZ, (89)
{Io,Z}g, = —1iZ, (90)
.0
{212}ay = —iG22 (o) oV

e In the classical limit 7 — 0 the quantum Kummer shape algebra, i.e. the
operator algebra defined by the operators (54), corresponds to the classical
Kummer shape (33-34) with Nambu bracket {-,-}¢ defined by structural
function Gy.
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In the case when exponents lo, ..., [N are nonnegative and quantum
structural function Gp(-, c1,...,cn) is invertible as a function of Ay (e.g.
when go is constant), passing to the classical limit # — 0 intertwines both
reduction procedures, quantum and classical, i.e.

Figure 2.
Quantum system of N + 1 h—0 Classical system of NV + 1
harmonic oscillators harmonic oscillators

Quantum Classical
reduction reduction

’ Quantum Kummer shape ’Lﬁ Classical Kummer shape
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«-product
and reduced *-product
> for the reduced coherent

III Coherent st s-product and reduction

Reproducing measure for the reduced coherent stat

Suppose that go is a constant. We have the following reproducing property:

Key ..oy (D, w) :/Kcl,m,cN(q_]vZ)Kcl,-u,cN(Zvw)d:ucla»wCN(ZvZ)7 (92)
C

for reproducing kernel K., ..., given by

Key,..en (Z,w) = (z;c1,...,cn|w;cr, ..., CN)

1 i, Q2, ..., Qp Zw
:ﬁT‘F’S
vo!...oN! B, P2,

o Bs gl 1Y plote iy | (93)

forr=1+>,_y |li| and s = EieNp li, where

(0[1,0[2,...,0@) =

um Kumm:



(/317/327"'7/68) =
vjl + 1 Ujl + l]l Ujs + 1 Ujs + l]s

. (95)

L PRIy P S vy
and reproducing measure djic,,....cy (Z,2) = pey,....en (1217)d| 2| dibo,
z = |z|e™°, is defined by

1 2 1)0-}—171
Perromen (212) 1= e P CH )

1
27Tl(2)hN+1+v0+"'+ng0 0

l 1 l 1
o= 1(12?)+ ) = N(Yg-%— )
X x, - 0 0@y X
[0,400) N

2 1
—1(zT0 (g22%L .. 2l ) T
x e~ w2170 (gozst ) O @it tIN) g (96)

V.
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ant mbols and

1.For lp =11 =1 and |0,v1) as a vacuum state, v1 € N, the reproducing
kernel takes the form

1
K, (Z,w) = — o1 [—;Ul 4 15

! Zﬂ] )

h2

The density function is given by

vy
1 2|2\ 2 z

where K, is the modified Bessel function of the second kind.

2. Assuming lp = 1,13 = —1 and choosing |0,v1) as the vacuum state, one
has 1
K. (z,w) = F(l + zw)" . (99)
g4
From (96) one has
1 v1 +1)!
per(2f?) = e D (100)

27 (L + |2P)v+2
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3. In the case N =2 and (lo,!1,l2) = (1,—1, —1) function

2 2
(vi + D vz + 1)! 4y ty 41 S0 90

Pei ez (I) = vl tugt1l 90 ezhe W7 (v1+va+3) vy —vo he )
Qmh— 2 2 o X

(101)
where W (o) +vy43) v, —v, is a Whittaker function, defines the reproducing
2 ’ 2

measure dve, o, (Z,2) = p(|2|?)d|z|>dy for reproducing kernel

L

B (zwh)™
Kei o (Z,w) = E —
102 (2, 0) = gg"nl(v1 — n)!(v2 — n)!
1 —v1, —vg zwh
= —,F, ’ 22 (102
vilug! 270 - g ()
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