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Motivation:

(M,ω) (CP(H), ωFS) (U1(H), {·, ·}LP )

(U1(H), {·, ·}LP )(CP(H), ωFS)(M,ω)

? ? ?

-

--

-K ι

ιK

Σ UΣ Ad∗UΣ

(1)

• (M,ω) - symplectic manifold, Σ - symplectomorphism of (M,ω),
• ωFS - Fubini-Study form,
• U1(H) 3 ρ iff ρ+ = ρ and ||ρ||1 := Tr|ρ| <∞,
• U∞(H) 3 X iff X+ = −X and ||X||∞ <∞,
• {F,G}LP (ρ) := iT r(ρ[DF (ρ), DG(ρ)]), where F,G ∈ C∞(U1(H)),
• DF (ρ), DG(ρ) ∈ U1(H)∗ ∼= U∞(H)-Banach-Lie algebra.
See [5], [6] and [7].
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Settings

• We assume
ΩN+1 := {(z0, . . . , zN )T ∈ CN+1 : |zk| > 0, for k = 0, 1, . . . , N} as the phase
space with the standard Poisson bracket

{f, g} = −i
N∑
n=0

(
∂f

∂zn

∂g

∂z̄n
− ∂g

∂zn

∂f

∂z̄n

)
, (2)

of f, g ∈ C∞(ΩN+1) i.e. for coordinate function we have

{zk, z̄l} = iδkl, {zk, zl} = 0, {z̄k, z̄l} = 0.
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• We will take

H = h0(|z0|2, |z1|2, . . . , |zN |2) + g0(|z0|2, |z1|2, . . . , |zN |2)zl00 z
l1
1 · · · z

lN
N +

+ g0(|z0|2, |z1|2, . . . , |zN |2)z−l00 z−l11 · · · z−lNN (3)

as Hamiltonian for (N + 1)-harmonic oscillators.
• In (3) the following convention is assumed

zlii =

{
zli for li > 0

z̄|li| for li < 0
(4)

for zi ∈ C and li ∈ Z.
• In the Kummers paper [3] a Hamiltonian system, in which the interaction
between harmonic oscillators is described by Hamiltonian (3), where h0 is a
polynomial of degree smaller than |l0|+ . . .+ |lN | and g0 is a constant, was
integrated.
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Classical reduction

• In our approach we integrate the system given by Hamiltonian (3) passing
to the new canonical coordinates

Ik :=
N∑
j=0

ρkj |zj |2, ψl :=
N∑
j=0

κjlφj , (5)

where zj = |zj |eiφj , k, l = 0, . . . , N and the real (N + 1)× (N + 1) matrix
ρ = (ρij) satisfies resonance condition

det ρ 6= 0 and
N∑
j=0

ρij lj = δ0i. (6)

κ = (κij) is the inverse of ρ = (ρij).
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• ΩN+1 is invariant with respect to the Hamiltonian flows

σr(t)(z0, . . . , zN ) = (eiρr0tz0, . . . , e
iρrN tzN ), (7)

generated by Ir, where t ∈ R and r = 0, 1, . . . , N .
• The resonance condition (6) implies that the flows σr are periodic

σr(t+ Tr) = σr(t) (8)

for r = 1, 2, . . . , N .
• We assume that T1, . . . , TN are minimal periods.
• Expressing σr(t) in the coordinates (I0, . . . , IN , ψ0, . . . , ψN ) we find that

σr(t)(I0, . . . , IN , ψ0, . . . , ψN ) = (I0, . . . , IN , ψ0, . . . , ψr + t, . . . , ψN ). (9)

• Because of (6) the variable ψ0 depends on φ0, . . . , φN as follows

ψ0 =
N∑
j=0

ljφj . (10)
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From the above it follows that one can assume

0 < ψr ≤ Tr, 2π
∑
i∈Nn

li < ψ0 ≤ 2π
∑
i∈Np

li, (11)

where r = 1, 2, . . . , N , Nn := {0 ≤ i ≤ N : li < 0} and
Np := {0 ≤ i ≤ N : li > 0}. The coordinates (I0, . . . , IN ) belong to the cone
ΛN+1 ⊂ RN+1 defined by inequalities

l0I0 +

N∑
j=1

κ0jIj >0,

· · · (12)

lNI0 +

N∑
j=1

κNjIj >0.
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In coordinates (5) the Poisson bracket (2) assumes the form

{f, g} =

N∑
n=0

(
∂f

∂In

∂g

∂ψn
− ∂g

∂In

∂f

∂ψn

)
(13)

so, one has
{Ik, Il} = {ψk, ψl} = 0, {Ik, ψl} = δkl, (14)

where k, l = 0, . . . , N .
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Hamiltonian (3) in coordinates (5) is given by

H = H0(I0, . . . , IN ) + 2
√
G0(I0, . . . , IN ) cosψ0, (15)

where the functions H0(I0, . . . , IN ) and G0(I0, . . . , IN ) are defined as the
superposition of functions h0(|z0|2, . . . , |zN |2) and
|g0(|z0|2, . . . , |zN |2)|2(|z0|2|l0| . . . |zN |2|lN |) with the linear map

|zj |2 =

N∑
k=0

κjkIk, (16)

i.e.

G0(I0, . . . , IN ) := g0

(
N∑
j=0

κ0jIj , . . . ,
N∑
j=0

κNjIj

)2

×

×

(
N∑
j=0

κ0jIj

)|l0|
. . .

(
N∑
j=0

κNjIj

)|lN |
. (17)
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• Since,
{Ik, H} = 0, (18)

for k = 1, . . . , N , we will consider the integrals of motion I1, . . . , IN as the
components of the momentum map

J(I0, . . . , IN , ψ0, . . . , ψN ) =

 I1
...
IN

 , (19)

where we identified RN with the dual of Lie algebra of the N -dimensional
torus TN = S1 × . . .× S1.
• The momentum map J : ΩN+1 → RN is a submersion. So, the level set
J−1(c1, . . . , cN ) of (c1, . . . , cN )T ∈ J(ΩN+1) is a real submanifold of ΩN+1.
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• Notice that
a < I0 < b, 0 ≤ ψ0 < 2π (20)

where

a := max
i∈Np

{
− 1

li

N∑
j=1

κijcj

}
, b := min

i∈Nn

{
− 1

li

N∑
j=1

κijcj

}
. (21)

if (I0, I1, . . . , IN , ψ0, ψ1, . . . , ψN ) ∈ J−1(c1, . . . , cN ).
• We have J−1(c1, . . . , cN )/TN ∼=]a, b[×S1.
• J−1(c1, . . . , cN )→ J−1(c1, . . . , cN )/TN is a trivial TN -pricipal bundle over
the reduced symplectic manifold J−1(c1, . . . , cN )/TN .
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• In coordinates (I0, ψ0) on J−1(c1, . . . , cN )/TN , the reduced Poisson
bracket of F,G ∈ C∞(J−1(c1, . . . , cN )/TN ) is given by

{F,G} =
∂F

∂I0

∂G

∂ψ0
− ∂G

∂I0

∂F

∂ψ0
(22)

and Hamiltonian (15) reduces to

H0(I0, c1, . . . , cN ) + 2
√
G0(I0, c1, . . . , cN ) cosψ0 = E = const. (23)

• Hamilton equations are

dI0
dt

= 2
√
G0(I0, c1 . . . , cN ) sinψ0, (24)

dψ0

dt
=
∂H0

∂I0
(I0, c1 . . . , cN ) +

∂G0

∂I0
(I0, c1 . . . , cN )

cosψ0√
G0(I0, c1, . . . , cN )

, (25)

and one can integrate them by quadratures. Namely, from (24) and (23)
one obtains(

dI0
dt

(t)

)2

= 4G0(I0(t), c1, . . . , cN )− (E −H0(I0(t), c1, . . . , cN ))2 . (26)

Substituting I0(t) into (25) we find ψ0(t). We find ψk integrating

dψk
dt

=
∂H0

∂ck
(I0, c1, . . . , cN ) +

∂G0

∂ck
(I0, c1, . . . , cN )

cosψ0√
G0(I0, c1, . . . , cN )

. (27)
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Classical Kummer shape

• In order to visualize the geometry of the reduced symplectic manifold
J−1(c1, . . . , cN )/TN let us introduce a map F : ΩN+1 → C given by

z = x+ iy = F(z0, . . . , zN ) := g0(|z0|2, |z1|2, . . . , |zN |2)zl00 · · · z
lN
N =

=
√
G0(I0, . . . , IN )eiψ0 , (28)

which is constant on the orbits of TN and thus, can be considered as a
function of arguments I0, . . . , IN , ψ0.
• The variables I0, I1, . . . , IN , x and y are functionally closed with respect
to the Poisson bracket, i.e. one has

{I0, x} = −y, {I0, y} = x,

{x, y} =
1

2

∂G0

∂I0
(I0, I1, . . . IN ), (29)

{Ik, x} = {Ik, y} = 0,

for k, l = 1, 2, . . . , N . So, they generate Poisson subalgebra KG0(ΩN+1) of
the standard Poisson algebra (C∞(ΩN+1), {·, ·}).
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• Since functions x, y, I0 ∈ C∞(ΩN+1) are invariants of TN , they define the
corresponding functions on the reduced phase space J−1(c1, . . . , cN )/TN .
Hence, there is a map

Φc1,...,cN (I0, ψ0) :=


√
G0(I0, c1, . . . , cN ) cosψ0√
G0(I0, c1, . . . , cN ) sinψ0

I0

 (30)

of ]a, b[×S1 onto the circularly symmetric surface C−1(0) in R2×]a, b[ given
by the equation

C(x, y, I0) := −1

2
(x2 + y2 − G0(I0, c1, . . . , cN )) = 0 (31)

on (x, y, I0)T ∈ R2×]a, b[.
• We call C−1(0) the Kummer shape.
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• Consider the Poisson algebra (C∞(R3), {·, ·}C) with the Nambu bracket

{f, g}C := det[∇C,∇f,∇g] (32)

as the Poisson bracket, where f, g ∈ C∞(R3) and ∇f =
(
∂f
∂x
, ∂f
∂y
, ∂f
∂I0

)T
.

• The Kummer shape C−1(0) is a symplectic leaf and
Φc1,...,cN : J−1(c1, . . . , cN )/TN → C−1(0) is a symplectic

∑N
i=0 |li|-fold

covering of C−1(0).
• The functions x, y, I0 ∈ KG0(ΩN+1) after reduction to J−1(c1, . . . , cN )/TN
satisfy

{I0, x} = −y, {I0, y} = x, (33)

{x, y} =
1

2

∂G0

∂I0
(I0, c1, . . . , cN ). (34)

Thus they generate a Poisson algebra KG0(c1, . . . , cN ) isomorphic to
(C∞(R3), {·, ·}C). This Poisson algebra is the reduction of the Poisson
subalgebra KG0(ΩN+1) ⊂ C∞(ΩN+1).
• We shall call KG0(c1, . . . , cN ) the classical Kummer shape algebra.
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Quantum system

Quantum Hamiltonian:

H = h0(a∗0a0, ..., a
∗
NaN ) + g0(a∗0a0, ..., a

∗
NaN )al00 ...a

lN
N +

+ a−l00 ...a−lNN g0(a∗0a0, ..., a
∗
NaN ), (35)

where

alii =

{
alii if li ≥ 0

(a∗i )
−li if li < 0

(36)

and
[ai, a

∗
j ] = ~δij , [ai, aj ] = 0, [a∗i , a

∗
j ] = 0. (37)

Hamiltonians of such types model many physcial phenomena in nonlinear
quantum optics, e.g. parametric amplification, parametric conversion, Kerr
effect for a certain choice of l0, . . . , lN and functions g0, h0.
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Quantum reduction

We introduce the operators

A := g0(a∗0a0, ..., a
∗
NaN )al00 ...a

lN
N , (38)

Ai :=

N∑
j=0

ρija
∗
jaj , (39)

where i = 0, 1, ..., N . They satisfy

[A0, A] = −~A, [A0, A
∗] = ~A∗,

[A,Ai] = [A∗, Ai] = [Ai, Aj ] = 0,

AA∗ = G~(A0, A1, ..., AN ), (40)

A∗A = G~(A0 − ~, A1, ..., AN ),

where i = 1, 2, ..., N , j = 0, . . . , N .
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The function G~ is defined by

G~(A0, . . . , AN ) :=

g0

(
N∑
j=0

κ0jAj , ...,
N∑
j=0

κNjAj

)2

Pl0

(
N∑
j=0

κ0jAj

)
...PlN

(
N∑
j=0

κNjAj

)
,

(41)

where

Pli(x) :=


(x+ ~)...(x+ li~) if li > 0
1 if li = 0
x(x− ~)...(x− (−li − 1)~) if li < 0

(42)

In terms of the operators A0, A1, ..., AN , A,A
∗ the Hamiltonian (35) is

written as follows

H = H0(A0, A1, . . . , AN ) +A+A∗, (43)

where the function H0 is defined as the superposition of the function h0

with the linear map inverse to (39).
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• It is easy to see that
[Ai,H] = 0 (44)

for i = 1, 2, . . . , N . So, we have commuting integrals of motion: A1, . . . , AN ,
which also commute with A0.
• Notice here that the operators A0, A1, . . . , AN are diagonalized in the
standard Fock basis

|n0, n1, . . . , nN 〉 :=
1√

n0! . . . nN !
~−

1
2

(n0+...+nN )(a∗0)n0 . . . (a∗N )nN |0, . . . , 0〉,

(45)
where ni ∈ Z+ ∪ {0}, with the eigenvalues c0, c1, . . . , cN related to
n0, n1, . . . , nN by

ci = ~
N∑
j=0

ρijnj , i = 0, 1, ..., N. (46)

We will use them for a new parametrization {|c0, c1, . . . , cN 〉} of the Fock
basis {|n0, n1, ..., nN 〉}.
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• We can reduce the quantum system described by the Hamiltonian (35) to
the Hilbert subspace Hc1,...,cN ⊂ H spanned by the eigenvectors

{|c0 + ~n, c1, . . . , cN 〉}Ln=0, (47)

L = mini∈Nn{[− vili ]}, of A0, with fixed eigenvalues c1, . . . , cN of the
operators A1, . . . , AN .
• Equivalently one can write (47) as follows

{|v0 + nl0, . . . , vN + nlN 〉}Ln=0,

where

vk =
1

~

N∑
j=0

κkjcj . (48)

• In the following we assume that c0 satisfies

G~(c0 − ~, c1, . . . , cN ) = 0, (49)

which is equivalent to the assumption that |c0, c1, . . . , cN 〉 is a vacuum state
of the annihilation operator A, i.e. one has

A|c0, c1, . . . , cN 〉 = 0. (50)
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Quantum Kummer shape

• The operators A0, A,A
∗ after reduction to Hc1,...,cN are given by

A0|c0 + ~n, c1, . . . , cN 〉 = (c0 + ~n)|c0 + ~n, c1, . . . , cN 〉 (51)

A|c0 + ~n, c1, . . . , cN 〉 =

=
√
G~(c0 + ~(n− 1), c1, . . . , cN )|c0 + ~(n− 1), c1, . . . , cN 〉 (52)

A∗|c0 + ~n, c1, . . . , cN 〉 =
√
G~(c0 + ~n, c1, . . . , cN )|c0 + ~(n+ 1), c1, . . . , cN 〉.

(53)
We denote by QG~(Hc1,...,cN ) the operator algebra generated by the
reduced operators A,A∗ and A0.
• In accordance with the classical case, we will call this algebra a quantum
Kummer shape algebra.
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• The reduced operators A0, A and A∗ satisfy

[A0,A] = −~A, [A0,A
∗] = ~A∗,

A∗A = G~(A0 − ~, c1, . . . , cN ), (54)

AA∗ = G~(A0, c1, . . . , cN ).

and Hamiltonian (35) is given by

H = H0(A0, c1, . . . , cN ) + A + A∗. (55)
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• One can assume that

G~(A0, c1, . . . , cN ) = R(q
1
α

(A0−c0)), (56)

where 0 < q < 1 and α is a constant which has action dimension. Taking
the bounded operator

Q := q
1
α

(A0−c0), (57)

instead of A0 we rewrite the relations (54) as follows

AQ = q
~
αQA, QA∗ = q

~
αA∗Q, (58)

A∗A = R(q−
~
αQ), AA∗ = R(Q). (59)

The operator C∗-algebras defined by the above relations were investigated
in O.A., Quantum Algebras and q-Special Functions Related to Coherent
States Maps of the Disc, Commun. Math. Phys. 192, 183-215, 1998 .
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Covariant symbols and Moyal ∗-product

• Glauber coherent states for a system of N + 1 non-interacting modes
(harmonic oscillators):

|z0, . . . , zN 〉 :=

∞∑
n0,...,nN=0

zn0
0 · · · z

nN
N√

n0! . . . nN !
~−

1
2

(n0+...+nN )|n0, . . . , nN 〉, (60)

where z0, . . . , zN ∈ C and |n0, . . . , nN 〉 are the elements of the Fock basis of
the Hilbert space H.
• The covariant symbol 〈F 〉 : CN+1 → C of an operator

F =
∞∑

m0,...,mN ,n0,...,nN=0

fm̄0,...,m̄N ,n0,...,nN (a∗0)m0 ...(a∗N )mN an0
0 ...anNN (61)

is defined by the mean value of F on the coherent states:

〈F 〉(z̄0, ..., z̄N , z0, ..., zN ) :=
〈z0, ..., zN |F |z0, ..., zN 〉
〈z0, ..., zN |z0, ..., zN 〉

=

∞∑
m0,...,mN ,n0,...,nN=0

fm̄0,...,m̄N ,n0,...,nN (z̄0)m0 ...(z̄N )mN zn0
0 ...znNN .

(62)
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The ∗~-product of covariant symbols f, g ∈ C∞(CN+1) of the operators F
and G is defined in the following way:

(f ∗~ g)(z̄0, ..., z̄N , z0, ..., zN ) := 〈FG〉(z̄0, ..., z̄N , z0, ..., zN ). (63)

Using the resolution∫
CN+1

|w0, ..., wN 〉〈w0, ..., wN |
〈w0, ..., wN |w0, ..., wN 〉

dν~(w̄0, ..., w̄N , w0, ..., wN ) = 1, (64)

of identity 1, where dν~ is the Liouville measure normalized by a factor, one
obtains from (63) the standard formula for ∗~-product

(f ∗~ g)(z̄0, ..., z̄N , z0, ..., zN ) =

=

∫
CN+1

f(z̄0, . . . , z̄N , w0, . . . , wN )g(w̄0, . . . , w̄N , z0, . . . , zN )×

× e−
1
~ (|z0−w0|2+...+|zN−wN |2)dν~(w̄0, ..., w̄N , w0, ..., wN ) =

=
∞∑

j0,...,jN=0

~j0+...+jN

j0! . . . jN !

(
∂j0

∂zj00

. . .
∂jN

∂zjNN

)
f(z̄0, . . . , z̄N , z0, . . . , zN )×

×

(
∂j0

∂z̄j00

. . .
∂jN

∂z̄jNN

)
g(z̄0, . . . , z̄N , z0, . . . , zN ). (65)
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• Note here that
f ∗~ g −→

~→0
f · g (66)

and

lim
~→0

−i
~

(f ∗~ g − g ∗~ f) = {f, g}, (67)

i.e. in the limit ~→ 0 we come back to the Poisson algebra of real smooth
functions on CN+1.
• In particular case one obtains the correspondences

〈Ak〉 = Ik, (68)

〈A〉 −→
~→0

z, (69)

〈H〉 −→
~→0

H. (70)

• In the limit ~→ 0 commutation relations (40) expressed by their
covariant symbols give the relations (29) for the corresponding classical
quantities which define classical Kummer shape algebra.
• Summing up, the system of N + 1 quantum harmonic oscillators
converges in the classical limit ~→ 0 to its classical counterpart.
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Reduced coherent states and reduced ∗-product

Now we will apply the classical and quantum reduction procedures to the
construction of the reduced coherent state map

Kc1,...,cN : J−1(c1, . . . , cN )/TN → CP(Hc1,...,cN ). (71)

Note that the Glauber coherent state map KG : ΩN+1 → H has
equivariance property

|eiρr0tz0, . . . , e
iρrN tzN 〉 = e

it
~ Ar |z0, . . . , zN 〉, (72)

where KG(z0, . . . , zN ) = |z0, . . . , zN 〉, r = 1, . . . , N and t ∈ R.
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• We also recall that I0, I1, . . . , IN are invariants of the Hamiltonian flows
generated by them.
• Passing in (72) from the complex canonical coordinates
(z0, . . . , zN , z̄0, . . . , z̄N ) to the real canonical coordinates
(I0, I1, . . . , IN , ψ0, ψ1, . . . , ψN ) we find that, for r = 1, . . . , N , one has

Pc1,...,cN |I0, c1, . . . , cN , ψ0, . . . , ψr + t, . . . , ψN 〉 =

= e
i
~ crtPc1,...,cN |I0, c1, . . . , cN , ψ0, . . . , ψr, . . . , ψN 〉, (73)

if (z0, . . . , zN , z̄0, . . . , z̄N )T ∈ J−1(c1, . . . , cN ), where
Pc1,...,cN : H → Hc1,...,cN is the orthogonal projection of H on Hc1,...,cN .
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Let us assume that g0 is a constant and define the complex analytic map
Kc1,...,cN : C 3 z 7→ |z; c1, . . . , cN 〉 ∈ Hc1,...,cN by

|z; c1, . . . , cN >:=

=

L∑
n=0

zn

(~ 1
2

(l0+...+lN )g0)n
√

(v0 + nl0)! . . . (vN + nlN )!
×

× |v0 + nl0, . . . , vN + nlN 〉, (74)

where L+ 1 = dimHc1,...,cN and vk = 1
~
∑N
j=0 κkjcj for k = 0, . . . , N ,
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Proposition

Suppose that g0 = const, then

(i) Pc1,...,cN |z0, . . . , zN 〉|J−1(c1,...,cN ) =
zv0

0 . . . zvNN√
~v0+...+vN

|z; c1, . . . , cN 〉 =

=
ei
∑N
j=0

cj
~ ψj

√
~v0+...+vN

(
κ00I0 +

N∑
j=1

κ0jcj

) v0
2

. . .

(
κN0I0 +

N∑
j=1

κNjcj

) vN
2

×

× |z; c1, . . . , cN 〉, (75)

(ii) The map

z = g0

∏
i∈Np z

li
i∏

j∈Nn z
|lj |
j

=
1∏

j∈Nn

(
κj0I0 +

∑N
k=1 κjkck

)|lj |×
×
√
G0(I0, c1, . . . , cN )eiψ0 (76)

defines the isomorphism ]a, b[×S1 ∼= C\{0}.
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• Notice that if dimCHc1,...,cN =∞ and g0 is any positive function, then
the coherent states (74) can be generalized by

|z; c1, . . . , cN 〉 =
1√

v0! . . . vN !

(
|v0, . . . , vN 〉+

+
∞∑
n=1

zn√
G~(0) . . .G~(n− 1)

|v0 + nl0, . . . , vN + nlN 〉
)
, (77)

where G~(n) := G~(c0 + ~n, c1, . . . , cN ), what is equivalent to

A|z; c1, . . . , cN 〉 = z|z; c1, . . . , cN 〉. (78)
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• In the subsequent considerations we will postulate the existence of the
resolution

1c1,...,cN =

∫
C
|z; c1, . . . , cN 〉〈z; c1, . . . , cN |dµc1,...,cN (z̄, z) (79)

for 1c1,...,cN = Pc1,...,cN |Hc1,...,cN with respect to some measure
dµc1,...,cN (z̄, z).
• We define the covariant symbol

〈F〉(z̄, z) :=
〈z; c1, . . . , cN |F|z; c1, . . . , cN 〉
〈z; c1, . . . , cN |z; c1, . . . , cN 〉

, (80)

for an operator F : D(F)→ Hc1,...,cN .
• Since one has one-to-one correspondence between the operators F,G and
their symbols, we can define the ∗~-product of covariant symbols

(〈F〉 ∗~ 〈G〉)(z̄, z) :=
〈z; c1, . . . , cN |FG|z; c1, . . . , cN 〉
〈z; c1, . . . , cN |z; c1, . . . , cN 〉

, (81)

Anatol Odzijewicz in cooperation with Elwira Wawreniuk Classical and quantum Kummer shapes in memory of S. Twareque Ali (1942-2016)



I Classical Kummer shape
II Quantum Kummer shape

III Coherent states, ∗-product and reduction

Covariant symbols and Moyal ∗-product
Reduced coherent states and reduced ∗-product
Reproducing measure for the reduced coherent states

From (81) and (79) we obtain

(〈F〉 ∗~ 〈G〉)(z̄, z) =

∫
DR~

〈z; c1, . . . , cN | F | w; c1, . . . , cN 〉
〈z; c1, . . . , cN | w; c1, . . . , cN 〉

×

× 〈w; c1, . . . , cN | G | z; c1, . . . , cN 〉
〈w; c1, . . . , cN | z; c1, . . . , cN 〉

|ac1,...,cN (z, w)|2dνc1,...,cN (w̄, w), (82)

where

ac1,...,cN (z, w) :=
〈z; c1, . . . , cN |w; c1, . . . , cN 〉

〈z; c1, . . . , cN |z; c1, . . . , cN 〉
1
2 〈w; c1, . . . , cN |w; c1, . . . , cN 〉

1
2

(83)
and

dνc1,...,cN (w̄, w) = 〈w; c1, . . . , cN |w; c1, . . . , cN 〉dµc1,...,cN (w̄, w). (84)
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Proposition

The ∗~-product (81) of the covariant symbols f(z̄, z) =
∑∞
k,l=0 fk̄,lz̄

kzl and

g(z̄, z) =
∑∞
k,l=0 gk̄,lz̄

kzl of operators F :=
∑∞
k,l=0 fk̄,lA

∗kAl and
G :=

∑∞
r,s=0 gr̄,sA

∗rAs, respectively, is given by

(f ∗~ g)(z̄, z) =

=
1

〈z; c1, . . . , cN |z; c1, . . . , cN 〉
f(z̄, ∂̄G~) (g(z̄, z)〈z; c1, . . . , cN |z; c1, . . . , cN 〉) ,

(85)

where, by definition, the operator ∂G~ acts on the monomial zn in the
following way

∂G~z
n := G~(n− 1)zn−1, (86)

if n ≥ 1 and ∂G~z
n = 0 if n = 0. The operator f(z̄, ∂̄G~) is defined by

f(z̄, ∂̄G~) :=
∞∑

k,l=0

fk̄,lz̄
k∂̄lG~ (87)

and acts on the complex coordinate z̄ only.
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• One defines the Lie bracket {f, g}G0 of the covariant symbols f and g by

{f, g}G0 := lim
~→0

−i
~

(f ∗~ g − g ∗~ f). (88)

• When exponents l0, . . . , lN are nonnegative we find that the covariant
symbols of A,A∗ are z, z̄,respectively. If additionally function G~ is
invertible as a function of A0 (for example when g0 is constant) the
covariant symbol of A0 in the limit ~→ 0 gives I0.
• We have

{I0, z}G0 = iz, (89)

{I0, z̄}G0 = −iz̄, (90)

{z, z̄}G0 = −i∂G0

∂I0
(I0). (91)

• In the classical limit ~→ 0 the quantum Kummer shape algebra, i.e. the
operator algebra defined by the operators (54), corresponds to the classical
Kummer shape (33-34) with Nambu bracket {·, ·}C defined by structural
function G0.
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Proposition

In the case when exponents l0, . . . , lN are nonnegative and quantum
structural function G~(·, c1, . . . , cN ) is invertible as a function of A0 (e.g.
when g0 is constant), passing to the classical limit ~→ 0 intertwines both
reduction procedures, quantum and classical, i.e.
Figure 2.

Quantum system of N + 1
harmonic oscillators

Quantum
reduction

��

~→0 // Classical system of N + 1
harmonic oscillators

Classical
reduction

��
Quantum Kummer shape

~→0 // Classical Kummer shape
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Reproducing measure for the reduced coherent states

Proposition

Suppose that g0 is a constant. We have the following reproducing property:

Kc1,...,cN (v̄, w) =

∫
C
Kc1,...,cN (v̄, z)Kc1,...,cN (z̄, w)dµc1,...,cN (z̄, z), (92)

for reproducing kernel Kc1,...,cN given by

Kc1,...,cN (z̄, w) = 〈z; c1, . . . , cN |w; c1, . . . , cN 〉

=
1

v0! . . . vN !
rFs

[
α1, α2, . . . , αr
β1, β2, . . . , βs

;
z̄w

g2
0l
l0
0 . . . llNN ~l0+...+lN

]
, (93)

for r = 1 +
∑
i∈Nn |li| and s =

∑
i∈Np li, where

(α1, α2, . . . , αr) =

=

(
1,
vi1
li1
, . . . ,

vi1 − (−li1 − 1)

li1
, . . . ,

vir−1

lir−1

, . . . ,
vir−1 − (−lir−1 − 1)

lir−1

)
(94)
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Proposition continued

and

(β1, β2, . . . , βs) =

=

(
vj1 + 1

lj1
, . . . ,

vj1 + lj1
lj1

, . . . ,
vjs + 1

ljs
, . . . ,

vjs + ljs
ljs

)
. (95)

and reproducing measure dµc1,...,cN (z̄, z) = ρc1,...,cN (|z|2)d|z|2dψ0,
z = |z|eiψ0 , is defined by

ρc1,...,cN (|z|2) :=
1

2πl20~N+1+v0+...+vN g
2v0+2
l0

0

|z|2
(
v0+1
l0
−1
)
×

×
∫

[0,+∞)N
x
v1−

l1(v0+1)
l0

1 . . . x
vN−

lN (v0+1)
l0

N ×

× e−
1
~ (|z|

2
l0 (g2

0x
l1
1 ...x

lN
N

)
− 1
l0 +x1+...+xN )dx1 . . . dxN . (96)
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Example

1.For l0 = l1 = 1 and |0, v1〉 as a vacuum state, v1 ∈ N, the reproducing
kernel takes the form

Kc1(z̄, w) =
1

v1!
0F1

[
−; v1 + 1;

z̄w

~2

]
. (97)

The density function is given by

ρc1(|z|2) =
1

2π~2

(
|z|2

~2

) v1
2

Kv1

(
2
|z|
~

)
, (98)

where Kv1 is the modified Bessel function of the second kind.
2. Assuming l0 = 1, l1 = −1 and choosing |0, v1〉 as the vacuum state, one
has

Kc1(z̄, w) =
1

v1!
(1 + z̄w)v1 . (99)

From (96) one has

ρc1(|z|2) =
1

2π

(v1 + 1)!

(1 + |z|2)v1+2
. (100)
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Example

3. In the case N = 2 and (l0, l1, l2) = (1,−1,−1) function

ρc1,c2(x) =
(v1 + 1)!(v2 + 1)!

2π~
v1+v2+1

2

gv2+v1+1
0 e

g2
0

2~xW− (v1+v2+3)
2

;
v1−v2

2

(
g2

0

~x

)
,

(101)
where W− (v1+v2+3)

2
;
v1−v2

2

is a Whittaker function, defines the reproducing

measure dνc1,c2(z̄, z) = ρ(|z|2)d|z|2dψ for reproducing kernel

Kc1,c2(z̄, w) =

L∑
n=0

(z̄w~)n

g2n
0 n!(v1 − n)!(v2 − n)!

=

=
1

v1!v2!
2F0

[
−v1, −v2

− ;
z̄w~
g2

0

]
(102)
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