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Nonlinear Coherent States (NLCS)

We summarize the construction of NLCS as in the book of S. T. Ali, J. P. Antoine and
J. P. Gazeau, Coherent States, Wavelets, and their Generalizations, 1999.

The series expansion of the canonical CS, due to Iwata (Prog. Theor. Phys. 1951) :

|z〉 = (ezz̄)−1/2
+∞∑
n=0

z̄n√
n!
|ϕn〉, z ∈ C, (1)

|ϕn〉, n = 0, 1, 2, ...,∞, is an orthogonal basis in an arbitrary Hilbert space H.
Let {xn}∞n=0, x0 = 0, be a sequence of positive numbers with lim

n→+∞
xn = R2,

R > 0, and we use the notation xn! = x1x2 · · · xn and x0! = 1.

For each z ∈ D ⊆ C, a generalization of (1) :

|z〉 = (N (zz̄))−1/2
+∞∑
n=0

z̄n√
xn!
|ϕn〉, (2)

N (zz̄) =
+∞∑
n=0

|z|2n
xn!

is a normalization factor. The vectors |z〉 are well de�ned for all z for

which N (zz̄) converges, i.e. D = {z ∈ C, |z | < R}.
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Assume ∃ a measure dν on D for which we have the resolution of identity :∫
D
|z〉〈z |dν(z , z̄) = 1H (3)

Setting dν(z , z̄) = N (zz̄)dη(z , z̄), then for (3) to be satis�ed dη should be of the
form dη(z , z̄) = dθ

2π
dλ(ρ), z = ρe iθ where dλ solves the moment problem∫ R

0

ρ2ndλ(ρ) = xn!, n = 0, 1, 2, ... . (4)

Example 1 :

The sequence of positif numbers : xn = n, n = 0, 1, 2, ... .
• Here R =∞ and the problem in (4) is the Stieljes moment problem∫ +∞

0

ρ2ndλ(ρ) = n!, n = 0, 1, 2, ... . (5)

• Thus dλ(ρ) = 2e−ρ
2

ρdρ, 0 ≤ ρ <∞. We recover the canonical CSs

|z〉 = (ezz̄)−1/2
+∞∑
n=0

z̄n√
n!
|ϕn〉, (6)
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Example 2

The sequence of positif numbers

xn = n (2σ + n − 1) , n = 0, 1, 2, 3, ... , (7)

with 2σ = 1, 2, 3, ...

• R =∞ and the moment problem reads∫ +∞

0

ρ2ndλ(ρ) = n!(2σ)n (8)

(a)n = a(a + 1) · · · (a + n − 1), (a)0 = 1, is the shifted factorial.

• dλ(ρ) = 2
π
K2σ−1(2ρ)ρ2−2σdρ, 0 ≤ ρ <∞, Kτ (.) : the Macdonald function of order τ .

• The CSs are of Barut-Girardello type (Commun. Mat. Phys. 1971) :

|z , σ〉 =
|z |2σ−1√
I2σ−1(2|z |)

+∞∑
n=0

z̄n√
n!(2σ)n

|ϕn〉, z ∈ C, (9)

Iτ (.) is the modi�ed Bessel function of the �rst kind and of order τ .
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NLCS with a speci�c sequence of positive numbers xγn
We deal with NLCS on C, which interpolates between canonical CSs and a class of
Barut Girardello CSs without specifying the Hamiltonian.

For γ ∈ [0,∞), xγ0 = 0, xγ1 = Γ(2γ + 1),

xγn :=
n(n + γ)(n + 2γ − 1)

n + γ − 1
, n = 2, 3, 4, ... , (10)

and
xγn ! := n!(n + γ)(2γ + 1)(2γ + 2) · · · (2γ + n − 1) (11)

De�ne NLCS by

|z ; γ〉 := (Nγ(zz̄))−
1

2

+∞∑
n=0

z̄n√
xγn !
|φn〉 , n = 0, 1, 2, ... , (12)

|φn〉 an orthonormal basis of an abstract Hilbert space H.
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Proposition 1

Let γ ∈ [0,∞).

The normalization factor

Nγ (zz̄) = 2 1F2

(
γ

γ + 1, 2γ
| zz̄

)
(13)

1F2(a; b, c; x) is the hypergeometric function which converge for all x .

The resolution of the identity∫
C
|z ; γ〉 〈z ; γ| dµγ(z) = 1H, (14)

where

dµγ(z) =
4

Γ(2γ + 1)
1F2

(
γ

γ + 1, 2γ
| zz̄

)
G 30
13

(
zz̄

∣∣∣∣∣ γ − 1

0, γ, 2γ − 1

)
dµ(z),

(15)
G 30
13 (.) is the Meijer's G-function and dµ being the Lebesgue measure on C.
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On the proof

Assume that dµγ(z) = Nγ(zz̄)h(zz̄)dµ(z), h an auxiliary density function, consider
z = ρe iθ, ρ > 0 and θ ∈ [0, 2π) :

dµγ(z) = Nγ(ρ2)h(ρ2)ρdρ
dθ

2π
. (16)

Using the expression

Oγ =

∫
C
|z ; γ〉 〈γ; z | dµγ(z) (17)

thus

Oγ =
+∞∑

n,m=0

(∫ +∞

0

ρn+mh(ρ2)ρdρ√
σγ(n)σγ(m)

(∫ 2π

0

e i(n−m)θ dθ

2π

))
|φn〉〈φm|

=
+∞∑
n=0

1

n!(n + γ)(2γ + 1)n−1

(∫ +∞

0

ρ2nh(ρ2)ρdρ

)
|φn〉〈φn|

=
+∞∑
n=0

1

2n!(n + γ)(2γ + 1)n−1

(∫ +∞

0

rnh(r)dr

)
|φn〉〈φn|.
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We need h such that ∫ +∞

0

rnh(r)dr = 2n!(n + γ)(2γ + 1)n−1. (18)

Recall (A. M. Mathai, R. K. Saxena 1973, p.67) :

∫ +∞

0

Gml
pq

(
ωt

∣∣∣∣∣ a1, · · · , ap
b1, · · · , bq

)
ts−1dt =

1

ωs

m∏
j=1

Γ(bj + s)
l∏

j=1

Γ(1− aj − s)

q∏
j=m+1

Γ(1− bj − s)
p∏

j=l+1

Γ(aj + s)

(19)

Gml
pq the Meijer's function such that 0 ≤ l ≤ p < q ; 0 ≤ m ≤ q ; ω 6= 0 ;

c∗ = m + l − p
2
− q

2
> 0, | argω| < c∗π ; −min<(bj) < <(s) < 1−max<(ak) for

j = 1, · · · ,m and k = 1, · · · , l . For ω = 1, p = 1, q = 3, m = 3, l = 0,
a1 = γ, b1 = 1, b2 = γ + 1, b3 = 2γ and s = n, (19) becomes∫ +∞

0

G 30
13

(
r

∣∣∣∣∣ γ

1, γ + 1, 2γ

)
2rn−1

Γ(2γ + 1)
dr = 2n!(n + γ)(2γ + 1)n−1. (20)

Then

h(r) =
2r−1

Γ(2γ + 1)
G 30
13

(
r

∣∣∣∣∣ γ

1, γ + 1, 2γ

)
. (21)
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Using (H.Srivastava and L.Manocha, A Treatise on Generating Functions,1984, p.46) :

yσGml
pq

(
y

∣∣∣∣∣ (ap)

(bq)

)
= Gml

pq

(
y

∣∣∣∣∣ (ap + σ)

(bq + σ)

)
, (22)

(21) becomes

h(r) =
2

Γ(2γ + 1)
G 30
13

(
r

∣∣∣∣∣ γ − 1

0, γ, 2γ − 1

)
. (23)

thus

Oγ =
+∞∑
n=0

|φn〉 〈φn| = 1H. (24)

since {|φn〉} is an orthonormal basis of H. Then, we obtain (14). �
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Remark 1
Case γ = 0 : the sequence xγn reduces to

x0n = n2 (25)

and
x0n ! = (n!)2 (26)

the NLCS are of Barut-Girardello type with 2σ = 1. Results on overcompletness or
undercompletness of discrete sets of CSs based on the use of theorems that relate
the growth of analytic functions to the density of their zeros were obtained by
(A.Voudras, K.A Penson, G.H.E. Duchamp and A.I. Solomon, J.Phys. A :
Math.Theor. 2012).

Case γ → +∞ : In this case the generalized factorial behaves like

x∞n ∼ (2γ)nn! (27)

then the NLCS are the canonical CS of the harmonic oscillator.

Case γ = 1 : The sequence xγn reduces to

x1n = (n + 1)2, x1n ! = ((n + 1)!)2 (28)

and will be associated with to the Pöschl-Teller oscillator
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The symmetric Pöschl-Teller (SPT) oscillator

The Hamiltonian is given by Hν = − 1
2m∗

d2

dθ2
+ Vν(θ),

Vν(θ) :=
~2α2

2m∗

ν(ν − 1)

cos2 αθ
, (29)

−π/2α ≤ θ ≤ π/2α, ~ the Planck's constant, α > 0 the range of the potential,
m∗ is the reduced mass of the particle, ν > 1 is the potential strength and θ gives
the relative distance from the equilibrium position.

The energy of a bound state

Eνn =
~2α2

2m∗
(ν + n)2, n = 0, 1, 2, .... (30)

Wavefunctions of bound states

〈θ|φνn 〉 =

√
αn!(n + ν)Γ(ν)Γ(2ν)

π1/2Γ(n + 2ν)Γ(ν + 1/2)
cosν(αθ) Cνn (sinαθ) (31)

give an orthonormal basis of Hα = L2
(
[− π

2α
, π
2α

], dθ
)
, where Cνn (.) is the

Gegenbauer polynomial.
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Remark 2

When ν → 1, the SPT oscillator becomes the In�nite Square Well Potential
(ISWP) with barriers at θ = ±π/2α, an wavefunctions of bound states reduce to

〈
θ|φ1n

〉
=

√
2α

π
cos(αθ) Un(sinαθ), (32)

where Un(.) is the Chebychev polynomial.

Subtracting the zero point energy ν(ν − 1)~α2/2 and then taking limits ν →∞,
α→ 0, such that α2ν = mω/~, potential, energy levels, wavefunctions becomes
those for the harmonic oscillator (M.N.Nieto, Phys. Rev A. 1978).

De�nition 1 : NLCS of the SPT oscillator
Let γ ∈ (0,∞) and ν > 1. De�ne

|z ; γ, ν〉 := (Nγ(zz̄))−
1

2

+∞∑
n=0

z̄n√
xγn !
|φνn 〉 (33)

Nγ(.) is a normalization factor, xγn ! = n!(n + γ)(2γ + 1)(2γ + 2)...(2γ + n− 1) and |φνn 〉
are wavefunctions of the SPT oscillator.
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Proposition 2 : A closed form for NLCS

Choosing ν = γ

〈θ|z ; γ〉 = 2γ−1

√
αΓ(γ + 1)Γ

(
γ + 1

2

)
π1/2

(
1F2

(
γ

γ + 1, 2γ
| zz̄

))−1/2
(34)

×z̄
1

2
−γ exp (z̄ sinαθ) Jγ− 1

2

(z̄ cosαθ)
√
cosαθ,

for every θ ∈
[
− π

2α
, π
2α

]
.

Corollary 1. The particular case γ = ν = 1

This corresponds to the in�nite square well (ISW) potential

〈θ|z〉 =

√
α

π
(I0(2|z | − 1))−

1

2 exp (z̄ sinαθ) sin(z̄ cosαθ) (35)

I0(.) the modi�ed Bessel function of the �rst kind.
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−γ exp (z̄ sinαθ) Jγ− 1

2

(z̄ cosαθ)
√
cosαθ,

for every θ ∈
[
− π

2α
, π
2α

]
.

Corollary 1. The particular case γ = ν = 1

This corresponds to the in�nite square well (ISW) potential

〈θ|z〉 =

√
α

π
(I0(2|z | − 1))−

1

2 exp (z̄ sinαθ) sin(z̄ cosαθ) (35)

I0(.) the modi�ed Bessel function of the �rst kind.
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On the proof

Writing the expression of the wavefunction

〈θ|z ; γ〉 := 〈θ|z ; γ, γ〉 = (Nγ (zz̄))−
1

2

+∞∑
n=0

z̄n√
xγn !
〈θ|φγn 〉 . (36)

To get a closed form of S(θ) =
∑+∞

n=0
z̄n√
x
γ
n !
〈θ|φγn 〉 we replace 〈θ|φγn 〉 by expression (31)

S(θ) =

√
αΓ(γ + 1)

π1/2Γ
(
γ + 1

2

) cosγ(αθ)
+∞∑
n=0

z̄n

(2γ)n
Cγn (cosαθ). (37)

We use (A. P. Prudnikov, Yu. A. Brychkov, volume 3 1990, p.711) :

+∞∑
k=0

tk

(2τ)k
C τk (y) = Γ

(
τ +

1

2

)
eyt
( t
2

√
1− y2

) 1

2
−τ

Jτ− 1

2

(
t
√
1− y2

)
(38)

Jτ (.) denotes the Bessel function of order τ . For k = n, t = z̄ , τ = γ and y = sinαθ

S(θ) = 2γ−1/2

√
αΓ(γ + 1)Γ

(
γ + 1

2

)
π1/2

z̄1/2−γ exp (z̄ sinαθ) Jγ− 1

2

(z̄ cosαθ)
√
cosαθ

(39)

which gives (34).
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For ν = 1, the SPT potential becomes the ISW with eigenfunctions {φ1n(θ)}.
The result (35) is deduced by setting γ = 1 in (34) and using Γ(3/2) =

√
π/2 together

with

1F2(1, 2, 2; ζ2) =
1

ζ2
(I0(2ζ)− 1) (40)

for ζ = |z |
See Ref. A.P.Prudnikov, Yu.A.Brychkov, O.I.Marichev, Integrals and Series : More
special Function, Gordon and Breach Science Publishers, 1990, p.600
Next by using the formula

J1/2(ξ) =

√
2

πξ
sin ξ, (41)

where ξ = z̄ cosαθ

See Ref.(L. C. Andrews, Special function for Engineers and Applied Mathematicians,

Macmillan Publishing compagny, London 1985, p.203).
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A coherent states transform

The resolution of identity gives a unitary map Bγ : Hα −→ Aγ(C) de�ned by

Bγ [φ](z) = (N (zz̄))1/2 〈φ|z , γ〉Hα
(42)

where
Aγ(C) = Hol(D) ∩ L2(D, dνγ)

with

dνγ(z , z̄) =
2

Γ(2γ + 1)
G 30
13

(
zz̄

∣∣∣∣∣ γ − 1

0, γ, 2γ − 1

)
dµ(z), (43)

A sequential characterization of the space Aγ(C) :

f (z) =
∑

n≥0 anz
n ∈ Aγ(C) if and only if the (an) satisfy

1

Γ(2γ + 1)

+∞∑
n=0

n!(n + γ)Γ(n + 2γ)|an|2 < +∞. (44)

Zouhaïr Mouayn (Morocco) 17 / 58



A coherent states transform

The resolution of identity gives a unitary map Bγ : Hα −→ Aγ(C) de�ned by

Bγ [φ](z) = (N (zz̄))1/2 〈φ|z , γ〉Hα
(42)

where
Aγ(C) = Hol(D) ∩ L2(D, dνγ)

with

dνγ(z , z̄) =
2

Γ(2γ + 1)
G 30
13

(
zz̄

∣∣∣∣∣ γ − 1

0, γ, 2γ − 1

)
dµ(z), (43)

A sequential characterization of the space Aγ(C) :

f (z) =
∑

n≥0 anz
n ∈ Aγ(C) if and only if the (an) satisfy

1

Γ(2γ + 1)

+∞∑
n=0

n!(n + γ)Γ(n + 2γ)|an|2 < +∞. (44)

Zouhaïr Mouayn (Morocco) 17 / 58



Theorem 1.

Let γ > 1. The coherent states transform Bγ : Hα → Aγ(C) is given by

Bγ [ϕ](z) =

√
α

Γ(γ + 1)Γ(γ + 1/2)

π1/2

(z
2

) 1

2
−γ

×
∫ π

2α

−π
2α

exp (z sinαθ) Jγ−1/2(z sinαθ)
√
cosαθϕ(θ)dθ.

For γ → 1, which corresponds to in�nite square well (ISW) potential,

B1[ϕ](z) =

(
α
π

)1/2
z

∫ π
2α

−π
2α

exp (z sinαθ) sin(z cosαθ)ϕ (θ) dθ, z ∈ C

Remark 2

A generalization of xγn was considered by T. Sheecharan, Prasanta K. Panigrahi
and J. Banerji (Phys. Rev. A. 2004), who provided an algebraic construction of the
CSs for a class of potentials, belonging to hypergeometric functions classes.

In a similar context H.B. Zhang, G.Y. Jiang, and S.X. Guo (J. Math. Phys, 2014)
considered the Pöschl-Teller oscillator where they investigated nonclassical
properties via statistics of corresponding photon-counting probability distributions.
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Part II

Two sets of orthogonal polynomials attached to
NLCS

S. T. Ali and M. E. H. Ismail, Some orthogonal polynomials arising from

coherent states, J. Phys. A : Math. Theor. 2012
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The �rst set of polynomials : {Pn} attached to the measure dνγ

These polynomials are obtained by symmetrizing the measure

dνγ(r) =
2

Γ(2γ + 1)
G 30
13

(
r2

∣∣∣∣∣ γ − 1

0, γ, 2γ − 1

)
rdr . (45)

(Recall Eq.(4), where dλ solves the moment problem∫ R

0

ρndλ(ρ) = xn!

here dλ :≡ dνγ).

The obtained measure on (−∞,+∞) is

dηγ(t) :=
1

2
dνγ(|t|) (46)

with the moments

µ2n = 2

∫ ∞
0

r2ndηγ(t) = xγn !, (47)

µ2n+1 = 2

∫ ∞
0

r2n+1dηγ(t) = 0, n = 0, 1, 2, ... . (48)
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A set of (monic) polynomials {Pn} orthogonal with respect to dηγ are obtained by
means of the Hankel determinant

Pn(x) =
1

∆n−1

∣∣∣∣∣∣∣∣∣
µ0 µ1 · · · µn

...
... .

...
µn−1 µn · · · µ2n−1
1 x · · · xn

∣∣∣∣∣∣∣∣∣ , ∆n =

∣∣∣∣∣∣∣∣∣
µ0 µ1 · · · µn

µ1 µ2 · · · µn+1

...
... .

...
µn µn+1 · · · µ2n

∣∣∣∣∣∣∣∣∣ (49)

n = 0, 1, 2, ....

Our task is to identify and discuss properties of polynomials Pn in three cases of the
parameter γ :

Case γ = 0

Case γ = 1

Case γ =∞
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Case γ = 0

The factorial sequence : x0n ! = (n!)2.

The NLCS are of Barut-Girardello type.

The measure dν0(r) = 4K0(2r)rdr .

The symmetrized measure dη0(t) = 2K0(2|t|)|t|dt, t ∈ (−∞,+∞).

The moments

µ2n = 2

∫ +∞

0

t2ndη0(t) = (n!)2, µ2n+1 = 2

∫ ∞
0

t2n+1dη0(t) = 0, n = 0, 1, 2, ... .

(50)

The �rst polynomials

P0(x) = 1

P1(x) = x

P2(x) = x2 − 1

P3(x) = x3 − 4x

P4(x) = x4 − 32

3
x2 +

20

3
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Figure: The polynomials P0,P1,P2,P3 and P4
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Some properties of {Pn}
{Pn} are symmetric with respect to the origin and satisfy∫ +∞

−∞
Pn(x)Pm(x)dη0(x) = ξnδmn, (51)

ξn > 0 is a normalization constant and δmn is the Kronecher's symbol.

The polynomials P̃n(x) := 1√
ξn
Pn(x) satisfy

xP̃n(x) = An+1P̃n+1(x) + AnP̃n−1(x) (52)

with the only information we known on the An :

lim
n→∞

An

n
=

π

16
, (53)

see W. V. Assche (J. Comput. Appl. Math. 1993).

Precisely, if we set Vn(x) := P̃2n(x), then (51) reads

2

∫ ∞
0

Vn(x)Vm(x)K0(2
√
x)dx = δmn. (54)

Zouhaïr Mouayn (Morocco) 24 / 58



Some properties of {Pn}
{Pn} are symmetric with respect to the origin and satisfy∫ +∞

−∞
Pn(x)Pm(x)dη0(x) = ξnδmn, (51)

ξn > 0 is a normalization constant and δmn is the Kronecher's symbol.

The polynomials P̃n(x) := 1√
ξn
Pn(x) satisfy

xP̃n(x) = An+1P̃n+1(x) + AnP̃n−1(x) (52)

with the only information we known on the An :

lim
n→∞

An

n
=

π

16
, (53)

see W. V. Assche (J. Comput. Appl. Math. 1993).

Precisely, if we set Vn(x) := P̃2n(x), then (51) reads

2

∫ ∞
0

Vn(x)Vm(x)K0(2
√
x)dx = δmn. (54)

Zouhaïr Mouayn (Morocco) 24 / 58



Some properties of {Pn}
{Pn} are symmetric with respect to the origin and satisfy∫ +∞

−∞
Pn(x)Pm(x)dη0(x) = ξnδmn, (51)

ξn > 0 is a normalization constant and δmn is the Kronecher's symbol.

The polynomials P̃n(x) := 1√
ξn
Pn(x) satisfy

xP̃n(x) = An+1P̃n+1(x) + AnP̃n−1(x) (52)

with the only information we known on the An :

lim
n→∞

An

n
=

π

16
, (53)

see W. V. Assche (J. Comput. Appl. Math. 1993).

Precisely, if we set Vn(x) := P̃2n(x), then (51) reads

2

∫ ∞
0

Vn(x)Vm(x)K0(2
√
x)dx = δmn. (54)

Zouhaïr Mouayn (Morocco) 24 / 58



Calculations using 2
∫ +∞
0

K0(2
√
x)xndx = (n!)2, provide us with constants ξn :

ξ2 = 3, ξ4 = 656/3, ξ6 = 3681936/41 leading to precise expressions of polynomials

V1(x) =
x − 1√

3
, V2(x) =

√
3

41

(
1

4
x2 − 8

3
x +

5

3

)
(55)

V3(x) =

√
41

2841

(
1

36
x3 − 177

164
x2 +

267

41
x − 131

41

)
(56)

which were obtained by Ditkin and Prudnikov and we are faced with a problem.

Ditkin-Prudnikov problem (1967)

Let V0(x , k) = 1, V1(x , k), ...,Vn(x , k), k > 0 an integer, be the OP system on

0 ≤ x ≤ ∞, with respect to ξ(x , k) = 1
2πi

∫ a+i∞
a−i∞ x−sΓk(s), a, x , <s > 0. That is,∫ ∞

0

Vn(x , k)Vm(x , k)ξ(x , k)dx = δnm.

Building the generating function, an analogue of Rodrigues formula, the recurrence

relation for Vn(x , k), k ≥ 2, is still an open problem. Set γ = 2−k
k−1 . When k = 2 i.e.,

γ = 0 then ξ(x , 2) = 2K0(2
√
x) and Vn(x , 2) = Vn(x) connected to the Pn(x).
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Case γ = 1

The generalized factorial x1n ! = ((n + 1)!)2, n = 0, 1, 2, ... .

The measure dν1(r) = G 20
02

(
r2|1, 1

)
rdr .

The symmetrized measure dη1(t) = 1
2
dν1(|t|), t ∈ (−∞,+∞).

The moments

µ2n =

∫ +∞

0

tn+ 1

2K0

(
2
√
t
)
dt = ((n + 1)!)2, µ2n+1 =

∫ +∞

0

tn+1K0

(
2
√
t
)
dt = 0.

(57)

The �rst polynomials

Q0(x) = 1,

Q1(x) = x

Q2(x) = x2 − 4,

Q3(x) = x3 − 9x

Q4(x) = x4 − 108

5
x2 +

252

5
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Figure: The polynomials Q0,Q1,Q2,Q3 and Q4

Qn(x) can be connected with Pn(x) by xQ2n(x) = P2n+1(x), n = 0, 1, 2, ....

Recalling that γ = 2−k
k−1 then the case γ = 1 (which was involved in the in�nite square

well (ISW) potential) corresponds to the value k = 3/2. Then it may be useful to extend
the Ditkin-Prudnikov problem to values k ∈]1, 2[ since we don't known so much about
the polynomials Qn ?
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Case γ →∞
The generalized factorial xγn ! ∼ γnn!, n = 0, 1, 2, ....

The measure
dν∞(r) = 2

r

γ2
exp

(
−(r/γ)2

)
dr .

The symmetrized measure dη∞(t) = 1
2
dν∞(|t|), t ∈ (−∞,+∞).

The moments

µ2n =

∫ +∞

0

tndη∞(t) = n!, µ2n+1 =

∫ +∞

0

tn+1dη∞(t)dt = 0. (58)

The �rst polynomials

1

1−
(

x
γ

)2
1
2

(
x
γ

)4
− 4

(
x
γ

)2
+ 2

which are Laguerre polynomials on the variable (x/γ)2.
Ref. S. T. Ali and M. E. H. Ismail, J. Phys A : Math. Theor 2012.
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The second set of polynomials : {φn} attached to shift operators

De�ne the formal shift operator

aφn =
√
xnφn−1, aφ0 = 0, a∗φn =

√
xn+1φn+1, n = 0, 1, 2, ... .

If
∑∞

n=0
1√
xn

=∞, then Q = 1√
2

(a + a∗) is essentially self-adjoint then it has a

unique self-adjoint extension ( A. Odzijewicz, M. Horowski and A. Tereszkiewicz,
J. Phys. A : Math. Gen 2001) denote again by Q.

Q acts on φn as

Qφn =

√
xn
2
φn−1 +

√
xn+1

2
φn+1. (59)

and ∃ even measure dw such that Q acts on L2(R, dw) as a multiplication on
φn ∈ L2 (R, dw) :

xφn(x) =

√
xn
2
φn−1(x) +

√
xn+1

2
φn+1(x), n = 1, 2, ... , (60)

with φ−1 = 0 and φ0 = 1 (dw comes from the spectral projectors, Ex , x ∈ R, of
Q, in the sense dw(x) = 〈φ0|Exφ0〉.
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Here our task is to write this formalism when xn = xγn , to identify and discuss properties
of polynomials φn in three cases of the parameter γ :

Case γ = 0

Case γ = 1

Case γ =∞

Case γ = 0

The generalized factoriel x0n ! = ((n)!)2 associated with Barut-Girardello CS
(xσn ! = n!Γ(n + 2σ) where σ = 1/2). Here xn = n(n + 2σ − 1)

The associated polynomials φn :≡ φ(1/2)
n satisfy

xφ(1/2)
n (x) =

n + 1√
2
φ

(1/2)
n+1 (x) +

n√
2
φ

(1/2)
n−1 (x). (61)

with condition φ
(1/2)
−1 = 0 and φ

(1/2)
0 = 1.

The �rst polynomials φ
(1/2)
0 (x) = 1, φ

(1/2)
1 (x) =

√
2x and

φ
(1/2)
2 (x) =

1

2
(2x2 − 1)
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with the graphs

Figure: The polynomials φ0, φ1, φ2, φ3 and φ4

Zouhaïr Mouayn (Morocco) 31 / 58



Proposition 3

The φ
(1/2)
n are a special case of Meixner-Pollaczek polynomials

φ(1/2)
n (x) = P(1/2)

n

(
x√
2
,
π

2

)
= in2F1

(
−n, 1

2
+ i x√

2

1
| 2
)

(62)

given by a terminating Gauss hypergeometric 2F1-sum., with generating function

+∞∑
n=0

P1/2
n

(
x√
2
,
π

2

)
=

1√
1 + t2

exp
(√

2x arctan t
)

(63)

This is a partial answer (2σ = 1) to a question by S. T. Ali and M.E.H. Ismail about the

φn? associated with xn = n(n + 2σ − 1) for 2σ ∈ N∗. By the way here is the answer :

Proposition 4

For 2σ = 1, 2, 3..., the φn satisfy∑
n≥0

tnφ(σ)
n (x) =

(
1 + t2

)−σ
exp

(√
2x arctan t

)
so they are Meixner-Pollaczek polynomials

φ(σ)
n (x) = P(σ)

n

(
x√
2
,
π

2

)
.
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On the proof

Proposition 3. We consider the normalized polynomials qn(x) := 2−
1

2
nn!φ

(1/2)
n (x) which

satisfy

qn+1(x)− xqn(x) +
1

2
n2qn−1(x) = 0. (64)

Multiplying (64) by tn/n! and summing over n

+∞∑
n=0

qn+1(x)
tn

n!
− x

+∞∑
n=0

qn(x)
tn

n!
+

1

2

+∞∑
n=0

nqn−1(x)
tn

(n − 1)!
= 0. (65)

Setting Gx(t) :=
∑+∞

n=0 qn(x) tn

n!
, then (65) leads to

(t2 + 2)
d

dt
Gx(t) + (t − 2x)Gx(t) = 0, (66)

which, by using the condition G(0, 0) = 1, gives that

Gx(t) =

√
2√

2 + t2
exp

(√
2x arctan

t√
2

)
.

If we particularize the generating function (R. Koekoek R. F. Swarttouw, The
Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue) :

+∞∑
n=0

P(λ)
n (u, φ)tn =

(
1− e iφt

)−λ+iu (
1− e−iφt

)−λ−iu

. (67)
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On the proof

by setting λ = 1/2, φ = π/2 and u = x/
√
2, we then obtain

+∞∑
n=0

P(1/2)
n

(
x√
2
,
π

2

)
tn = (1− it)−1/2+ix/

√
2(1 + it)−1/2−ix/

√
2. (68)

Using the identity (
1− it

1 + it

) 1

2
iz

= exp (z arctan t) , (69)

for z =
√
2x , we get

+∞∑
n=0

P(1/2)
n

(
x√
2
,
π

2

)
tn =

1√
1 + t2

exp
(√

2x arctan t
)
. (70)

By comparing (70) with (33), we arrive at (62).

Proof of Proposition 4. is deduce by the some method in the proof of Proposition 3.
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Case γ = 1

The generalized factorial x1n ! = ((n + 1)2)! which corresponds to the ISW potential.

The associated polynomials φn with φ−1 = 0 and φ0 = 1, satisfy

xφn(x) =
n + 2√

2
φn+1(x) +

n + 1√
2
φn−1(x). (71)

The �rst polynomials φ0(x) = 1, φ1(x) =
√
2
2
x , φ2(x) = 1

3
(x2 − 2) and

φ3(x) =

√
2

12

(
x3 − 13x

2

)

Proposition 5

The polynomials φn are the associated Meixner-Pollaczek polynomials

φ(1/2,1)
n (x) = P(1/2)

n

(
x√
2
,
π

2
, 1

)
(72)

orthogonal on (−∞,+∞) with respect to

ω
1

2 (x , 1) =
e(2φ−π)x

2π

∣∣∣∣Γ(3

2
+ ix

)∣∣∣∣2 ∣∣∣∣ 2F1

(
−1

2
+ ix , 1;

3

2
+ ix ; e2iφ

)∣∣∣∣−2 (73)
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,
π

2
, 1

)
(72)

orthogonal on (−∞,+∞) with respect to

ω
1

2 (x , 1) =
e(2φ−π)x

2π

∣∣∣∣Γ(3

2
+ ix

)∣∣∣∣2 ∣∣∣∣ 2F1

(
−1

2
+ ix , 1;

3

2
+ ix ; e2iφ

)∣∣∣∣−2 (73)
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Case γ = 1
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2
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The �rst polynomials φ0(x) = 1, φ1(x) =
√
2
2
x , φ2(x) = 1

3
(x2 − 2) and

φ3(x) =

√
2

12

(
x3 − 13x

2

)

Proposition 5

The polynomials φn are the associated Meixner-Pollaczek polynomials

φ(1/2,1)
n (x) = P(1/2)

n

(
x√
2
,
π

2
, 1

)
(72)

orthogonal on (−∞,+∞) with respect to

ω
1

2 (x , 1) =
e(2φ−π)x

2π

∣∣∣∣Γ(3

2
+ ix

)∣∣∣∣2 ∣∣∣∣ 2F1

(
−1

2
+ ix , 1;

3

2
+ ix ; e2iφ

)∣∣∣∣−2 (73)

Zouhaïr Mouayn (Morocco) 35 / 58



Proposition 6

The generating function of φn(x) is given by

+∞∑
n=0

P
1

2
n

(
x√
2
,
π

2
, 1

)
tn = − 1

t(
√
2x − t)

+
(t2 + 1)2F1

(
2, 2; 5+i

√
2x

2
; 1+it

2

)
t(
√
2x − t)(1 + i

√
2x)(3 + i

√
2x)

+
i2F1

(
1, 1; 3+i

√
2x

2
; 1
2

)
1 + i

√
2x

e
√
2x arctan(t)

t
√
t2 + 1

where |t| < 1 and x ∈ R.

Corollary 1

We have the following expression of Hypergeometric function

2F1

(
2, 2;

5

2
;
1+ it

2

)
= 3t(t2+1)

−3
2

(
iπ

2
− ln(t +

√
t2 + 1)

)
+

3

t2 + 1
(74)
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√
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√
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√
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√
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√
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2F1

(
2, 2;

5

2
;
1+ it

2

)
= 3t(t2+1)

−3
2

(
iπ

2
− ln(t +

√
t2 + 1)

)
+

3

t2 + 1
(74)
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Proposition 7

The di�erence equation of P
1/2
n (ξ;π/2, 1) is

[AT ∗4 + BT ∗3 + CT ∗2 + DT ∗ + EI ]P1/2
n (ξ, π/2, 1) = 0 (75)

T ∗f (ξ) = f (ξ − i),Tf (x) = f (x + 1) and If (x) = f (x) so

T ∗Pn(ξ) = (−i)n

(n+1)!
(Tmn(ξ)) (iξ − 1/2) where mn(.) is the Meixner polynomials

A∗ = −2(n + 2)

(
iξ +

7

2

)2

B∗ = D∗ = −2(n + 1)(2n + 5)− 2

B∗ = 2(n + 2)[4(n2 + 4n + 3) + 2(iξ + 3/2)2 + 2(iξ + 3/2)2

+ 2(iξ − 1/2)]− 2(4n2 + 5n − 6)

E∗ = −2(n + 2)

(
iξ +

1

2

)2

.
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On the Proof

Proposition 5. By the three-terms recurrence relation (H. Erdelyi, W. Magnus, F.
Oberhettinger, F. G. Tricomi, vol2, 1953) :

(n+c+1)Pλn+1(x) = 2 [(n + c + λ) cosφ+ y sinφ]Pλn (x)−(n+c+2λ−1)Pλn−1(x), (76)

where P
(λ)
n (x) := P

(λ)
n (x , a, b, c) with conditions

P
(λ)
−1 (x) = 0, P

(λ)
0 (x) = 1, 0 < φ < π, 2λ+ c > 0, c ≥ 0, or

0 < φ < π, 2λ+ c ≥ 1, c > −1, for a = 0, c = 1, λ = 1/2 and φ = π/2, we deduces
the result. The weight function (73) is obtain from(H. Erdelyi, W. Magnus, F.
Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, vol2, 1953, p.220).
Proposition 6. The generating function of φn(x), denoted
Gφ(x)(t) = Gφ(x , t) :=

∑
n≥0

φn(x)tn, satisfy

(t3 + t)G ′φ(t) + (2t2 −
√
2xt + 1)Gφ(t)− 1 = 0 (77)

with Gφ(x)(0) = 1. Let a be the zero, if exist, of the function de�ned by

F (t) :=
∫ t

a
(s2 + 1)−1/2e−

√
2x arctan(s)ds. Then, the solution of the equation (77)

Gφ(x)(t) =
e
√
2x arctan(t)

t
√
t2 + 1

F (t) (78)
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For x = 0 we have

Gφ(0)(t) =
1

t
√
t2 + 1

∫ t

a

1√
s2 + 1

ds (79)

thus

Gφ(0)(t) =
arcsh(t)− arcsh(a)

t
√
t2 + 1

(80)

where arcsh(t) = ln(t +
√
t2 + 1). In the other hand we have

Gφ(0)(t) = Gφ(0, t) =
∑
n≥0

φ2n(0)t2n (81)

=
1

2t

∑
n≥0

(−1)n
(n!)2

(2n + 1)!
(2t)2n+1. (82)

by using the formula, in [Prudnikov, vol.1, p.714] :∑
n≥0

(−1)n
(n!)2

(2n + 1)!
(x)2n+1 = 4(4 + x2)−

1

2Arcsh(
x

2
) [|x | < 2] (83)

we get

Gφ(0)(t) =
arcsh(t)

t
√
t2 + 1

[|t| < 1] (84)

from (80) and (84) we conclude that a = 0. Then

Gφ(x)(t) =
e
√
2x arctan(t)

t
√
t2 + 1

∫ t

0

e−
√
2x arctan(s)

√
s2 + 1

ds [|s| < 1]. (85)
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Gφ(x)(t) =
e
√
2x arctan(t)

t
√
t2 + 1

∫ t

0

e−
√
2x arctan(s)

√
s2 + 1

ds [|s| < 1]. (86)

Now, we must calculate F (t). To do that, we compute the exponential generating
function Gq(x)(t) = Gq(x , t) :=

∑
n≥0 q̃n(x)tn/n!, of q̃n(x) = (xn!/2n)1/2φn(x). We

have : (i) The exponential generating function of polynomials q̃n(x) is given by

Gq(x)(t) = C1(x) 2F1

(
2, 2;

5 + i
√
2x

2
;
2 + i

√
2t

4

)
+ C2(x)(2x − t)(2 + t2)−

3

2 ,

×e
√
2x arctan( t√

2
)

where x ∈ R, and

C1(x) =
1

(1 + i
√
2x)(3 + i

√
2x)

, C2(x) =
2i

1 + i
√
2x

2F1(1, 1;
3 + i

√
2x

2
;
1

2
).

(ii) The integral F (t) is given by

F (t) =

 (t2 + 1)2F1
(
2, 2; 5+i

√
2x

2
; 1+it

2

)
(1 + i

√
2x)(3 + i

√
2x)

− 1

 √1 + t2√
2x − t

e−
√
2x arctan(t)

×+
i2F1

(
1, 1; 3+i

√
2x

2
; 1
2

)
1 + i

√
2x
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On the proof

(i) The normalized polynomials q̃n(x) satisfy the three-terms recurrence relation

xq̃n(x) = q̃n+1(x) +
(n + 1)2

2
q̃n−1(x) (87)

The generating function Gq(x)(t) satisfy

(t2 + 2)
d2

dt2
Gq(x)(t) + (5t − 2x)

d

dt
Gq(x)(t) + 4Gq(x)(t) = 0, (88)

by putting t = i
√
2(1− 2s) and ψ(s) := Gq(x)(i

√
2(1− 2s)), Eq.(88) reduces to

s(1− s)ψ′′(s) +

(
5 + i

√
2x

2
− 5s

)
ψ′(s)− 4ψ(s) = 0, (89)

with parameters a = b = 2, and c = 5+i
√
2x

2
. Since c is not an integer, the solution of

Eq.(89) is of the form ( see [HBK], p. 256) :

ψ(s) = C1 2F1

(
2, 2;

5 + i
√
2x

2
; s

)
+ C2s

−3−i
√
2x

2 2F1

(
1− i

√
2x

2
,
1− i

√
2x

2
;
−1− i

√
2x

2
; s

)
,

where C1 and C2 are constants. By taking account of our change of functions we get

Gq(x)(t) = C1 2F1

(
2, 2;

5 + i
√
2x

2
;
2 + i

√
2t

4

)
+ C2

(
2 + i

√
2t

4

)−3−i
√
2x

2

Zouhaïr Mouayn (Morocco) 41 / 58



× 2F1

(
1− i

√
2x

2
,
1− i

√
2x

2
;
−1− i

√
2x

2
;
2 + i

√
2t

4

)
, (90)

we make appeal to the Euler's hypergeometric transformation

2F1(a, b; c; x) = (1− x)c−a−b
2F1(c − a, c − b; c; x) (91)

and using the identity (69) the expression of Gq(x)(t) is given by

Gq(x)(t) = C1(x) 2F1

(
2, 2;

5 + i
√
2x

2
;
2 + i

√
2t

4

)
+ C2(x)(2x − t)(2 + t2)−

3

2 e
√
2x arctan( t√

2
)
,

in the other hand the conditions Gx(0) = 1 and G ′x(0) = x gives 2F1
(
2, 2; 5+i

√
2x

2
; 1
2

)
C1(x) + (

√
2)−1xC2(x) = 1

i2
√
2

5+i
√
2x 2F1

(
3, 3; 7+i

√
2x

2
; 1
2

)
C1(x) + (2

√
2)−1(2x2 − 1)C2(x) = x

from this system of equation we get easily the quantities C1(x) and C2(x) given by

C1(x) = −
[

(2x2 − 1)2F1

(
2, 2;

5 + i
√
2x

2
;
1

2

)
− 4

√
2ix

5 +
√
2ix

2F1

(
3, 3;

7 + i
√
2x

2
;
1

2

)]−1
,

C2(x) =
2
3

2 x2F1
(
2, 2; 5+i

√
2x

2
; 1
2

)
− 8i

5+i
√
2x 2

F1
(
3, 3; 7+i

√
2x

2
; 1
2

)
(2x2 − 1)2F1

(
2, 2; 5+i

√
2x

2
; 1
2

)
− 4

√
2ix

5+
√
2ix 2

F1
(
3, 3; 7+i

√
2x

2
; 1
2

) .
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In order to simplify C1(x) and C2(x) we applicate this formula [NIST Handbook of
Mathematical Functions, p.388]

z(1− z)(a + 1)(b + 1)2F1(a + 2, b + 2; c + 2; z) +

(c − (a + b + 1)z)(c + 1)2F1(a + 1, b + 1; c + 1; z) − c(c + 1)2F1(a, b; c; z) = 0

then we get

C1(x) =
1

(1 + i
√
2x)(3 + i

√
2x)

(92)

C2(x) =
2i

1 + i
√
2x

2F1(1, 1;
3 + i

√
2x

2
;
1

2
). (93)

(ii) The relation between Gφ(x , t) and Gq(x , t) is given by

d

dt
(tGφ(x , t)) = Gq(x ,

√
2t) (94)

multiplying (86) by t and deriving, we get

Gφ(x , t) + t
d

dt
Gφ(x , t) =

√
2x − t

(t2 + 1)
3

2

e
√
2x arctan(t)

∫ t

0

e−
√
2x arctan(s)

√
s2 + 1

ds +
1

t2 + 1
(95)

in the other hand we have

Gq(x ,
√
2t) =

2F1
(
2, 2; 5+i

√
2x

2
; 1+it

2

)
(1 + i

√
2x)(3 + i

√
2x)

+
i2F1

(
1, 1; 3+i

√
2x

2
; 1
2

)
1 + i

√
2x

√
2x − t

(t2 + 1)
3

2

e
√
2x arctan(t).

(96)
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Case γ →∞
The sequence of positive number x∞n = γn

The polynomials φn have been obtained by S. T. Ali and M. E. H. Ismail (J.Phys
A : Math. Theor 2012) and are the Hermite polynomials.
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Part III

A Hamiltonian operator associated with
polynomials {φn}

V. V. Borzov, Orthogonal polynomials and generalized oscillator algebras,

Integral Transforms and Special Functions 2000
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Here, our aim is to attached "à la Borzov" a Hamiltonian operator to every set of

orthogonal polynomials φn, we have discussed with respect to the parameter γ in the

previous part.

Borzov's Method

ρ a positive Borel measure on R

{φn(x)}∞n=0 an orthonormal basis in the Hilbert space F = L2 (R, ρ(dx)) = F1

Let F2 = L2 (R, ρ(dy)) a second copy of this Hilbert space.

The Poisson Kernel on F1 ⊗ F2 is de�ned by

KF (x , y , t) =
∞∑
n=0

tnφn(x)φn(y)

De�ne the integral operators

KF [f ](y) =

∫
Rx

f (x)KF (x , y , t)ρ(dx), K′F [g ](x) =

∫
Ry

g(y)KF (x , y , t)ρ(dy)

If {φn} is complete in F and |t| = 1 then K ′F = K∗F = (KF )−1
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The position operator YF2 is assumed to act by

yφn(x) = bn−1φn−1(x) + bnφn+1(x) (97)

with b−1 = 0, φ0(x) = 1, where (bn)
∞
n=0

is a given positive sequence

The momentum operator is de�ned by

PF1 = K ∗FYF2KF (98)

Finally, the Hamiltonian operator is de�ned by

HF1(t) = (XF1)
2 + (PF1(t))

2 (99)
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Case γ →∞
The NLCS sequence xγn = n

The Borzov sequence bn =
(
n+1
2

)1/2
The polynomials φn(x) = (2nn!

√
π)
−1/2

Hn(x) the Hermite polynomials

The Poisson kernel is given by the Mehler formula

K(x , y , t) =
1√
π

(1− t2)−1/2 exp

(
2xyt − (x2 + y2)t

1− t2

)
(100)

For t = i , KF (x , y , i) = 1√
π
exp(ixy)

The generalized Fourier transform is the usual one, then the momentum operator

P = i
d

dx
(101)

The Hamiltonian operator

H = X 2 + P2 = − d2

dx2
+ x2 (102)

is the harmonic oscillator
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The generalized Fourier transform is the usual one, then the momentum operator

P = i
d

dx
(101)

The Hamiltonian operator

H = X 2 + P2 = − d2

dx2
+ x2 (102)

is the harmonic oscillator
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Case γ = 0 : Barut Giraredello CS type (2σ = 1)

V. V. Borzov and E. V. Damaskinsky, The generalized coherent states for oscillators
connected with Meixner and Meixner Pollaczek polynomials (Theor. Math. Phys 2007)

have attached to the set of Meixner-Pollaczek polynomials P
(σ)
n (x , π

2
) the following

Hamiltonian operator

H =
1

λ2
cosh(iλ∂x) +

1

2
(x + iλ)xe iλ∂x (103)

σ(σ − 1) = λ−4, that coincides with Hamiltonian of Linear Relativistic oscillator from

the work N. M. Atakishiyev and S. K. Suslov, The Hahn and Meixner polynomials of an

imaginary argument and some of their applications (J. Phys. A. 1985)
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Case γ = 1

Attaching to the obtained set of associated Meixner-Pollaczek polynomials a
Hamiltonian operator is under construction
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Summarizing scheme

Figure: NLCS : Nonlinear coherent states, ISW : In�nite Square Well and BG :
Barut-Girardello
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Concluding remarks

We have replaced the factorial n! occurring in coe�cients zn/
√
n! of the canonical

coherent states by a speci�c generalized factorial xγn ! = xγ1 · · · x
γ
n , where xγn is a

sequence of positive numbers and γ ∈ (0,∞) being a parameter. The new
coe�cients are then used to consider a superposition of eigenstates of the
Hamiltonian with a symmetric Pöschl-Teller (SPT) potential depending on a
parameter ν > 1. For equal parameters γ = ν, we de�ne the associated
Bargmann-type transform and we derive some results on the in�nite square well
potential.

We have proceed by a general method (S. T. Ali, M. E. H. Ismail, J. Phys A :
Math. Theor. 2012) to discuss, for some di�erent values of γ, two sets of
orthogonal polynomials that are naturally associated with these NLCS. One set of
these polynomials, say Pn (x), is obtained from a symmetrization of the measure
which gives the resolution of the identity for the NLCS. Here, we can suggest a
new generalization of these NLCS themselves by replacing the coe�cients
zn/
√
xγn ! by the obtained polynomials Pn (x). In this direction, it's crucial to know

some basic properties of these polynomials. However, for many values of γ, such
properties are not known. As example, for γ = 0, the NLCS are of Barut-Girardello
type and the resulting polynomials are related to the Ditkin-Prudnikov problem
which is still open.
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Concluding remarks

The second set of orthogonal polynomials, say φn (x), arises from the shift
operators associated to these coherent states. In this case, to polynomials φn (x) a
Hamiltonian system could be associated (V. V. Borzov and E. V. Damaskinsky,
Integral Transforms Spec. Funct. 2002). However, except having the three-terms
recurrence relation, getting more information on the φn (x) is not so easy. Indeed,
while dealing with an example cited in (S. T. Ali, M. E. H. Ismail, J.Phys A :
Math. Theor 2012) the authors (D. Dai, W. Hu and X-S. Wang, SIGMA 2015)
have obtained a uniform asymptotic expansion of φn (x) as n tends to in�nity and
they have concluded that their results suggest that the weight function associated
with the φn(x) has an usual singularity which has never appeared for orthogonal
polynomials in the Askey scheme.

Here, the ideal would be to recover the whole structure of the NLCS from the

sequence of positive numbers xγn as a unique data. Next, try to �nd a closed form
for the CS and perform a CST, Husimi function, Wehrl entropy, etc... .

Find some classi�cation in Physics for these CS and try to characterize it by a
priory Mathematical condition on the given sequence of positive number xn
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