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Outline

GOAL OF THE TALK: study the concept of quantum dynamics in
Hamiltonian constraint systems

1. Hamiltonian constraint and internal clocks

2. Toy model of gravity

3. Quantum evolution with internal clocks



HAMILTONIAN CONSTRAINT AND INTERNAL CLOCKS



Hamiltonian constraint formalism

Consider 2n-dimensional phase space, ω = dqidp
i . Physical states

are constrained by the Hamiltonian C (qi , p
i ) = 0:

∂O

∂τ
= {O,C}, C = 0

Now, consider the Hamiltonian N · C (qi , p
i ), N (qi , p

i , τ) 6= 0:

∂O

∂τ ′
= {O,N · C}, N · C = 0

⇒ dτ = Ndτ ′

→ Constraint formulation enforces time reparameterization -
invariance. Physically, it reflects the lack of fixed external time
→ Canonical relativity involves a Hamiltonian constraint that
generates the dynamics of three-geometries. There are ∞-many
ways to slice a given spacetime into a family of three-geometries



Geometric perspective

→ 2n - dimensional extended phase space, ω = dqidp
i

→ 2n − 1 - dimensional constraint surface, C (qi , p
i ) = 0

→ Physics encoded entirely in ω|C=0 induced from ω on the
constraint surface C = 0 because ω|C=0 is degenerate and its null
vector vC is tangential to the physical motion



Reduction to unconstrained formalism

(t,q,p) ∈ R1 x phase space
ᵱ = dq∧dp - dt∧dh
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Clock transformations

Contact transformations:
(qI , pI , t) 7→ (q̄I , p̄I )
such that:
ωC = dqIdpI−dtdh = dq̄Idp̄I−dtdh̄

Clock transformations:
(qI , pI , t) 7→ (q̄I , p̄I , t̄)
such that:
ωC = dqIdpI−dtdh = dq̄Idp̄I−dt̄dh̄

R1 x phase space

→ Clock transformations form a group Gext with contact
transformations Gcan as its normal subgroup ⇒ fibre bundle
π : Gext → T over a space of internal clocks T with contact
transformations Gcan as a fibre.
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A particularly useful section in Gclock
Consider a section:

σ : T 3 t 7→ (q, p, t) ∈ Gclock

such that

dqdp − dtdH(q, p) = dq̄dp̄ − dt̄dH(q̄, p̄)

where H(·, ·) is preserved by solving 2n + 1 algebraic equations:

T̄ = T̄ (T , q, p), CI (T , q, p) = CI (T̄ , q̄, p̄), I = 1, . . . , 2n

→ It is enough to quantize a single canonical framework and later
switch to another interpretation of the basic variables to have a
quantum theory in another clock. If f (q, p) 7→ Af (H), then
f (q̄, p̄) 7→ Af (H)
→ Quantization is unique: constants of motion are given a unique
quantum representation in all clocks. Any dissimilarities btw the
quantum descriptions are due to different choices of clock.
Unitarity vs. pseudounitarity



Switching to another interpretation of the basic variables

t=const.

t=const.
pseudo-canonical 

map

t=const.

t=const.



TOY MODEL OF GRAVITY



Classical model
Consider a spacetime M = Σ× R equipped with

ds2 = −N2dt2 + qαdx idx i

and filled with barotropic fluid “p = wρ”. The Hamiltonian constraint
reads

C = pT + p2

Solve the constraint wrt pT :

ω
∣∣
C=0

= dqdp + dTdpT
∣∣
pT =−p2 = dqdp − dTdHT

where HT = p2.
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(1) T is an internal clock (2) dynamics is incomplete.



Affine quantization
The symmetry of the half-plane is the affine group.

(q, p) · (q0, p0) =

(
qq0,

p0

q
+ p

)
, q ∈ R∗+, p ∈ R,

q - dilation, p - translation, dpdq - left-invariant measure. There
exists UIR.
Given a normalized vector ψ0 ∈ L2(R∗+, dx), a continuous family of
unit vectors are defined as

|q, p〉 = U(q, p)|ψ0〉 , 〈x |q, p〉 = e ipx
1
√
q
ψ0(x/q) .

The resolution of unity guaranteed via Schur’s Lemma∫
Π+

dqdp

2πaP
|q, p〉〈q, p| = c−1 · 1

Quantization:

f 7→ Af =
∫

Π+

dqdp
2πc−1

f (q, p) |q, p〉〈q, p|



Quantum model

The quantization of coordinate functions reads:

q 7→ c0(ψ0)

c−1(ψ0)
Q , p 7→ P ,

where Q and P are position and momentum operators (on R∗+).

The quantization of the kinetic term reads:

p2 7→ P2 +
K (ψ0)

Q2
,

for K > 3/4 the above is self-adjoint.



Phase space portrait
Minimization of the quantum action: SQ =

∫
dT 〈Ψ|i ∂

∂T − ĤT |Ψ〉
Confinement to the 2-d submanifold |Ψ〉 = |q, p〉
The approximate motion given by the Hamilton eqs with

ȞT (q, p) := 〈q, p|ĤT |q, p〉 =

∫
Π+

dp′dq′

2πc−1
|〈q, p|q′, p′〉|2HT (q′, p′)

(For consistency q̌ = q, p̌ = p.) We find:

ȞT = p2 +
K

q2
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QUANTUM EVOLUTION WITH INTERNAL CLOCKS



Switching between clocks
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HT = p2 Hsem = p2 + Kq−2

Use the delay function D:

T → T̄ = T + D(q, p)

q̄ = q + 2pD, p̄ = p

dqdp − dTdp2 = ω
∣∣
C=0

= dq̄dp̄ − dT̄dp̄2

Semiclassical dissimilarities (as viewed in the initial phase space):

H̄sem = p̄2 +
K

q̄2
= p2 +

K

(q + 2pD)2



Clock effect
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How to reconcile it with Quantum Mechanics

→ The idea is to have a set of classical internal variables which
provide clocks for describing some quantum internal degrees of
freedom. Clock transformations within the classical variables do
not lead to the clock effect.
→ Consider a quantum Hamiltonian constraint system with
(q1, p1) treated semiclassically with |q1, p1〉 and the rest given in
|φ(q2, . . . )〉.

q̇1 = N 〈φ| ∂p1 Ĥsemi(q1, p1) |φ〉
ṗ1 = −N 〈φ| ∂q1 Ĥsemi(q1, p1) |φ〉

−i ∂τ |φ〉 = N Ĥsemi(q1, p1) |φ〉
0 = 〈φ| Ĥsemi(q1, p1) |φ〉

N = N(τ, q1, p1)



Conclusions

I Hamiltonian constraint systems involve internal clocks for describing
evolution

I Dynamical predictions of the quantized models are tied to the
choice of internal clock. In particular some predictions like the scale
of the bounce, spectra of dynamical operators, . . . appear unphysical
in this light.

I The asymptotic semiclassical states provide a restricted domain for
making clock-independent predictions. In particular the choice of
clock should be irrelevant for making prediction for observables
away from the bounce like primordial power spectra of cosmological
perturbations.

I Suppose classical dynamical environments are assumed. Conjecture:
Quantum mechanics can be obtaind from quantum models with
internal clocks in this case.


