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Something Unusual

L. Landau, E.M. Lifshitz, Quantum mechanics:
Non-relativistic theory, 3rd ed., Pergamon Press,
1977, page 3.

"Thus quantum mechanics occupies a very unusual
place among physical theories: it contains classical
mechanics as a limiting case, yet at the same time it
requires this limiting case for its own formulation.™

L&L rule




Classical & Quantum

classical

h=0

Planck's constant h =6.62606957x107 Joule-sec
h=h/l2rx




Class. & Quant. Possibilities

c = classical q = quantum




“ Triviality of @

« Covariant scalar models (imaginary time)
| =[GV (T + m°p(x)°}+ Ap(x)*) d"x ; n=5

“Itis known that self-interacting scalar fields with a
guartic non-linearity do not exist in dimension five
or more. (The proofs apply to field theories with a
single, scalar field.)”

A. Jaffe and E. Witten (Nov. 2005)

o [* http://www.claymath.org/sites/default/files/yangmills.pdf

- LEtule




114 THE EQUATIONS OF MOTION §28

that the linear operator 17 introduced in the preceding section is the
energy of the system in quantum mechanics.

In classical mechanics a dynamical system is defined mathemati-
cally when the Hamiltonian is given, i.e. when the energy is given
in terms of a set of canonical coordinates and momenta, as this is
sufficient to fix the equations of motion. In guantum mechanics a
dynamical system is defined mathematically when the energy is
given in terms of dynamical variables whose commutation relations
are known, as this is then sufficient to fix the equations of motion,
in both Schrédinger’s and Heisenberg’s form. We need to have
either f/ cxpressed in terms of the Schrédinger dynamical variables
or H, expressed in terms of the corresponding Heisenberg dynamical
variables, the functional relationship being, of course, the same in
both cases. We call the energy expressed in this way the Hamiltonian
of the dynamical system in quantum mechanics, to keep up the
analogy with the classical theory.

A system in quantum mechanics always has a Hamiltonian, whether
the system is one that has a classical analogue and is describable in
terms of canonical coordinates and momenta or not. However, if the
system does have a classical analogue, its connexion with classical
mechanics is specially close and one can usually assume that the
Hamiltonian is the same function of the canonical coordinates and
momenta in the quantum theory as in the classical theory.t There
would be a difficulty in this, of course, if the classical Hamiltonian
involved a product of factors whose quantum analogues do not com-
mute, as one would not know in which order to put these factors in
the quantum Hamiltonian, but this does not happen for most of the
elementary dynamical systems whose study is important for atomic
physics. In consequence we are able also largely to use the same
language for describing dynamical systems in the quantum theory as
in the classical theory (e.g. to talk about particles with given masses
moving through given fields of force), and when given a system in
classical mechanics, can usually give a meaning to ‘the same’ system
in quantum mechanics.

Equation (13) holds for », any function of the Heisenberg dynamical
variables not involving the time explicitly, i.e. for v any constant

t This assumption is found in practive to be successful only when applied with the
dynamical coordinates and momenta referring to a Cartesian systom of axes and not
to more general curvilinear coordinates.
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Action Principle Formulations

Classicalaction: A. =[[p(t)q(t)-H_ (p(t),q(t))] dt
Variation: 6A. =0 yields: q=0H_./op, p=—0H_./0q
Solution: p(t), q(t) given p(0),q(0) € R?

Quantumaction: A, = [{{w(t)[iro/ot —HJw (t))} dt
Variation: oA, =0 yields i7dy)/ot =%y
Solution: |w(t)) given |w(0))eH

O O VERY DIFFERENT .




Restricted Action Principle

Quantumaction: A, = [{{y(t)[ino/ ot — I Jw(t)} dt

Possiblerestrictions: |y (t)) — lwe(t)) [EE|w(t))]

Variation: 6A, =0 vyields [i70lyg(t))/ 0t = He|we(t))]
[Hc =EX E]

Solution: |we(t)) given |we(0))eH

(1) Natureof  {we(t))}: subspace e H (partspace)

(2) Natureof  {lwg(t))}: subsete H (Gaussians)
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Unification of
Classical and Quantum (1)

Quantumaction: A, = [y (t)[ir0/ot —HJy (1)) dt
Restricted variation: |y (t))—> ?(t) )e ScH

sSun
Macroscopic variations of Microscopic states:

Basic state: (X|n7)=n(X)
Translated basic state: (X\17,9) =1(x-Qq)
Translated Fourier state: (x|7;p) =7 (x—p)
Coherent states: (X/p,q)=¢ 'p(x D p(x—q)

‘p’q> IqP/h IpQ/h‘U> ‘ >:‘O> : Q+|P)‘O>=O 11 S.a.




Unification of
Classical and Quantum (2)

Quantumaction: A, = [(w (t)[i70/ 0t — (]

Restricted variation:

w(t)) = p(t).q(t),

y (1)) dt

subset

New action: Aq = [(p(t),q(t)[i7d/ ot — 3] p(t),q(t)) dt
Az = [[p(t)a(t) - H(p(t),q(t))] dt &

NOTE: THIS EQUATION
APPEARS JUST LIKE THE
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Classical

Unification of

and Quantum (2)

Quantumaction: AQ

= [{y () [iho/ ot — K[y (t)) dt

Restricted variation:

w(t)) > p(t),q(t)) | subset

New action: Aq = [(p(t),q(t)[i7d/ ot — 3] p(t),q(t)) dt
(@  Ac=[[p(M)a®) - H(p@),q®)] dt

CLASSICAL MECH
MECHANICS RES

ANICS |S QUANTUM
'RICTED TO A CERTAIN TWO

DIMENSIONAL SU

RFACE IN HILBERT SPACE




Canonical Transformations

Restricted quantumaction::
Az =](p.qli
=[[pg—H(p,q)] dt

Canonical transformations: p dq =

P, = p(P.9),q(P. ),
Restricted guantum action :

AR :j<ﬁ1q | ﬁ1q> dt quantum
= [[p4 +G(P.d) - H(P.)] dt

p,q) dt

+dG(P,q)

p dg +
WO,

©)

0 14
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Cartesian Coordinates

Classical/Quantumconnection:

H(p,q)=(p,q|%(P,Q)/p,a) ., [(Q+iP)0)=0]
=(09C(P + p,Q+0)|0) = I((p,q) +O(%; p,q)

Physical meaning: [(0|P|0)=0, (0|Q|0)=0]

| (p.alPlpa)=p; (palQlpa)=q |
Fubini-Study metric:  [D; =min, | w)—e‘“\qﬁﬂz]
2n [ Nld[p,a) I =1{p,a| d|p,q)[']1=dp® +dq’
(2/7) [dp*¢(AQ?) +dp dg{{AQ, AP}) +dg*(AP*)] &

15
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CONVENTIONAL
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RECOVERED <©



Is There More?

 Are there other two-dimensional sheets
of normalized Hilbert space vectors that
may be used in restricting the quantum
action and which lead to an enhanced
classical canonical formalism?

(<
©)

YES!
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Affine Variables

Affinevariables: q=0{q, p}={q, pg}={q,d}
17Q = Q[Q,P]=[Q,QP]=[Q,D]; D=(PQ+QP)/2 s,
Affinecoherentstates: (q>0; Q>0)

[P.0) =" "0 y);  [Q-D+iDI Fn)=0
Overlapfunction:

(p',q'|p,q) ={2[Ja'/q +-/alq +iJqq(p—p)/ B13 "

Resolution of unity:

| =ﬂ p,q)p,q| dp dq/27/Q1-1/24 /1)
—»‘ also (g<0,Q<0)U(g>0,0Q>0) ‘4—18




Affine Quantization (1)

Quantumaction:

A, =[w (1)

Restricted action:

7o/ 6t — (D, Q)]w

(t)) dt

w(t)) — p(t).a(t),

subset

Aq = [(p(t),a(t)[ino/ ot —3¢(D,Q)] p(t).qa(t)) dt

= J[=a(t) p(t) - H (p(t),q(t)).

dt (99

Canonical transformation: |p,q)=|p,q)

A = [(B(),q(t)[in/ 6t —3¢(D,Q)] P(t),d(t)) dt
= [[-§(t) B(t) + G'(B(t), G (1)) - H (B(L), (1))] .4t



Affine Quantization (2)

Classical/Quantumconnection:
H'(pg,a)=(p.q|9C(D,Q)|p.a) . [Q-1)+iD/B]n)=0
= (1[3¢(D+ paQ,qQ)|n) =9 (pa,q) +O(%; p,q)
Physicalmeaning:  [(n|D|7)=0, (n|Q|n)=1]
| (p.q|D|p.a)=pa; (p.alQ[p.a)=q |
Fubini-Study metric:

2n [ 11d|p,a)IF ~1(p.a|d| p,a) 1= B *q’dp’ + 4 q *dq’
Poincarehalf plane: geodesically complete

20



The Q/C Connection : Summary

* The classical action arises by a restriction of
the guantum action to coherent states

 Canonical quantization uses P and Q which
must be self adjoint

« Affine quantization uses D and Q which are self
adjoint when Q >0 (and/or Q < 0)

* Both canonical AND affine guantum versions
are consistent with classical, canonical
phase space variables p and ¢

* Now for a few applications!

21




Toy Model

* A toy model of gravity has singularities

A = [; [-q(t) p(t) —q(t) p(t)?] dt , qg(t)>0

p(t) = —p(t)’
p(t) = po(L+ pot)_1 , q(t)=0go(1+ pot)2

« Canonical guantum corrections
« Affine quantum corrections
« Affine quantization resolves singularities!

22




Toy Model

Classicalaction.: A. :j[—qp—qu]dt , q>0

Solution: [ p(t) = oL+ Pot) ™, q(t) = Qo (L+ Pot)* |
Canonicalquant.: (p,q|PQP|p,q)=qp*+qa’; a’=#/2
Solution: [p(t) =acot(a(t+7)), q(t)=(E,/a’)sin(a(t +r))* |

Affine quant.. (p,qDQ'D|p,q)=qp°+#°C/lq <+—
Solution : | p(t) = (”f) Cqt) =M[(t+7)2+K]>0 | &
(t+7)" +K

7°C =(n|DQ'D|n); K =#°C/4E{; M = 4E,

- eiqP/th—iqP/h =Q+q ; eiIn(q)D/th—iIn(q)D/h :qQ - .



Ultralocal Models

+ Ultralocal scalar field models [X € RS]

A= [{3l(t, ) —mge(t, x)*] - gep(t, x)*}dt dx

Non-renormalizable quantum theory

iji (Po R +mg) ™

Also a trivial (=free) theory
Affine quantization Is the key idea
But first, two important remarks

24




Free & Pseudofree Theories - 1

Classical action:

Ay (X) = A () +0A (%) 5 limg o Ay =7
Examplel: A, = j{l[x(t) — x(t)*1- gx(t)* } dt
Example2: A, = j{l[x(t) —X(t)*]— gx(t) }dt
Moral: Iim _, A, = A, ; (1)Ay=4A (2)AO¢AO

f : /g
R0 : F PF *0




Free & Pseudofree Theories - 2

Freeaction: A = j{%[xz _ xz]}dt
Interacting action : A, = [{3[x* = x*]— gx~“}dt
Pseudofreeaction:  lim _,, A, = A\j= A,

Free qguantum propagator :
Kf (XII’T ’ Xl,O) — NOJ'e_J{é[XZ-I-XZ]}dt DX
_ Zcr)]o:ohn (Xu)hn (Xl)e—(n+1/2)T
Pseudofree quantum propagator :
Ko (X", T;x',0) = lim_o N Je T lrocidtpy

= Q(X"X')Zfzohn (X")hn (X')[l— (_1)n]e—(n+1/2)T

26




Ultralocal Scalar Models (1)
Classical action: [x e R®]

Free quantum model on a lattice:
C( f) - M jelEk fga —mzZ ga’ de% N e—jf(x)zdx/4m0
Interacting model on a lattice: [C.LT.]
C(f)=M jeizk fga—= Y (¢;,a)de¢k _y p F(x)'dx/4m

Non —renormalizable AND Trivial

27



Central Limit Theorem

C(h) = "ot] expfifh(x)e(x) dx—[Gp(x)?) dx} T dp(x)"
E(h)=N] exp{é [ihkqokA—G((pf)A]}ﬁ:l do,

C.(h) =N [explihu —G(Au2)A—F(,u? A)] du
k=1

=ﬁ [1-hZu?) /2! + hiuH /4 — ho®y/el + - ]
k=1

Lim K — o requires (u®y=0(A), which can bedonein TWO basicways:

1) (U™ =0(A") , leadsto|C(h)=exp[ —Afdx h(x)°]| (C.LT.)

2) (U™y=0(A) , leadsto [C(h)=exp(-[dx] {L—cos[uh(x)] } W (u) du)

N\ |\ 28




Ultralocal Scalar Models (2)

Afine quantization:  [#(x),£(Y)]=i5(x - Y)@(X)
7(X)* = {7z (X)p(X)IP(X)*{d(X)7(x)} = K(X)#(X)~* k(X)
— R(X)P(X) 2R (X) = #(X)? + 31°5(0)2P(x)

using  &(x) = 3[2(X)(X) + #(x)7(X)]

Lattice Hamiltonian : F=(-ba®)@-ba®)a™?

I =33, {-h°a"*°0% 1 0g¢ + M5, +20oh +h°Fd* — Ey}a’

Includes a novel counter term ! ‘ 2




Ultralocal Scalar Models (3)

Interacting model ground state distribution :
C(f) = [TT, (ba)fe"** 2 |4 [ dgi }

“bdx[[1-cos( f (x)A)]exp[-y (A b)] dA/|A|

—> €
Pseudofreedistribution: (g, — 0)
C|0f (f) — e—bjdxj[l—cos(f (x)A)]exp[-bmA2] dA /|4 ‘ om. 0 ‘

o0 Interacting
Theory space K

Free o o Pseudofree 30




Ultralocal Scalar Models (4)

A, = [{Aa(t, X)> = m3p(t, X)°1— god(t, ) *3dt d°x

Free: Ip

Hyper - sp
|p =M

=M [[Z4?a°]Pe ™42 TT dgf. = O(N'P) — oo

nericalcoordinates :‘ b =K K =Zid ‘

[[x%a’]Pe ™ k(N Dk du(n) =O(N'"P) - oo

Pseudofree: &N 5 R ;‘ R =2ba’N’< oo‘

J ) - M II[ZLﬁaS]De—mOEMfasHL [¢k2]_(1_2ba5)/2HLd¢k <_OO

NO DIVERGENCES 31



Ultralocal Models : Summary

Canonical quantization of interacting ultralocal
scalar fields Is perturbatively non-
renormalizable and rigorously trivial

Affine quantization of interacting ultralocal scalar
fields is rigorously nontrivial & NO divergences

Ultralocal scalar models involve discontinuous
perturbations for which interacting theories are
continuously connected to a pseudfree theory
and not to their own free theory

Hyper-spherical radius variable measure is a

simple key to solution: «" ' > x""; R<w 32




Rotationally Sym. Models

* Rotationally symmetric models [rj2 =P P]

H(p,q) =3[p* + m5a’]+ 4 (q°)° |,

* Free quantum models for N <o

p= { pn}rl?lzl

* Interacting quantum models for N <0

H(p,d)=(p,q/%x p,q,

« Reducible operator representation iIs the key

H(p,q)=(p,q9c(P,Q,+ * *) p,q)

33




Rotationally Sym. Models (1)

Phase space coordinates: p=(p,,--»Py) » G=1(0;,..,0y)

H(p,d) =3[p* +mia’]+ 4(@°)° 5 [N<oo]
Invariantunder p—>0p , d—0g ; OeSO(N,R)

— A2

Basic invariants: X =p* , Y=p-G , Z=4§
Constantsof motion: E , L2=(px§)?>=XZ-Y?

Quantization: p—P , §—>Q ; [Q,,P]=ikd,
Hamiltonian: 9 =21:P?+m2Q%:+4,:(Q%)%: , N<w
When N —oo , It Is necessary that A, =A4/N 34




Rotationally Sym. Models (2)

~Schroedinger equation with a real unique graund state
@y (X) with full rotationalsymmetry: v, (r) = @, (X).
Fourier transformation of the groundstate distribution
Cy (P) = [ " "y (¥)%dX

o iprcos(@)/n

=|e v, (N2 sin(@) " 2drdo dQ,

|12

<|\| Je—p2r2/2h2(N—2)wN (r)2 rN—ldr dQN_g

N j:e-bp”%f(b) db : [j:f(b) db=1] sym
Uniqueness: f(b)=0(b—-1/2m) A free theory!

Result:[ C,(p)=e "™ | 2 Dag %G




Magic Dots

ei(aP+ﬁQ)/h — ei(aP+ﬂQ)/h /<77‘e

i(aP+,BQ)/h‘77>

<77‘Eei(ap+ﬂQ)/hE‘77>:1 ; \p,q>z

ei(pQ—qP)/h ‘ 77>

<p, q‘ ei(aP+ﬁQ)/h ‘ p, q>

— ei(ap+,8q)/h

(p,ql: H(P,Q): |p,q) =H(p,q)

<77‘ '@ (P+p)+A(Q+q)/7 ‘ 77>

form OR operator?

operatorneeds: (p,q{:H(P,Q):¥|p,q) <

36



Rotationally Sym. Models (3)

(MmQ+iP) [0)=0; |p,d)=exp[i(p-Q-q-P)/n] |0} G
(p,q9C|p,q) = < q{%:I32+m§(§2:+W:(52+m§QZ)2:Hp,q>

[M(Q +¢S)+iP] |0;¢) =[m(S + Q) +iR] [0;¢)=0 ; 0<¢ <1
p.0;¢) =expli(p-Q-q-P)/n] 0;¢)
(p,0;£13C|p,0;¢) = (P, 0; ¢ {3 P* +m*(Q +¢5)°:
+1:R?+m*(S+<Q)° 1 +v:[R? +m*(S +<£Q)°) ¥ p.q;¢)
:%(EZ+m2q2)+%§2m2q2+V§4m4(q2)2
| =3(P*+ma*) + 4(a°)* | N<wo (8 (L

‘r>mx‘9 ‘qmmq‘

37



Rot. Sym. Models : Summary

Conventional quantization works if N Is
finite but leads to triviality if N is infinite

Enhanced quantization applies even for
reducible operator representations

Using the Weak Correspondence

Principle H(p,q)=(p,q/9¢ p,q)
a nontrivial quantization results if N Is finite
or N is Infinite --- with NO divergences !

Class. & Quant. formalism is similar for all N

38



Canonical vs. Enhanced

Canonical guantization requires Cartesian
coordinates, but WHY Is not clear

Canonical quantization works well for
many problems, but NOT for all problems

Enhanced quantization clarifies coordinate
transformations and Cartesian coordinates

Enhanced quantization can yield canonical
results -- OR provide proper results when
canonical quantization fails %




Other Enh. Quant. Projects

Ultralocal and Rotationally Symmetric models
completely solved with Enh. Quant. (done) (==

Covariant scalar models gor? (done) (=
Nonrenormalizable scalar fields  (done) (=
Simple models of affine quantization eliminating

classical singularities (on going)
Incorporating constrained systems within

enhanced guantization (partially)
Affine quantum gravity (partially)

Extension to fermion fields (hints)

40



Main Message of Today

Class./Quan. Coexistence /S
Possible AND /T /S Beneficial

q
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Spin States & Enh. Quant.

Spincoherentstates: [S,,S,]=14S, ; [#>0]

‘(9 > |goS3/he 165, /1

5,S) ; S,|s,m)=mnls,m)
A, = j (0(t), p(t) [ino ] 6t —HC(S)] 6(t), p(t)) dt
= _. siicos(O(t))e(t) —H (O(1), ¢(1))] dt
= [[p®A(®) - H(p(t),a(t)] dt
Fubini-Studymetric: [ p=(sh)"*cos(@) , q=(sh)"?¢]
do’ =sa[d&” +sin(8)*dp?]
=(1- p®/sh) dp® +(L— p°/sh) dg°

43
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Does [Q,R]=0? (No!)

| = [[pa—A(p®+q* — E)]at
What values of (positive) E are allowed?

[(P*+Q")-E]l |y)=0 , {E.}

[ 5{p? +q* —E} e''PIDpDq

[ 5{p} T1(40%) 5{p?+q* -E} ¢ P DpDg

= [11(4®) o{a* -E} Dg
=1or 0 , Independent of E !
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Positive or Non-negative ?

g>0
q>0
Let u2:2q , du=dq/./2q , u2=q2/2q
= je””Z/ZdtDu (forget u=0)
u=0

= [ "9/2d Dy = free particle Wrong answer!

= [ M)/ 20t py Dy,d@, /27 | Right answer!
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