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. Introduction

For solvable quantum system with Hamiltonian Hp having discrete
energy energy spectrum (finite or infinite), we get ladder
operators such that

a¢n \/ ¢n 1 Twn \/ Q;Z)n+1

It leads to a generalized Heisenberg algebra (N,(x) = np(x)):
[a,N]=a, [a',N]=—a', [aal]=k(N+1)—k(N),

Different choices of k(n):

- linearized: k(n) = n;

- factorization of Hy: k(n) = £(n), where £(n) is the shifted
energy (£(0) = 0).



1. Introduction

Different definitions of coherent states (equivalent for HO case):
-Eigenstates of a:

aVge(z; x) = zVge(z; x);
- Action of a displacement operator D(z):
D(2)1o(x) = exp(za’ — z*a)iho(x) = Wee(z; x);
- Minimum Heisenberg Uncertainty Relation:

1
o= 5 0E= )~ (02



. Introduction

- Gaussian states: (¢, np > 0 and og > 0 are real parameters)

(n— no)

%) U —II‘I¢0
e
WG(HO,UO,¢0;X t 7’w£ tw ( )
,,Z: VN no,Uo) !
- First definition of coherent states:
Vee(z: x, t) = Z 7"”‘9(”)twn(x).

- \Y NGe

(equivalence in HO case: ng =z — 1 and 03 = 20/2, z0 = |2|.)



1. Introduction

Starting from a solvable Hamiltonian H,, a SUSY partner
Hamiltonian H, is obtained from the intertwining relations (Qx
and Qj( are called the intertwining or transformation operators)

I:IXQX — QXHX7 Q)]:le = Hin

The intertwining operators can be differential operators in x of any
order.

We will consider in this talk differential operators in x of second
order.



2. Infinite well, ladder operators and coherent states
2.1. The model

A particle of mass M is subject to a potential taken to be

Vi) = {0, 0<x<m
00, otherwise.

The stationary eigenstates and the discrete energies of this system
are

2 . n?
Yn(x) = —sinnx, E,,:Wn, n=12...

In the following, we will use dimensionless units, setting 7 = 1,
2
M = 1/2, such that the Hamiltonian is Hy = —% + V(x).



2. Infinite well, ladder operators and coherent states
2.1. The model

The GeCS (annihilation eigenstates) can be defined as long as the
Hamiltonian H of the system has a non degenerate spectrum and
admits a lowest energy equal to zero.

We thus work with the shifted Hamiltonian % = H — E(0)I instead
of H. It has the same eigenstates as H and energy eigenvalues are

E(n) = E(0) = (n—=1)(n+1) = &(n).



2. Infinite well, ladder operators and coherent states
2.1. The model

We can choose the ladder operators, known as linearized
operators, such that

/¢n(X) =vn-1 ¢n,1(X), ITwn(X) = ﬁ Q;Z)n+1(x)'
The set {/, /T, N} thus satisfies the usual Heisenberg algebra:
LN =1, [T, N =-IT, [I,Il=1.

A realization of these ladder operators as differential operators of
order 1 in x, with dependence in N, is known as:

= {Ncos(x) ~ sin(x) d] N1

dx| N

/"= E [Ncos(x) +sin(x);ﬂ .



2. Infinite well, ladder operators and coherent states
2.1. The model

The GeCS can thus be defined as eigenstates of the linearized
annihilation operator. We will call them linearized coherent
states(LCS). They take the form, as usual:

Vee(z; x) =
\/NGe Z\/n—l

Such choice makes them identical to the displacement operator
coherent states (D(z) CS) as in the case of the harmonic
oscillator. Indeed, we get

D(z)1(x) = exp(zl" — z*1)i)1(x) = Vee(z; x).



2. Infinite well, ladder operators and coherent states

2.2. Supersymmetric partners

Starting from a solvable Hamiltonian H, = —j—; + V(x), a SUSY

partner Hamiltonian H, = —j’—; + V(x) is obtained from the
intertwining relations

":IXQX = QXHX7 Qll:lx = HXQ:E

Note that when the intertwining operators are differential operators
in x of first order, we get the SUSY partner as the trigonometric
Poschl-Teller system with Vi (x) =

sm x’



2. Infinite well, ladder operators and coherent states

2.2. Supersymmetric partners

The new sytem we will work with has been obtained from

intertwining operators which are differential operators in x of
second order in the so called confluent case:

0 =L n0d + et Lopeo =)
X dx2 K dx ¢ 2?7 "
and

d? d

1
T - - el T (2 _ !
Q= o — ) et S (7(x) = 30 (x)),
where € is an arbitrary constant. The function n(x) satisfies:
20(x)" (x) = (11 (x))? = 47° ()’ (x) + 17 (x) + 4e n?(x) = 0

and the new potential is given as



2. Infinite well, ladder operators and coherent states

2.2. Supersymmetric partners

The resolution of
20(x)n" (x) = (1 (x))? = 42 () (x) + 1 (x) + 4e n?(x) = 0
leads to admissible solutions for € = k? with k = 1,2,.... We get

4k sin?(kx)
nixi k,w) sin(2kx) + 2k(mw — x)’

where w is an arbitrary constant.



2. Infinite well, ladder operators and coherent states

2.2. Supersymmetric partners

The corresponding family of potentials are given as

32k sin(kx)[sin(kx)+k(mw—x) cos(kx)]
\7(X; k, w) = [sin(2kx)+2k(rw—x)]? s
0, otherwise.

O<x<m

These potentials are non singular if w €] — 0o, 0[ U |1, ool



2. Infinite well, ladder

2.2. Supersymmetric partners

operators and coherent states

20

Figure 1 - SUSY potential V(x; k = 1,w = 2) (left) and

V(x; k =2,w = —0.5)( right) as a function of x.
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2. Infinite well, ladder operators and coherent states

2.2. Supersymmetric partners
The normalised SUSY eigenstates 1,(x) are obtained as usual:
Unlxi k,w) = (K = En) ' Qutbn(x),  (n # k).

For n # k, they are physical states, i.e. they are normalisable and
such that ¢,(0; k,w) = (7 k,w) = 0, since

n(0; k,w) = n(m; k,w) = 0. The corresponding energies are

E, = n? as in the original case.

For n = k, we have Qux(x) = 0. Solving Qi) (x) = 0 and
Aetpi(x) = K2 (x), we get

Di(x; k,w) = \/Esin(kx) 21k /w(w — 1)

sin(2kx) + 2k(mw — x)

It is normalisable and such that ¢ (0, k,w) = (7, k,w) = 0.
With this additional state the spectrum of H, is thus complete.



2. Infinite well, ladder operators and coherent states

2.2. Supersymmetric partners

The annihilation operator of the new system may be written as
Lsy = QX/Q:[. It is now a differential operator in x of order 5.
We thus get the action

LSQ'(ZH(X; k,w) = (n2 — k2)((n - 1)2 - kz)\/n - 11/~)n,1(x; k,w).
Again, we can use the linearized annihilation operator /s, for which

IsoPn(x; kyw) = vV/n = 1p_1(x; k, w).



2. Infinite well, ladder operators and coherent states

2.2. Supersymmetric partners

The associated CS can be defined as eigenstates of the annihilation
operator: y }
Isoth(x; k,w; z) = z(x; k,w; 2).

Since Isothi(x; k,w) = 0, we see that

=
[ay

k—1

/52172;(X; k,w;z) = C,,(z)@ZNJ,,,l(X; k,w)+ Z cn(2)Vn—1(x; k,w).

n=k+2

||
N

n



2. Infinite well, ladder operators and coherent states

2.2. Supersymmetric partners

It means that the solution of the eigenstate equation for the CS is
given by

[e.9]

1Z(x; k,w;z) = Z cn(z)zzn_l(x; k,w),

n=k+1

where the ¢,(z) are determined as usual.

The displacement operator D, (z) definition of CS will help to
recover the missing states. Indeed,

Dy, (2)k(x; k,w) = i (x; k,w) and we thus get

k—1

D(xik,wi2) =Y en(2)dna +adhi+ D> cal2)dno1.

n=2 n=k-+1



2. Infinite well, ladder operators and coherent states

2.2. Supersymmetric partners

Case k =1.
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Figure 2 - Probability density of CS for the case V(x; k = 1,w = 2).



3. Truncated oscillator, ladder operators and coherent

states
3.1. The model

A quantum harmonic oscillator truncated at the origin by an
infinite barner is described by the Hamiltonian
Hy = 2dX2 + Vo(x), where

2 )
_ % if x>0
Vo(x) {oo ifx<0 '’

is the potential of the system.
The energy eigenstates (satisfying the boundary conditions) are
known as

-1/2

Ui(x) = [VEd k1)1 e Hya ().

The corresponding eigenvalues are E, = 2k + 5 3 k=0,1,..



3. Truncated oscillator, ladder operators and coherent

states
3.1. The model

Moreover, the natural ladder operators are /T = (a*)?, where a™

are the ladder operators for the standard harmonic oscillator. We
thus get the commutation relations:

[H,F] =+2/%,  [I*,I"] =4H
and their action on the energy eigenstates is

" k(x) = /2k(2k + 1) hp_1(x) , ITpe_1(x) = /2k(2k + 1) [¢hx(x



3. Truncated oscillator, ladder operators and coherent

states
3.1. The model

We can again obtain a realization of the ladder operators as a
differential operator of order 1 in x. Indeed, introducing the
number operator N such that Ni,(x) = n 1,(x) and the fact that

S 0n(x) = (62 — 4n = 3)n(x), we get:

d
" =x—4+x>—(2N +1
de+x (2N + 1),

d
T = —x—+x>—(2N+2
de+X (2N +2),



3. Truncated oscillator, ladder operators and coherent
states

3.2.Supersymmetric partner

After a supersymmetric transformation with @, and Ql as
differential operators in x of second order, we get the
supersymmetric partner with potential:

Velo) — x?  2(16x® —32x® + 24x* + 72x* +9)
S(X)—?— (4 1 372 .



3. Truncated oscillator, ladder operators and coherent
states

3.2.Supersymmetric partner

Figure 3 - SUSY potential Vg(x).



3. Truncated oscillator, ladder operators and coherent
states

3.2.Supersymmetric partner

The intertwining operators are given by

Q —1 d72_ i_i_
T\ Tax 77
and P J
1
L )
@ 2<dx2 ”dx+"+7>’
with
77_2><(4x4+8x2+3) AP+ 12xF 4+ 27x% — 15

4x* 13 7 4x* 13



3. Truncated oscillator, ladder operators and coherent
states

3.2.Supersymmetric partner

The level which has been added, below the original ground state
Eo = 3/2, is given by € = —5/2 and the associated eigenfunction is

X2
B 2v/2e" 7T x (2x2 + 3)
Voo =TT 4k 1 3)

This is the ground state of Hg. The eigenfunctions of the excited
states are given by

Qv
V(2n+4)(2n+5)

¢n:



3. Truncated oscillator, ladder operators and coherent
states

3.2.Supersymmetric partner

The annihilation operator of the new system may be written as
L= = Q™ Q:E. It is a differential operator in x of order 5.
Let us note that we have

L= ¢n = QI"QTpn = k(n)pn_1

with k(n) = v/2n(2n + 1)(2n + 2)(2n + 3)(2n + 4)(2n + 5).

It shows that this annihilation operator cancel both the ground
state and the first excited state.

For the construction of the CS, we use again the linearized
annihilation operator Lg for which

L§¢n = \/E¢n—1-



3. Truncated oscillator, ladder operators and coherent
states

3.2.Supersymmetric partner

The linearized coherent states of Hg in the isospectral subspace are
given by

| >|so = DE(Z)¢O = exp _|Z’
n=0

where the factor v/2 multiplying the complex parameter z comes
from the spacing of 2 in the energy levels.
We show some behaviour of those states.



3. Truncated oscillator, ladder operators and coherent
states

3.2.Supersymmetric partner

0.8 |-

—

0 "
Figure 4 - Probability density of |z)is, for |z| = 0.1 (---), [z] =1
(= — —)and |z] =2 )-




3. Truncated oscillator, ladder operators and coherent
states

3.2.Supersymmetric partner

Now let us study the uncertainty relation.
The expectation value of an operator O when the system is in a
coherent state |z)is, is given by

<Z’iSOO’Z>iSO = Z Amn(z) <Onm> s

m,n=0

2 m 2 *\n
where A (z) = exp(—|z|?) (V2 (v2z")"
It is used to compute the standard deviations of the position and

momentum operators oy = \/ X2 O'p \/

and their product o0, as functlons of the complex parameter z.



3. Truncated oscillator, ladder operators and coherent
states

3.2.Supersymmetric partner

251
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Figure 5- Uncertainty relation for D (z)-CS where o, (- - - -), 0,

(= = =) oxop ( )-




Conclusion

- Susy partners hamiltonian have been studied in two cases:

1) infinite well

2) truncated oscillator.

- Linearized ladder operators QIQT have been realized as
differential operators of order 1 in x with a dependence in N.

- CS have been constructed using the displacement operator action.



4. Conclusion

Vs
20
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Figure 6 - Susy infinite well (left) and truncated oscillator (right).

For the infinite well, we see that

k—1

D(xik,wi2) = cn(2)dna + i+ > cal2)dno1.

n=2 n=k+1
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