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„Polynomials”                  : mathematical properties  
(polynomials of two real variables with complex coefficients called: 

two index Hermite polynomials (Hong-yi Fan&J.R.Klauder ;1994, 

V.Dodonov&V.I.Manko ;1994),incomplete Hermite polynomials (G.Dattoli; 

2000-),   2D Hermite polynomials (G.Dattoli, A.Ghanmi, M.Ismail; 2005-), 

2D Laguerre polynomials (A.Wünsche;1999-)) 
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This will create  a problem 
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„Polynomials”                   : physical applications I  
 (Hong-yi Fan, J.R.Klauder 1994) 
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Example of entangled states because: 

- Not  product  states 

- EPR states – eigenstates of  relative coordinate and total momentum in a   

                        bipartite system 

 

Not a coherent state because the latter have to be normalizable and are 

never orthogonal while we have 

 (2)| ,F K F Kz z z z 
   

standard boson creation 

operators for a bipartite 

system 
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„Polynomials”                  : physical applications II 

 A „trick” leading to well defined coherent states 
(N.Cotfas, J.-P. Gazeau, K. Górska; 2010) 
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Holomorphic Hermite polynomials            :   
(van Eijndhoven & Meyers, 1991) 
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What  we have got is completely analogous to the „classical”  

 

Bargmann’s  approach for which monomials            are  

 

orthonormal basis in the  Hilbert space of functions  

 

integrable with respect to the gaussian measure  and which is a  

 

Reproducing Kernel Hilbert Space with the Bargmann’s 

 

reproducing   kernel  

 

What about coherent states in the situation just considered?  
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Holomorphic Hermite polynomials             coherent states 
(J.-P. Gazeau  and F.H.Szafraniec, 2012) 
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J.-P.G and FHSz used these states for the coherent states quantization of 2D non-

commuttative harmonic oscillator  but  one can ask a question : what are their 

properties and (physical) meaning? 
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Coherent states built using holomorphic Hermite 

polynomials             are squeezed states!                 

  
(S.T.Ali, K. Górska, A.Horzela and F.H.Szafraniec, 2014) 
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The main results of the AGHSz paper  reads: 

 

For  any               the squeezed basis vectors                 coincide with  the  

 

holomorphic Hermite polynomials multiplied by an exponential factor 
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Holomorphic  Hermite polynomials in two complex variables  
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Van Eijndhoven-Meyers construction may be repeated  step by step – we get  

1.Orthogonality with respect  to the family of                   dependent measures 

2. We may introduce   Hilbert  space(s) of  entire functions with bases 
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We have all „components” needed  to construct coherent 

states using  the RKHS approach: such obtained (bipartite) 

coherent states  will satisfy  the Gazeau-Klauder conditions:  

-- continuity,  

-- normalizabilty  

-- resolution of unity,  

moreover they lead to the unitary  (generalized) Segal-

Bargmann transform. 

Conlusion from our „mathematical work” 
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Observation: 

Polynomials                           ,as well as                           ,   cannot  be 

represented  in the product form – it can be deduced from their generating 

functions  which, in both cases, do not factorize; it  is also seen from the relation  
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What was said up to now is valid for                 , what about  the limits for 

              and 
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What  to do next ? 

 

It’s needed to look for general properies of                , 

namely to answer the (standard) questions: 

1. are they „anihilation operator coherent states” (AOCS)? 

2. are they „minimal uncertainty coherent states” (MUCS)?  

3. is it possible to generate them as „group theoretical 

coherent states”? 

4. how to understand their meaning as entangled coherent 

states 

     and to study (probably) many their other properties, 

especially applicability in (real) physical problems  

1, 2| , ;z z 

Partial answers known, 

work in progress 
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Thank for your attention 
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Coherent states - three standard approaches 
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Harmonic oscillator – all approaches are equivalent 
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give CS 

which, a posteriori, satisfy a relation called the resolution of unity 
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The resolution of unity as a fundamental property of HO CS 

      (in fact introduced independently of them)  

 

1. „Continuous representation of QM” (J.R.Klauder 1963) 

       i) normalizability, ii) continuity, iii) resolution of unity  

 

2.  „Analytic representation of QM” (V.Bargmann 1961) 

   

   2a) Reproducing property for Bargmann funtions  
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2b) Mapping between Bargmann’s and usual „x” representations 

 

 

 

 

 

 

 

3. Coherent states quantization (E.Lieb 1975, F.Berezin 1977) 
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Satisfying the resolution of unity has been considered so 

important property of coherent states   that it has been 

proposed to make it , a priori, basic requirement  put on any 

set of coherent states generalizing those of the harmonic 

oscillator.  

(J.R.Klauder 1963, J-P.Gazeau & J.R.Klauder  1999, 

 J-P.Gazeau 2009)  
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How to solve the resolution of unity for generalized coherent 

states ? 

The answer is: One has to find a measure such that 

 

 

-for GTCS it is satisfied under natural conditions (unitarity, 

irreducibility, square integrability of the representation) 

 

-for  other constructions, generally ending up at  wave-packet 

type  expressions  
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Examples: 
1.For harmonic oscillator CS the solution 

 

 

 

is unique under the additional assumption that the measure is 

rotationally invariant. If it is not the case we have infinitely many 

(discrete) measures concentrated on sufficiently dense von Neumann 

lattices or another discrete subsets of the complex plane (Bargmann et 

al. 1971, M.Boon & J.Zak 1978, J.Zak 2003,  A.Vourdas 2003, 

A.Vourdas et al. 2012)  
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Non-unique solutions 
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Does it exist an alternative approach being (as long as 

possible) free of introducing the measure and suitable        

          space from the very beginning?     

Yes, it does if , as starting point, one takes  

the reproducing property and  tries to formulate the 

problem using (consequently) theory of the 

reproducing kernel Hilbert spaces (RKHS). 

2 ( )L 

F.H.Szafraniec, Przestrzenie Hilberta z jądrem reprodukującym, Kraków 2004 

F.H.Szafraniec, Operator Theory:Advances and Applications, 114 (2000)253-263 
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The reproducing kernel Hilbert space-RKHS 

Let       be a set.  Suppose we are given a couple               

where       is a Hilbert space of complex functions (with 

inner product  denoted by              and       is a complex 

function on            .  The function      is called a 

reproducing kernel of         and the space      a 

reproducing kernel Hilbert space with respect to        if 

 

 

 

 

where                     is called a kernel function. Formulae      
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General properties of the RKHS (I) 
 

(i) the kernel     must be necessarily positive definite 

 

 

  

 

(ii) the linear functionals 

 

        

     are continuous for any 
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General properties of the RKHS (II) 
 

(iii) the kernel is uniquely determined by a space in the 

sense that if                and                 are two RKHS                      

couples then               . 

    The kernel may be obtained from the formula 

 

 

     

    where              is any orthonormal basis of     .      

 

(iv) the set                    is total in      and, consequently, the 
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sense that if              and              are RKHS couples 
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Standard RKHS constructions 

A. „Coupling the kernel with a functional space” 

B. „Coupling the functional space with a kernel” 

Suppose we are given a Hilbert space    of functions on     .If  

the linear functional                                       is continuous for 

any            then                           where       stands for the 

adjoint of the operator      becomes a kernel of     . 

H

x X

X

: ( )x H f f x C   

 ,H y xK x y   y


x H

Suppose we are given a kernel                         and let us set 

                                 .If       is positive definite then  

                                defines an inner product  in      and the 

completion       of      can be still realized as a space of funtions. 

The resulting space      is a RKHS with the kernel      . 
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2| ( ) | ,
A

f x x X
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We shall follow the construction „B” – suppose that we 

are given a family              of functions such that   
A
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The kernel                 defined by ( , )fK x y

is positive definite and following „B” results in the RKHS 
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Theorem 1 

Let                             . Then, for every         ,           

 

the   series                    converges absolutely and  

 

the function                                  is in      ;  

 

the series                   converges in       to      . 
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Theorem 2 

The family                   is always complete in      .  

Moreover, the following conditions are equivalent: 

(i)  

                and                      for all          implies 

(ii) 

               is orthonormal  in       . 
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General construction 

Step 1 

Let’s take: 

-a separable Hilbert space       with fixed 

orthonormal basis           ,                  , 

--a sequence             of complex functions on  

satisfying the conditions: 

Step 2 

If                   ,          , define a (prospectively coherent) state   

H
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( , ) 0K x x  x X



36 36 
CIRM, Luminy, 16.11.2016 

Step 3 

Putting                   does not change requirements of 

the Step1 but simplifies the Step 2 

 

 

 

(Functions                                 satisfy Step 1 as well.) 
     

Step 4 

Because for any            the sequence                             

the series                              converges in the      ,  we 
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Analogue of the Bargmann-Segal transform 
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Step 5 

 

 

which means that      establishes an isometry between 

      and     . Because                for all    , it is surjective, 

hence unitary.  

Step 6 

makes the reciprocity between families                 of the  

step 4  and                 of the step 3 effective; any of 

these two  can be viewed as an alternative of the other 

and deserve the name  of the family of coherent states.  

,

| | | |

| | |

K KH n m H m H n H

n m

n H n H H

n

Bh Bg e h e g

e h e g h g

          

       





k kBe  KH H

B
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1 †

x x xB K B K c  

,Bh h H
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Step 7 

 
 

 

 

2 2

2

( )

( )

| | | | | |

( )( )( ( )) |

| |
K

L L

L

H H

h x x dx g h x x g dx

Bh x Bg x dx Bh Bg

Bh Bg h g

 



 



       

    

     

 



i.e., the step 5 means  the resolution of unity.   



39 39 
CIRM, Luminy, 16.11.2016 

Examples 

1. A „trivial” one  - complex monomials  

( )
!

n

n

z
z

n
 

do fit to our scheme - but  can we give another example?   

The answer is ‘yes’ – such an example is provided by the 

complex (holomorphic) Hermite polynomials defined 

identically as the standard ones but considered as 

functions of the argument being a complex number.  
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Complex Hermite polynomials 

2

2 21
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van Eijnhoven & Meyers 1990 

1s 
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Relation to combinatorics? to combinatorial physics? 

2

2 2( ) ( )exp ( , )n m n nm

R

P x iy P x iy x y dxdy c          

Let us give a problem: find polynomials of a complex variable 

orthogonal with respect to the two dimensional gaussian 

measure 

assuming that         are Sheffer polynomials, i.e. generated by   

   
0

( )exp ( )
!

n

n

n

t
P x iy g t x iy f t

n





    
 

(0) 0,

(0) 0,

' 0 0.

g

f

f







Then one finds two solutions:  either monomials  or complex 

Hermite polynomials. Taking another measure one can end 

up on other Sheffer polynomials which are often met as 

solutions  to combinatorial problems!    

'nP s
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Conlusions/Outlook 

• „Replacing” the resolution of unity by reproducing property 

enables us to look at the problem of completeness of coherent 

states from another, broader, point of view emphasizing 

properties of functions            used in their construction. They 

do not need be monomials any longer which is important 

because namely these functions carry probabilistic content of 

coherent states and their choice is related to the physical 

situation under consideration. 

• Proposed approach provides us with new tools useful to study  

coherent states  for which the resolution of unity cannot be 

effectively investigated using methods based on the moment 

problem, e.g. when the latter is  indeterminate, or impossible to 

be formulated.         

( )n z


