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Going hog wild for coherent states!
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Motivation: Klauder, Annals of Physics, 1960

KLAUDER

Transforming to polar coordinates one readily determines that (5a) reduces
to ∫ ∞

0
exp(− |a|2)

∞

∑
N ′=0

(N ′!)−1 |a|2N
′ ∣∣N ′〉〈N ′∣∣ d |a|2 (5b)

=
∞

∑
N ′=0

∣∣N ′〉〈N ′∣∣ = 1.

This “resolution of the identity” is a very useful tool ...
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Credits and references

Large-N limit is joint work with Bruce Driver and Todd Kemp,
Univ. Calif., San Diego

Web site: www.nd.edu/~bhall/

Expository paper on large-N limit: arXiv:1308.0615 [math.RT]
(printed copies available)

Shameless self-promotion: Textbook

Brian Hall
Quantum Theory for Mathematicians

Springer, Graduate Texts in Mathematics, 2013
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Compact-type Lie groups

Lie group K of “compact type,” i.e., compact groups, Rn, and
products

Examples: SO(3) for rigid body motion, or SU(2) = S3

View K as configuration space (position)
Phase space is cotangent bundle T ∗(K ) (position and momentum)
Quantum Hilbert space is L2(K )
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Complexification

Complexified group KC ⊃ K
Examples:

K = Rn KC = Cn

K = SU(N) KC = SL(n; C)

Identify KC as phase space, as follows.

T ∗(K ) ∼= T (K ) ∼= KC

metric
polar
decomp.
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Heat kernel (or “complexifier”) coherent states on K

Heat kernel ρt on K , based at identity:

dρt
dt

=
1
2

∆K ρt

lim
t→0

ρt = δe .

Holomorphic extension to KC

Coherent states: For g ∈ KC, define

χg (x) = ρ h̄(gx
−1), g ∈ KC, x ∈ K .

Not of Perelomov type
h̄ plays role of “time” in heat equation
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Euclidean case

If K = R, heat kernel is Gaussian
Coherent states are usual Gaussian wave packets:

χz (x) = Cexp
{
− 1
2 h̄
(z − x)2

}
= C ′ exp

{
− 1
2 h̄
(x − a)2

}
exp

{
− ibx
h̄

}
, z = a+ ib

Packet centered at x = a = Re z , with expected momentum b = Im z

For general K , heat kernel is “most Gaussian” function
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Results: Resolution of identity

Let νt be K -invariant heat kernel on KC:

dνt
dt

=
1
4

∆KC
νt

lim
t→0

νt = δK

If K = R and KC = C then νt (x + iy) = (πt)−1/2e−y
2/2t

Theorem (H 1994)
We have a resolution of the identity as follows:

I =
∫
KC

∣∣χg 〉〈χg ∣∣ ν h̄(g) dg

If K = R, gives the resolution of identity of John Klauder (1960)
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Results: Segal—Bargmann representation

For ψ ∈ L2(K ), define Segal—Bargmann transform:

(C h̄ψ)(g) =
〈
χg |ψ

〉
=

∫
K

ρ h̄(gx
−1)ψ(x) dx , g ∈ KC

Segal—Bargmann space: HL2(KC, ν h̄) (square-integrable
holomorphic functions)

Theorem (H 1994)

For each h̄ > 0, the map C h̄ is a unitary map of L2(K ) onto
HL2(KC, ν h̄)
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Results: Geometric quantization

Do geometric quantization with half-forms of T ∗(K ) ∼= KC using
complex polarization

Hilbert space turns out to be (isomorphic to) HL2(KC, ν h̄)

Geometric quantization somehow reproduces heat kernel!

Segal—Bargmann transform = BKS pairing map
References: H, 2002, C. Florentino, P. Matias, J. Mourão, J Nunes,
2006
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Results: (1+1)-dimensional Yang—Mills theory

Spacetime cylinder S1 ×R, structure group K

Configuration space is A = k-valued connections over spatial circle
Based gauge group: G0 = gauge transformations equal to e at
basepoint

A/G0 = K (holonomy around spatial circle)

Goal: Project coherent states for A into gauge-invariant subspace
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Results: (1+1)-dimensional Yang—Mills theory

First approach: Wren, using group-integration method of Landsman
Second approach: Driver—H, using Segal—Bargmann transform for A
Gaussian coherent states for A project to heat kernel coherent
states for A/G0 ∼= K
“Quantization commutes unitarily with reduction”

References: K. K. Wren 1998; Driver—Hall 1999
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Results: Coherent states on spheres

Configuration space Sn, phase space T ∗(Sn)

Project coherent states from L2(SO(n+ 1)) to L2(Sn)

Coherent states, resolution of identity, Segal—Bargmann representation

Kowalski—Rembielínski polar decomposition method
Thiemann complexifier method
References: T. Thiemann 1996, M. Stenzel 1999,
Kowalski—Rembielínski 2000 & 2001, Hall—Mitchell 2002
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Results: Coherent states on spheres

Coherent states given in terms of heat kernel on Sn

Resemble Gaussian wave packets:

Ref: K Kowalski, J Rembielínski and J Zawadzki, J. Phys. A 2015
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Results: Coherent states on spheres

Large-radius limit gives back Gaussian
Results for particle on S2 in magnetic field
Results for general compact symmetric spaces

Refs: Hall—Mitchell 2002 & 2012, Stenzel 1999
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Applications: quantum gravity

A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourão, T. Thiemann:
“Coherent state transform for spaces of connections” (1996)

H. Sahlmann, T. Thiemann, O. Winkler, “Gauge field theory coherent
states” (four papers in 2001)

Much additional work since then ...
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New direction: Large-N limit

Popular idea: Gauge theory for U(N), let N → ∞
Master field: Expect path-integral for U(N) Yang—Mills to
concentrate in limit to a single connection called “master field” [’t
Hooft, 1974]

Gross and Taylor: “Two-dimensional QCD is a String Theory”
(1993)

J. Maldacena: “The large-N Limit of superconformal field theories
and supergravity” (1999): 3,000 citations

Here: one specific aspect of large-N limit!
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Geometry of the unitary groups

U(N) = group of N ×N unitary matrices (U∗U = I )
Lie algebra = u(N) = skew matrices (X ∗ = −X )
Use on u(N) scaled Hilbert—Schmidt inner product:

〈X ,Y 〉 = N Re[Trace(X ∗Y )].

This inner product determines a bi-invariant Riemannian metric on
U(N)

Metric determines Laplacian ∆N (with ∆N ≤ 0)
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B-version Segal—Bargmann transform

(U(N))C = GL(N; C) = group of all N ×N invertible matrices
Transform as before

(BNt f )(g) =
∫
U (N )

ρt (gx
−1)f (x) dx

=
(
et∆N/2f

)
C
(g)

Full heat kernel µt on GL(N; C)

Theorem (H 1994)

The map BNt is a unitary map of L
2(U(N), ρt ) onto HL2(GL(N; C), µt )
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Large-N behavior of Laplacian

Consider normalized trace,

tr(U) =
1
N

Trace(U) =
1
N

N

∑
j=1
Ujj .

Now consider trace polynomials, i.e., polynomials in traces of
powers of U. E.g.

f (U) = 7tr(U2)tr(U3)− (tr(U2))3.

The action of ∆N on trace polynomials decomposes as:

∆N = ∆∞ +
1
N2
L

for operators “∆∞”and “L”whose actions are independent of N.
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Large-N behavior of Laplacian, cont’d

Two basic properties determine ∆∞

First,

∆∞[tr(Uk )] = −ktr(Uk )− 2
k−1
∑
j=1

jtr(U j )tr(Uk−j ).

Second, ∆∞ satisfies the first-order product rule:

∆∞(fg) = ∆∞(f )g + f (∆∞g).

Cross terms are small in product rule for ∆N
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Concentration of heat kernels

Look at heat kernel measure

dρNt (U) := ρt (U) dvol(U) on U(N)

Measure is concentrating to set where tr(U) has definite value:∥∥∥tr(U)− e−t/2
∥∥∥
L2(U (N ),ρNt )

→ 0

Trace polynomials effectively become constants (as elements of
L2(U(N), ρNt ))!
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Concentration of heat kernels, cont’d

Concentration related to the first-order product rule for ∆∞.

If ∆∞ behaves like a first-order operator, then heat doesn’t diffuse.
Similar concentration results on GL(N; C) w.r.t.

dµNt (Z ) := µt (Z ) dvol(Z )

on GL(N; C)
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Back to Segal—Bargmann transform

Limiting SBT on trace polynomials makes sense but is trivial
(constants map to constants)

Consider matrix-valued trace polynomials, e.g.,

f (U) = 2U2tr(U3)− 9Utr(U4).

Product rule extends only if one of the polynomials is scalar:

∆∞(U2U3) 6= ∆∞(U2)U3 + U2∆∞(U3).
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Example

Function:
f (U) = U2, U ∈ U(N).

Transform:

BNt (f )(Z ) = e−t
[
cosh(t/N) Z 2 − t sinh(t/N)

t/N
Z tr(Z )

]
≈ e−t

[
Z 2 − tZ tr(Z )

]
, Z ∈ GL(N; C)

Concentration: on GL(N; C) we have tr(Z ) ≈ 1 (w.r.t. µNt ) in the
large-N limit

Limit:
lim
N→∞

BNt (f )(Z ) = e
−t (Z 2 + tZ )

Brian C. Hall, University of Notre Dame () CIRM, November 2016 26 / 32



Main result

Traces disappear: only powers of U survive

Theorem (Driver-H-Kemp, 2013)
Let p be a polynomial in a single variable and let

f (U) = p(U), U ∈ U(N).

Then for each t > 0, there exists a unique polynomial qt in a single
variable such that∥∥∥BNt (f )(Z )− qt (Z )∥∥∥

L2(GL(N ;C),µNt )
→ 0

as N → ∞.

E.g., if p(u) = u2, then

qt (z) = e−t (z2 + tz).

Brian C. Hall, University of Notre Dame () CIRM, November 2016 27 / 32



Comparison with Biane

Map p 7→ qt coincides with the “free Hall transform”of Biane 1997

Biane uses “free unitary Brownian motion” for large-N limit

Map Gt : L2(S1, γt )→ H(Σt ) for domain Σt ⊂ C. Here γt is
limiting eigenvalue distribution of ρNt .
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Comparison with Biane

Driver—H—Kemp shows that Gt is limit of BNt on trace polynomials
New recursive method of computation

Two-parameter version
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Computing large-N limit

Step 1: Start with Uk and apply heat operator et∆∞/2.

Step 2: Evaluate the traces. Actually, tr(Z k ) ≈ 1 for every k.

Example: f (U) = U3. Applying et∆∞/2 gives

e−3t/2
{
Z 3 + t[2Z 2tr(Z ) + Z tr(Z 2)] +

3t2

2
Z tr(Z )2

}
Evaluating all traces to 1 gives

B∞
t (U

3) = qt (Z ) = e−3t/2
{
Z 3 + t(2Z 2 + Z ) +

3t2

2
Z
}
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Computing large-N limit

Recursive method of computing on Uk

Generating function for transform and inverse

References: Biane 1999, Driver—Hall—Kemp 2015, G. Cébron 2015

Expository paper: arXiv:1308.0615 [math.RT]
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Conclusion

Thank you for your attention!
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