Coherent state transforms for compact groups and their large-N limits

Brian C. Hall University of Notre Dame

CIRM, November 2016

CIRM, November 2016

1 / 32

Brian C. Hall, University of Notre Dame ()

Going hog wild for coherent states!

• = • •

KLAUDER

Transforming to polar coordinates one readily determines that (5a) reduces to

$$\int_{0}^{\infty} \exp(-|a|^{2}) \sum_{N'=0}^{\infty} (N'!)^{-1} |a|^{2N'} |N'\rangle \langle N'| \ d |a|^{2} \qquad (5b)$$
$$= \sum_{N'=0}^{\infty} |N'\rangle \langle N'| = 1.$$

This "resolution of the identity" is a very useful tool ...

- Large-*N* limit is joint work with **Bruce Driver** and **Todd Kemp**, Univ. Calif., San Diego
- Web site: www.nd.edu/~bhall/
- **Expository paper** on large-*N* limit: arXiv:1308.0615 [math.RT] (printed copies available)
- Shameless self-promotion: Textbook

Brian Hall

Quantum Theory for Mathematicians

Springer, Graduate Texts in Mathematics, 2013

- Lie group K of "compact type," i.e., compact groups, \mathbb{R}^n , and products
- Examples: SO(3) for rigid body motion, or $SU(2) = S^3$
- View K as configuration space (position)
- Phase space is cotangent bundle $T^*(K)$ (position and momentum)
- Quantum Hilbert space is $L^2(K)$

• Complexified group $K_{\mathbb{C}} \supset K$

• Examples:

$$K = \mathbb{R}^n \qquad K_{\mathbb{C}} = \mathbb{C}^n K = SU(N) \qquad K_{\mathbb{C}} = SL(n; \mathbb{C})$$

• Identify $K_{\mathbb{C}}$ as **phase space**, as follows.

$$\mathcal{T}^*(\mathcal{K}) \cong \mathcal{T}(\mathcal{K}) \cong \mathcal{K}_{\mathbb{C}}$$

metric polar
decomp.

3

(B)

Image: Image:

• Heat kernel ρ_t on K, based at identity:

$$\frac{d\rho_t}{dt} = \frac{1}{2}\Delta_K \rho_t$$
$$\lim_{t\to 0} \rho_t = \delta_e.$$

- Holomorphic extension to $K_{\mathbb{C}}$
- Coherent states: For $g \in K_{\mathbb{C}}$, define

$$\chi_g(x) = \overline{\rho_h(gx^{-1})}, \quad g \in K_{\mathbb{C}}, x \in K.$$

- **Not** of Perelomov type
- 7 plays role of "time" in heat equation

- If $K = \mathbb{R}$, heat kernel is **Gaussian**
- Coherent states are usual Gaussian wave packets:

$$\chi_z(x) = C \overline{\exp\left\{-\frac{1}{2\hbar}(z-x)^2\right\}}$$
$$= C' \exp\left\{-\frac{1}{2\hbar}(x-a)^2\right\} \exp\left\{-\frac{ibx}{\hbar}\right\}, \quad z = a + ib$$

• Packet centered at $x = a = \operatorname{Re} z$, with expected momentum $b = \operatorname{Im} z$

• For general K, heat kernel is "most Gaussian" function

Results: Resolution of identity

• Let v_t be *K*-invariant heat kernel on $K_{\mathbb{C}}$:

$$\frac{d\nu_t}{dt} = \frac{1}{4}\Delta_{K_{\mathbb{C}}}\nu_t$$
$$\lim_{t \to 0} \nu_t = \delta_{K}$$

• If $K = \mathbb{R}$ and $K_{\mathbb{C}} = \mathbb{C}$ then $\nu_t(x + iy) = (\pi t)^{-1/2} e^{-y^2/2t}$

Theorem (H 1994)

We have a resolution of the identity as follows:

$$I = \int_{\mathcal{K}_{\mathbf{C}}} \left| \chi_{\mathbf{g}} \right\rangle \!\! \left\langle \chi_{\mathbf{g}} \right| \, v_{\mathcal{T}}(\mathbf{g}) \, d\mathbf{g}$$

• If $K = \mathbb{R}$, gives the resolution of identity of **John Klauder** (1960)

• For $\psi \in L^2(K)$, define **Segal–Bargmann transform**:

$$\begin{array}{lll} (\mathcal{C}_{\hbar}\psi)(g) &=& \left\langle \chi_{g}|\psi\right\rangle \\ &=& \int_{\mathcal{K}}\rho_{\hbar}(gx^{-1})\psi(x) \,\,dx, \quad g\in \mathcal{K}_{\mathbb{C}} \end{array}$$

Segal–Bargmann space: HL²(K_C, ν_h) (square-integrable holomorphic functions)

Theorem (H 1994)

For each h > 0, the map C_h is a unitary map of $L^2(K)$ onto $\mathcal{H}L^2(K_{\mathbb{C}}, \nu_h)$

- Do geometric quantization with half-forms of T^{*}(K) ≅ K_C using complex polarization
- Hilbert space turns out to be (isomorphic to) $\mathcal{H}L^2(\mathcal{K}_{\mathbb{C}}, \nu_{\mathcal{T}})$
- Geometric quantization somehow reproduces heat kernel!
- Segal-Bargmann transform = **BKS pairing map**
- References: H, 2002, C. Florentino, P. Matias, J. Mourão, J Nunes, 2006

- Spacetime cylinder $S^1 imes \mathbb{R}$, structure group K
- Configuration space is $\mathcal{A} = \mathfrak{k}$ -valued connections over spatial circle
- Based gauge group: $\mathcal{G}_0 =$ gauge transformations equal to e at basepoint
- $\mathcal{A}/\mathcal{G}_0 = K$ (holonomy around spatial circle)
- **Goal**: Project coherent states for \mathcal{A} into gauge-invariant subspace

- First approach: Wren, using group-integration method of Landsman
- Second approach: Driver–H, using Segal–Bargmann transform for ${\cal A}$
- Gaussian coherent states for \mathcal{A} project to heat kernel coherent states for $\mathcal{A}/\mathcal{G}_0 \cong K$
- "Quantization commutes unitarily with reduction"
- References: K. K. Wren 1998; Driver-Hall 1999

- Configuration space S^n , phase space $T^*(S^n)$
- **Project** coherent states from $L^2(SO(n+1))$ to $L^2(S^n)$
- Coherent states, resolution of identity, Segal-Bargmann representation
- Kowalski-Rembieliński polar decomposition method
- Thiemann complexifier method
- References: T. Thiemann 1996, M. Stenzel 1999, Kowalski–Rembieliński 2000 & 2001, Hall–Mitchell 2002

Results: Coherent states on spheres

- Coherent states given in terms of heat kernel on Sⁿ
- Resemble Gaussian wave packets:

Ref: K Kowalski, J Rembieliński and J Zawadzki, J. Phys. A 2015

- Large-radius limit gives back Gaussian
- Results for particle on S^2 in magnetic field
- Results for general compact symmetric spaces
- Refs: Hall-Mitchell 2002 & 2012, Stenzel 1999

- A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourão, T. Thiemann: "Coherent state transform for spaces of connections" (1996)
- H. Sahlmann, T. Thiemann, O. Winkler, "Gauge field theory coherent states" (four papers in 2001)
- Much additional work since then ...

- **Popular idea**: Gauge theory for U(N), let $N \to \infty$
- Master field: Expect path-integral for U(N) Yang-Mills to concentrate in limit to a single connection called "master field" ['t Hooft, 1974]
- **Gross and Taylor**: "Two-dimensional QCD is a String Theory" (1993)
- J. Maldacena: "The large-N Limit of superconformal field theories and supergravity" (1999): 3,000 citations
- Here: one specific aspect of large-N limit!

•
$$U(N) =$$
 group of $N \times N$ unitary matrices $(U^*U = I)$

- Lie algebra = u(N) = skew matrices $(X^* = -X)$
- Use on *u*(*N*) scaled Hilbert–Schmidt inner product:

$$\langle X, Y \rangle = N \operatorname{Re}[\operatorname{Trace}(X^*Y)].$$

- This inner product determines a bi-invariant Riemannian metric on $U({\it N})$
- Metric determines Laplacian Δ_N (with $\Delta_N \leq 0$)

- $(U(N))_{\mathbb{C}} = GL(N; \mathbb{C}) =$ group of all $N \times N$ invertible matrices
- Transform as before

$$(B_t^N f)(g) = \int_{U(N)} \rho_t(gx^{-1}) f(x) dx$$
$$= \left(e^{t\Delta_N/2}f\right)_{\mathbb{C}} (g)$$

• Full heat kernel μ_t on $\mathit{GL}(N;\mathbb{C})$

Theorem (H 1994)

The map B_t^N is a unitary map of $L^2(U(N), \rho_t)$ onto $\mathcal{H}L^2(GL(N; \mathbb{C}), \mu_t)$

Large-N behavior of Laplacian

Consider normalized trace,

$$\operatorname{tr}(U) = \frac{1}{N}\operatorname{Trace}(U) = \frac{1}{N}\sum_{j=1}^{N}U_{jj}.$$

 Now consider trace polynomials, i.e., polynomials in traces of powers of U. E.g.

$$f(U) = 7 \operatorname{tr}(U^2) \operatorname{tr}(U^3) - (\operatorname{tr}(U^2))^3.$$

• The action of Δ_N on trace polynomials decomposes as:

$$\Delta_N = \Delta_\infty + \frac{1}{N^2}L$$

for operators " Δ_{∞} " and "L" whose actions are **independent of** N.

- Two basic properties determine Δ_{∞}
- First,

$$\Delta_{\infty}[\operatorname{tr}(U^{k})] = -k\operatorname{tr}(U^{k}) - 2\sum_{j=1}^{k-1} j\operatorname{tr}(U^{j})\operatorname{tr}(U^{k-j}).$$

• Second, Δ_{∞} satisfies the **first-order product rule**:

$$\Delta_{\infty}(fg) = \Delta_{\infty}(f)g + f(\Delta_{\infty}g).$$

• Cross terms are small in product rule for Δ_N

• Look at heat kernel measure

$$d\rho_t^N(U) := \rho_t(U) \ d\mathrm{vol}(U) \quad \text{on } U(N)$$

• Measure is concentrating to set where tr(U) has definite value:

$$\left\|\operatorname{tr}(U)-e^{-t/2}\right\|_{L^2(U(N),\rho_t^N)}\to 0$$

• Trace polynomials effectively become **constants** (as elements of $L^2(U(N), \rho_t^N))!$

- Concentration related to the first-order product rule for Δ_{∞} .
- If Δ_{∞} behaves like a first-order operator, then **heat doesn't diffuse**.
- Similar concentration results on $GL(N; \mathbb{C})$ w.r.t.

$$d\mu_t^N(Z) := \mu_t(Z) \, d\mathrm{vol}(Z)$$

on $GL(N; \mathbb{C})$

- Limiting SBT on trace polynomials makes sense but is trivial (constants map to constants)
- Consider matrix-valued trace polynomials, e.g.,

$$f(U) = 2U^2 \operatorname{tr}(U^3) - 9U \operatorname{tr}(U^4).$$

• Product rule extends only if one of the polynomials is scalar:

$$\Delta_{\infty}(U^2U^3) \neq \Delta_{\infty}(U^2)U^3 + U^2\Delta_{\infty}(U^3).$$

Example

• Function:

$$f(U) = U^2, \quad U \in U(N).$$

Transform:

$$B_t^N(f)(Z) = e^{-t} \left[\cosh(t/N) \ Z^2 - t \frac{\sinh(t/N)}{t/N} \ Z \operatorname{tr}(Z) \right]$$

$$\approx e^{-t} \left[Z^2 - t Z \operatorname{tr}(Z) \right], \quad Z \in GL(N; \mathbb{C})$$

• Concentration: on $GL(N;\mathbb{C})$ we have ${\rm tr}(Z)\approx 1$ (w.r.t. $\mu_t^N)$ in the large-N limit

• Limit:

$$\lim_{N\to\infty} B_t^N(f)(Z) = e^{-t}(Z^2 + tZ)$$

3

∃ ► < ∃ ►</p>

Main result

• Traces disappear: only powers of U survive

Theorem (Driver-H-Kemp, 2013)

Let p be a polynomial in a single variable and let

$$f(U) = p(U), \quad U \in U(N).$$

Then for each t > 0, there exists a unique polynomial q_t in a single variable such that

$$\left\|B_t^N(f)(Z)-q_t(Z)\right\|_{L^2(GL(N;\mathbb{C}),\mu_t^N)}\to 0$$

as $N \to \infty$.

• E.g., if $p(u) = u^2$, then

$$q_t(z) = e^{-t}(z^2 + tz).$$

Comparison with Biane

- Map $p \mapsto q_t$ coincides with the "free Hall transform" of Biane 1997
- Biane uses "free unitary Brownian motion" for large-N limit
- Map $\mathcal{G}_t : L^2(S^1, \gamma_t) \to \mathcal{H}(\Sigma_t)$ for domain $\Sigma_t \subset \mathbb{C}$. Here γ_t is limiting eigenvalue distribution of ρ_t^N .

- Driver-H-Kemp shows that \mathcal{G}_t is limit of \mathcal{B}_t^N on trace polynomials
- New recursive method of computation
- Two-parameter version

- Step 1: Start with U^k and apply heat operator $e^{t\Delta_{\infty}/2}$.
- Step 2: **Evaluate the traces**. Actually, $tr(Z^k) \approx 1$ for every k.
- Example: $f(U) = U^3$. Applying $e^{t\Delta_{\infty}/2}$ gives

$$e^{-3t/2}\left\{Z^3 + t[2Z^2\operatorname{tr}(Z) + Z\operatorname{tr}(Z^2)] + \frac{3t^2}{2}Z\operatorname{tr}(Z)^2\right\}$$

• Evaluating all traces to 1 gives

$$B_t^{\infty}(U^3) = q_t(Z) = e^{-3t/2} \left\{ Z^3 + t(2Z^2 + Z) + \frac{3t^2}{2}Z \right\}$$

- **Recursive** method of computing on U^k
- Generating function for transform and inverse
- References: Biane 1999, Driver-Hall-Kemp 2015, G. Cébron 2015
- Expository paper: arXiv:1308.0615 [math.RT]

• Thank you for your attention!

3