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OUTLINE
> z"/\/m

HERMITE POLYNOMIALS H,, ,

The Hermite polynomials Hp, ,, m,n=10,1,...,

z1 and z can be defined as

min{m,n}

in two complex variables

. m\ (n m—k n—
Hon.n(21, 22) 2 Z <k> <k>(_1)kk!zl kgp=k

k=0



POLYNOMIALS VERSUS FUNCTIONS DEFINED BY
POLYNOMIALS

For complex z we define

min{m,n}
Hmn(2,2) = Y <':)<Z)(1)kk!zmkz"k.

k=0

Hm,n are polynomials in z and Z (they are not polynomials in a single
variable z € C) with real coefficients but as functions they are of a single

complex variable z.

Usually called:

Dattoli: INCOMPLETE HERMITE POLYNOMIALS;

Gazeau, Ghanmi, Fan, Klauder: COMPLEX HERMITE POLYNOMIALS;
Wiinsche: LAGUERRE POLYNOMIALS IN TWO VARIABLES



POLYNOMIALS VERSUS FUNCTIONS DEFINED BY
POLYNOMIALS

If z=x + iy then H,, »(z,Z) may be written down as

min{m,n} m—k n— km'n' sm-k—i—j xN—k—j+i,m—k—itj

y
Huon(%, ¥) Z szlﬂﬂ (m—k—0)!(n—k—j)!

k=0 i=0 j=0

> Now, ﬁ,,,),, becomes polynomials in two variables x and y with
complex coefficient.

» Orthogonal with respect to the measure exp(—x? — y?), x,y € R.



EXAMPLE OF COMPLEX POLYNOMIALS;
z"/v/nl and H,(z)

> the monomials ®,(z) = z"/+/n! which are orthogonal with respect
to the rotationally invariant measure exp(—zZz). The monomials
z”/\/m is an orthonormal basis in Hparg,1-
(important for the physics; V. Bargmann, Commun. Pur. Appl.
Anal., 1961).

The Segal-Bargmann transforamtion

L%(R? dgdp) LI Hnol1(C,e7?2dz), A is the unitary operator.

the space the Bargmann space
L£2(R?,dg dp) of Hparg,1(C,e7?2dz)
square integrable of analytical

functions functions



EXAMPLE OF COMPLEX POLYNOMIALS;
z"/v/nl and H,(z)

> the complex Hermite polynomials in one variable H,(z) (van
Eijndhoven-Meyers polynomials; S. J. L. van Eijndhoven and J. L. H.
Meyers, J. Math. Anal. Appl., 1990) is orthogonal with respect to
the non rotatlonally |nvar|ant measure

exp[ (z +7%) -




ORTHONORMAL VAN EIJNDHOVEN-MEYERS
FUNCTIONS h, ,(z), z € C

Orthonormal van Eijndhoven-Meyers’ functions are defined as

honl2) 2 bof0) V2R 2), Hy(2) =t YD E e
k=0 ’ '
1+a\”
by(a)Z mva 2 !
(@) l—« l1—« ’

where z=x+iy, x,ye R, 0<a<1l and n=0,1,....
> (ha,n)2o is an orthonormal basis in #(®),
> the space H(®) is a reproducing kernel Hilbert space with the kernel
o0

Koz, W) =Y han(2)han(w)
n=0

1—a?

2
20 Wz weC.

2
_l1-a” _Lataigey,

e
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ORTHONORMAL VAN EIJNDHOVEN-MEYERS
FUNCTIONS h, ,(z), z € C

Szafraniec, Contemporary Mathematics, 1998
Gazeau & Szafraniec, JPA (2011)

With D, Z1in(he,,)32, (the linear span of Hermite functions), we may
say that the operators S and S defined as

Sif(z) = ﬁ (zf(z) - ddzf(z))
S, f(z) = % (zf(z) + ddzf(z)) , zeC, feD,

are the creation and annihilation operators acting on #(*) and their
commutation relation,

S;S;_ — S;S; = Iy,

is still satisfied on D,.



TRANSFORMS

Ali, Gérska, Horzela & Szafraniec, JMP (2014)

» From H(® to Hpo:: @, = Ah,,, with
Az, W) =Y ®n(2)ha,n(w)
n=0

The operator A is unitary, namely ¢, = Ah,, ,, is isometric and
surjective mapping.

» From Hpo to H(): ho,n = Ad,.



HERMITE POLYNOMIALS IN TWO COMPLEX
VARIABLES Hp (21, 2), 21,2 € C

The Hermite polynomials Hy, ,, m,n=0,1,... may come from the
generating function

= smn
Z ﬁHm,n(zl722) = e215+22t_5t7 21,22 € (C
m!n!
m,n=0
The generating function cannot be factorized for two one-variable
functions which depend on s or t. It means that in some sense Hp, , is
entanglment from two van-Eijndhoven-Meyers polynomials H,y,.

The Hermite polynomials in two variables can be given as

m n
d d z15+zpt—st

Hm,n(Z].?ZQ) = @dt" s=0 t=0.



ALGEBRAIC PROPERTIES OF H,, (21, 2), z1,20 € C

The algebraic properties of Hp, , are similar but not the same as the
standard properties of the (standard) Hermite polynomials of x, x € R.

Raising and lowering operational formula:

Hmi1,0(21,20) = (21 — 05,)Hm,n(21, 20), O Hmn(z1,22) = nHm pn—1(21, 22)
Hm,n+1(zla 22) = (22 - azl)Hm,n(Zla 22) azl Hm,n(Zh 22) = mHm—l,n(Zla 22)
Triple recurrence relation for Hp, 5

Hmi1,n(21, 22) = 21Hm n(21, 22) — nHm n—1(21, 22)

Hmni1(21, 22) = 22Hm n(21, 22) — MHp—1,n(21, 22)



ORTHOGONALITY OF Hp (21, 2), 21,20 € C

Let us express Hp n(z1,22) in terms of two van Eijndhoven-Meyers
polynomials H,(z), z € C

X Hip i (352 ) Hmn— k-1 (B572).

Then, we use the orthogonal relation for van Eijndhoven-Meyers
polynomials:

1-a?

—— (-0 2, 2y 5
/ H (z)Hs(z) e % F+2)=522 4z = b,(a) b,
C




ORTHOGONALITY OF Hp (21, 2), 21,20 € C

Thus, the orthogonal relation for H,, »(z1, 22) has the form

/ Hm,n(zh ZQ)Hp,q(Zla Z2)ga (Zla 22) le dZ2 = Cm,n(a)(sm,pan,qa
C2

where
Cmnla) = 2~ (m+n) bm(a)by(a)

and g.(z1,22) is built form the product of two measure appropriate for
van Eijdhoven-Meyers polynomials for the variables (z; + z2)/2 and
(zi — 2)/(21). Thus, ga(z1,22) has the form

8a(z1,22) = exp[- 1322 + 21> — 3 (L = 1)|22 — ).



ORTHONORMAL HERMITE FUNCTIONS hm ,7(21,22)
72,2 €C

Let the orthonormal Hermite functions hf,?f?,(zl,zz), m,n=20,1,... be

W21, 22) = [emn(@)] Y% exp (= 252) Hinn(21, 22),

)

where 0 < o < 1 is a parameter.

> (h$))32, is an orthonormal basis in K(“

> the space K(%) is a reproducing kernel Hilbert space with the kernel

Ka(217227 wi, W2) = Z h(a) (21722)/7(04) (Wla WQ)
n=0
_ (1 — a2)2 e~ 1132 (2122+W1W2)+1T(21W1+22W2)
471202

with z;, 2o, wy, wp € C.



RELATING K(@ TO THE BARGMANN SPACE

Recall that in two variable Bargmann space Hparg 2 the sequence

def 21 Zn

ém ,,(21722) \/7\/7

of monomials is an orthonormal basis.

z1,22€C, mn=0,1,....

> From K(®) to Hpago:  Bmn = BAS) with
B(z1, 22, W, W) = > Dy n(21, 22) Wb (Wi, wa).
m,n=0

The operator B is unitary, i.e. &, = Bhff,fz, is an isometric and

surjective transformation.

> From Hpag o to K@), hgffz, = E@myn.

s



CREATION AND ANNIHILATION OPERATORS

Put Dga) glin(h,(,'f,z,)ginzo the linear span of Hermite functions
fe Dga) define the following four operators as

(a§+f)(zhz2)def G;Z)m (221 B 8822) f(z1, z),
(ag );‘)(21,22)"25f (1 —&—3)1/2 (222 + 6821) f(z1, 22),
(a8 F) (21, 22) 2 (1;3)1/2 (222 - aazl) f(z1, 22),
(8 £)(z1, 22) & G - Z)m <Z21 + 6822) f(z1, 2),

with z;,2, € C.

. For



LIMIT a« — 1—

The orthogonal relation for the Hermite functions for z; = and

wi
. o Vi«
= \/% wy, wp € C, in the limit & — 1— goes to the orthogonal
relation in the Bargmann space !:

Z

[EZ h<a>(¢mﬁ ﬁ)hgag(%,%) o (Wi, wa)(1—a) "2 dwy dws

—p _ =~ q _
ool [ W W gl gy, [ ol g,
)

o Vml Vel e Vi vl

w1 Wo+ W1 Wo

where ga(WbWZ) = eXp[_ 2(1—a) ]ga(\/%a \/;Viia)’

lime o t™F Hip (2, 2) = 2725



LIMIT o — 0+

For zz = u+ivav, z =i+ iy/av, u,v € C one has the following limit
formulae

/ &) (utivav, I+ivar)hS (u + ivav, i + ivar) e adudv
CZ

where
An(u, 8)E ——— e "2 H, (u, @), ueC.

FAN, KLAUDER



REPRODUCING KERNEL

We recall the form of the reproducing kernel built for the orthonormal
Hermite function in two variable

hsh(21,22) = [ema(@)] 72 e 22/% Hyy o(21, 22),

mtn
1

O N e

1+«

which has the form

1—a?)? _1+°
Ka(21,22,W17W2)=%e 4a

__ 1—o? _ _
(2122+W1W2)+74a (z1W1+2z2W2)
for z1, zp, wi, wr € C.

(i) In the limit of & — 1— the kernel K, (z1, z2, w1, w) tends to zero,

(ii) whereas, for & — 0+ the kernel K, (z1, zo, wi, w») goes to infinity.



LIMIT BEHAVIOR OF THE KERNEL

It can be shown that

m+n

0o o0 s
ZZ In mn Z1322)I—Im n(W17W2)
m=0 n=0 min

s—1 2122 + waiwp
> mexp — 0z — wi, 20 — wp).

REMARK
The same happened for the van Eijndhoven-Meyers polynomials and the
(standard) Hermite polynomials.

All of these are because the singularities mentioned in (i) and (ii).

Here, S. Twareque Ali’s idea:

The series is convergent for 0 < s < 1 and
the Dirac delta appears only in the limit.

applies.



VAN EIJNDHOVEN-MEYERS POLYNOMIALS; o« — 1—

; (@) () o -1/2
The functions ky *(z) = ba(«) /H"(\/lz—ia

orthonormal basis in H,. The orthonormality can now be written
explicitly as

), z € C, form an

/ (z)k( )( )exp[ 2 iyz] dxdy = m n.
C

H( s a reproducing kernel Hilbert space with the kernel

éik (2)k$) (w)

n=0
1 1-—- 1
= 27:/5 ex [— 5 (Z2 + w?) + ;;éazv_v] , z,weC.

In the limit of & — 1— the kernel K(®)(z, w) goes to exp(zw)/.



VAN EIJNDHOVEN-MEYERS POLYNOMIALS; o — 0+

Another modification of the Hermite functions?

n/2 .
ko) (7)1 [1—0[} Hn<><+ly\/a

7\/? V11—«

The functions /Aﬂ(fy) satisfy the orthogonality relation
/ kﬁa)(z)me—\zP dxdy =0pm, z=x+1iy.
C

and gives the kernel

R (2, w) = 1 2* O o= 2 [ty V/a) +{u—iv /@) 152 (xti y V@) (u—i v/a)
™

2 They are no longer holomorphic, in fact they are polynomials in two real variables
with complex coefficients.



HERMITE POLYNOMIALS IN TWO COMPLEX
VARIABLES; a — 1—

We star with the polynomials

m+n

1 1—a) 2
() def z; 2
hmn(21,22) = v/ am!n! (1 + a) Him.n (Vl:a’ \/1*&) ’

which are orthogonal with respect to the measure

exp [—3|22 + 21> — 75|22 — z1[?]. They form the orthonormal basis in

#{*) with the reproducing kernel

2
() — (]‘ + Oé) — 2 (212 W W)+ 2 (2 W+ 2 W)

K2 (Zl7 227 W].) W2) - 47T2042 S 4 4
which in the limit of & — 1— gives the reproducing kernel in the two
variable Bargmann space.



HERMITE POLYNOMIALS IN TWO COMPLEX
VARIABLES; a — 0+

Following Twareque Ali's idea we modified the two variable complex
Hermite polynomials

m+n

1 l—a e€) ? s 7
() © H z—y/aw Z+/aw
m, n(z W) T il (1 o 2> m,n( Ao’ JVi-o )a

z,w € C, whose reproducing kernel in the limit of « — 0+ is equal to

o0 )m+n
K(zl,wl,zz, ws) —2 Z i m.n(2, Z2)Hm,n(w, W)
m,n=0
4 3— (z=w)(z—#)

_ o e (22 twit)— i (2t 2w) 1 _

m2(4 —¢€) €
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