Wavelet approximation theory in higher dimensions

Hartmut Führ fuehr@matha.rwth-aachen.de

CIRM, Nov. 2016

Lehrstuhl A für Mathematik, RNTH

H. Führ (RWTH Aachen)

Wavelet approximation theory

CIRM, Nov. 2016 1 / 38

- b

< 口 > < 同 >

1 Introduction: Nice wavelets and sparse signals in dimension one

990

Э

→ < Ξ >

1 Introduction: Nice wavelets and sparse signals in dimension one

2 Continuous wavelet transforms over general dilation groups

ORWTH

< 口 > < 同 >

1 Introduction: Nice wavelets and sparse signals in dimension one

2 Continuous wavelet transforms over general dilation groups

3 Coorbit theory: A consistent wavelet approximation theory

< 口 > < 同 >

1 Introduction: Nice wavelets and sparse signals in dimension one

- 2 Continuous wavelet transforms over general dilation groups
- 3 Coorbit theory: A consistent wavelet approximation theory
- Wavelet coorbit spaces over general dilation groups

1 Introduction: Nice wavelets and sparse signals in dimension one

- 2 Continuous wavelet transforms over general dilation groups
- 3 Coorbit theory: A consistent wavelet approximation theory
- Wavelet coorbit spaces over general dilation groups
- 5 Constructing compactly supported nice wavelets

1 Introduction: Nice wavelets and sparse signals in dimension one

- 2 Continuous wavelet transforms over general dilation groups
- 3 Coorbit theory: A consistent wavelet approximation theory
- Wavelet coorbit spaces over general dilation groups
- 5 Constructing compactly supported nice wavelets
- 6 Towards an understanding of coorbit spaces

Overview

1 Introduction: Nice wavelets and sparse signals in dimension one

Definition

A wavelet ONB $(\psi_{j,k})_{j,k\in\mathbb{Z}}\subset\mathrm{L}^2(\mathbb{R})$ is an ONB of the form

 $(\psi_{j,k})_{j,k\in\mathbb{Z}}\subset\mathrm{L}^2(\mathbb{R})\;,\psi_{j,k}=2^{j/2}\psi(2^jx-k)\;,\psi$ fixed

ORWTH

・ロト ・ 日 ・ ・ ヨ ・

Definition

A wavelet ONB $(\psi_{j,k})_{j,k\in\mathbb{Z}}\subset\mathrm{L}^2(\mathbb{R})$ is an ONB of the form

$$(\psi_{j,k})_{j,k\in\mathbb{Z}}\subset\mathrm{L}^2(\mathbb{R})\;,\psi_{j,k}=2^{j/2}\psi(2^jx-k)\;,\psi$$
 fixed

Simultaneous wavelet bases of smoothness spaces

Definition

A wavelet ONB $(\psi_{j,k})_{j,k\in\mathbb{Z}}\subset\mathrm{L}^2(\mathbb{R})$ is an ONB of the form

$$(\psi_{j,k})_{j,k\in\mathbb{Z}}\subset\mathrm{L}^2(\mathbb{R})\;,\psi_{j,k}=2^{j/2}\psi(2^jx-k)\;,\psi$$
 fixed

Simultaneous wavelet bases of smoothness spaces

 ${\, \bullet \,}$ For sufficiently nice wavelets $\psi,$ the wavelet expansion

$$f = \sum_{j,k\in\mathbb{Z}} \langle f,\psi_{j,k}
angle \psi_{j,k}$$

converges in the norm of a homogeneous Besov space $\dot{B}^{\alpha}_{p,q}$, as soon as $f\in \dot{B}^{\alpha}_{p,q}$.

Definition

A wavelet ONB $(\psi_{j,k})_{j,k\in\mathbb{Z}}\subset\mathrm{L}^2(\mathbb{R})$ is an ONB of the form

$$(\psi_{j,k})_{j,k\in\mathbb{Z}}\subset\mathrm{L}^2(\mathbb{R})\;,\psi_{j,k}=2^{j/2}\psi(2^jx-k)\;,\psi$$
 fixed

Simultaneous wavelet bases of smoothness spaces

 ${\, {\circ}\, }$ For sufficiently nice wavelets $\psi,$ the wavelet expansion

$$f = \sum_{j,k\in\mathbb{Z}} \langle f,\psi_{j,k}
angle \psi_{j,k}$$

converges in the norm of a homogeneous Besov space $\dot{B}^{\alpha}_{p,q}$, as soon as $f \in \dot{B}^{\alpha}_{p,q}$. Furthermore, the property $f \in \dot{B}^{\alpha}_{p,q}$ is equivalent to weighted summability of the coefficients. (Frazier/Jawerth)

Definition

A wavelet ONB $(\psi_{j,k})_{j,k\in\mathbb{Z}}\subset\mathrm{L}^2(\mathbb{R})$ is an ONB of the form

$$(\psi_{j,k})_{j,k\in\mathbb{Z}}\subset\mathrm{L}^2(\mathbb{R})\;,\psi_{j,k}=2^{j/2}\psi(2^jx-k)\;,\psi$$
 fixed

Simultaneous wavelet bases of smoothness spaces

 ${\, \bullet \,}$ For sufficiently nice wavelets $\psi,$ the wavelet expansion

$$f = \sum_{j,k \in \mathbb{Z}} \langle f, \psi_{j,k} \rangle \psi_{j,k}$$

converges in the norm of a homogeneous Besov space $\dot{B}^{\alpha}_{p,q}$, as soon as $f \in \dot{B}^{\alpha}_{p,q}$. Furthermore, the property $f \in \dot{B}^{\alpha}_{p,q}$ is equivalent to weighted summability of the coefficients. (Frazier/Jawerth)

• There exist arbitrarily nice compactly supported wavelets. (Daubechies)

H. Führ (RWTH Aachen)

Wavelet approximation theory

CIRM, Nov. 2016 5 / 38

Э

• Reinterprets smoothness spaces as spaces of sparse signals with respect to wavelet ONB.

4 E b

- Reinterprets smoothness spaces as spaces of sparse signals with respect to wavelet ONB.
- Important byproduct: Consistency.

- Reinterprets smoothness spaces as spaces of sparse signals with respect to wavelet ONB.
- Important byproduct: Consistency. All sufficiently nice wavelets have the same spaces of sparse signals!

- Reinterprets smoothness spaces as spaces of sparse signals with respect to wavelet ONB.
- Important byproduct: Consistency. All sufficiently nice wavelets have the same spaces of sparse signals!
- Yields mathematically rigourous justification for many wavelet-based methods and algorithms, such as denoising, compression etc.

Desirable properties of wavelets

⊘RWTH<u></u>

)	Wavelet approximation theory		CIRM, Nov. 2016	6 / 38
		< □ →	· · · · · · · · · · · · · · · · · · ·	$\mathcal{O} \land \mathcal{O}$

H. Führ (RWTH Aachen)

Desirable properties of wavelets

A nice wavelet $\psi \in \mathrm{L}^2(\mathbb{R})$ typically has three properties

ORWTH :::

ı)	Wavelet approximation theory		CIRM, Nov. 2016	6 / 38
		${ \ \ = \ \ = \ \ }$	・四ト ・三ト ・三ト 三日	$\mathcal{O} \land \mathcal{O}$

H. Führ (RWTH Aachen)

Desirable properties of wavelets

A nice wavelet $\psi \in \mathrm{L}^2(\mathbb{R})$ typically has three properties

(a) Fast decay, e.g. $|\psi(x)| \leq C(1+|x|)^{-n}$;

ORWTH

- - ∃ →

Desirable properties of wavelets

A nice wavelet $\psi \in \mathrm{L}^2(\mathbb{R})$ typically has three properties

- (a) Fast decay, e.g. $|\psi(x)| \le C(1+|x|)^{-n}$;
- (b) Smoothness, e.g. $\psi^{(j)} \in L^1(\mathbb{R})$, for all $1 \leq j \leq m$;

ORWTH

- - ∃ →

Desirable properties of wavelets

A nice wavelet $\psi \in \mathrm{L}^2(\mathbb{R})$ typically has three properties

- (a) Fast decay, e.g. $|\psi(x)| \leq C(1+|x|)^{-n};$
- (b) Smoothness, e.g. $\psi^{(j)} \in L^1(\mathbb{R})$, for all $1 \leq j \leq m$;
- (c) Vanishing moments, e.g.

$$orall 0 \leq j < k$$
 : $\int_{\mathbb{R}} x^j \psi(x) dx = 0$

with absolute convergence of the integral

ORWTH

Desirable properties of wavelets

A nice wavelet $\psi \in \mathrm{L}^2(\mathbb{R})$ typically has three properties

- (a) Fast decay, e.g. $|\psi(x)| \leq C(1+|x|)^{-n};$
- (b) Smoothness, e.g. $\psi^{(j)} \in L^1(\mathbb{R})$, for all $1 \leq j \leq m$;
- (c) Vanishing moments, e.g.

$$orall 0 \leq j < k$$
 : $\int_{\mathbb{R}} x^j \psi(x) dx = 0$

with absolute convergence of the integral

Shortly: Nice wavelets have good time-frequency localization.

			ORWTH
		< ロ > < 部 > く 臣 > く 臣 >	≣
H. Führ (RWTH Aachen)	Wavelet approximation theory	CIRM, Nov. 2016	6 / 38

Desirable properties of wavelets

A nice wavelet $\psi \in \mathrm{L}^2(\mathbb{R})$ typically has three properties

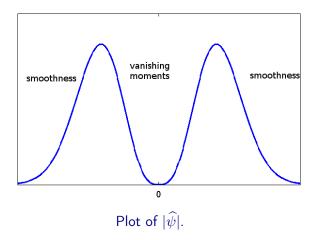
- (a) Fast decay, e.g. $|\psi(x)| \leq C(1+|x|)^{-n};$
- (b) Smoothness, e.g. $\psi^{(j)} \in L^1(\mathbb{R})$, for all $1 \le j \le m$;
- (c) Vanishing moments, e.g.

$$\forall 0 \leq j < k : \int_{\mathbb{R}} x^j \psi(x) dx = 0$$

with absolute convergence of the integral

Shortly: Nice wavelets have good time-frequency localization. (Note: Frequency-side localization is understood away from zero.)

Cartoon: Fourier side decay of wavelets



Э

Main objective

Establish notion of nice wavelets for higher-dimensional wavelet transforms, with dilations coming from a suitable matrix group, the dilation group.

ORWTH

Main objective

Establish notion of nice wavelets for higher-dimensional wavelet transforms, with dilations coming from a suitable matrix group, the dilation group. Previously studied for: Similitude groups (\rightsquigarrow isotropic Besov spaces), shearlet dilation groups (Kutyniok, Dahlke, Steidl, Teschke; Dahlke, Häuser, Teschke)

Main objective

Establish notion of nice wavelets for higher-dimensional wavelet transforms, with dilations coming from a suitable matrix group, the dilation group. Previously studied for: Similitude groups (\rightsquigarrow isotropic Besov spaces), shearlet dilation groups (Kutyniok, Dahlke, Steidl, Teschke; Dahlke, Häuser, Teschke)

Main objective

Establish notion of nice wavelets for higher-dimensional wavelet transforms, with dilations coming from a suitable matrix group, the dilation group. Previously studied for: Similitude groups (\rightsquigarrow isotropic Besov spaces), shearlet dilation groups (Kutyniok, Dahlke, Steidl, Teschke; Dahlke, Häuser, Teschke)

Strategy

• Verify prerequisites for coorbit theory (Feichtinger/Gröchenig). This provides access to:

Main objective

Establish notion of nice wavelets for higher-dimensional wavelet transforms, with dilations coming from a suitable matrix group, the dilation group. Previously studied for: Similitude groups (\rightsquigarrow isotropic Besov spaces), shearlet dilation groups (Kutyniok, Dahlke, Steidl, Teschke; Dahlke, Häuser, Teschke)

- Verify prerequisites for coorbit theory (Feichtinger/Gröchenig). This provides access to:
 - Consistent notion of sparse signals, via associated function spaces

Main objective

Establish notion of nice wavelets for higher-dimensional wavelet transforms, with dilations coming from a suitable matrix group, the dilation group. Previously studied for: Similitude groups (\rightsquigarrow isotropic Besov spaces), shearlet dilation groups (Kutyniok, Dahlke, Steidl, Teschke; Dahlke, Häuser, Teschke)

- Verify prerequisites for coorbit theory (Feichtinger/Gröchenig). This provides access to:
 - Consistent notion of sparse signals, via associated function spaces
 - A related definition of nice wavelets

Main objective

Establish notion of nice wavelets for higher-dimensional wavelet transforms, with dilations coming from a suitable matrix group, the dilation group. Previously studied for: Similitude groups (\rightsquigarrow isotropic Besov spaces), shearlet dilation groups (Kutyniok, Dahlke, Steidl, Teschke; Dahlke, Häuser, Teschke)

- Verify prerequisites for coorbit theory (Feichtinger/Gröchenig). This provides access to:
 - Consistent notion of sparse signals, via associated function spaces
 - A related definition of nice wavelets
- Need to show: Nice wavelets exist!

Main objective

Establish notion of nice wavelets for higher-dimensional wavelet transforms, with dilations coming from a suitable matrix group, the dilation group. Previously studied for: Similitude groups (\rightsquigarrow isotropic Besov spaces), shearlet dilation groups (Kutyniok, Dahlke, Steidl, Teschke; Dahlke, Häuser, Teschke)

- Verify prerequisites for coorbit theory (Feichtinger/Gröchenig). This provides access to:
 - Consistent notion of sparse signals, via associated function spaces
 - A related definition of nice wavelets
- Need to show: Nice wavelets exist!
- Better yet: Identify easily accessible classes of nice wavelets

Main objective

Establish notion of nice wavelets for higher-dimensional wavelet transforms, with dilations coming from a suitable matrix group, the dilation group. Previously studied for: Similitude groups (\rightsquigarrow isotropic Besov spaces), shearlet dilation groups (Kutyniok, Dahlke, Steidl, Teschke; Dahlke, Häuser, Teschke)

- Verify prerequisites for coorbit theory (Feichtinger/Gröchenig). This provides access to:
 - Consistent notion of sparse signals, via associated function spaces
 - A related definition of nice wavelets
- Need to show: Nice wavelets exist!
- Better yet: Identify easily accessible classes of nice wavelets (~> bandlimited Schwartz functions, vanishing moment criteria)

Overview

1) Introduction: Nice wavelets and sparse signals in dimension one

2 Continuous wavelet transforms over general dilation groups

3 Coorbit theory: A consistent wavelet approximation theory

4 Wavelet coorbit spaces over general dilation groups

5 Constructing compactly supported nice wavelets

Towards an understanding of coorbit spaces

RIVITH 📰

ORWTH

										A CONTRACT OF A
		4	▶	< 🗗	⊩	$< \equiv$	• •	\equiv \rightarrow	Ξ	$\mathcal{O} \land \mathcal{O}$
en)	Wavelet approximation theory				C	IRM, I	Vov	. 2016	ز	10 / 38

H. Führ (RWTH Aachen)

H. Führ (RWTH Aachen)

• $H < \operatorname{GL}(d, \mathbb{R})$ a closed matrix group

ORWTH

)	Wavelet approximation theory				CIF	RM,	Nov	. 20	016		10 / 3	8
		< □	Þ	• @	Þ	< ≣	Þ - 4	Ξ	Þ	_	うく	

- $H < \operatorname{GL}(d, \mathbb{R})$ a closed matrix group
- $G = \mathbb{R}^d \rtimes H$, the affine group generated by H and translations. As a set, $G = \mathbb{R}^n \times H$, with group law

$$(x,h)(y,g) = (x + hy, hg)$$
.

- $H < \operatorname{GL}(d, \mathbb{R})$ a closed matrix group
- G = ℝ^d ⋊ H, the affine group generated by H and translations. As a set, G = ℝⁿ × H, with group law

$$(x,h)(y,g) = (x + hy, hg) .$$

• Quasi-regular representation of G on $L^2(\mathbb{R}^d)$, acting via

$$(\pi(x,h)f)(y) = |\det(h)|^{-1/2}f(h^{-1}(y-x))$$
.

- $H < \operatorname{GL}(d, \mathbb{R})$ a closed matrix group
- $G = \mathbb{R}^d \rtimes H$, the affine group generated by H and translations. As a set, $G = \mathbb{R}^n \times H$, with group law

$$(x,h)(y,g) = (x+hy,hg) .$$

• Quasi-regular representation of G on $L^2(\mathbb{R}^d)$, acting via

$$(\pi(x,h)f)(y) = |\det(h)|^{-1/2}f(h^{-1}(y-x))$$
.

• Continuous wavelet transform: Given suitable $\psi \in L^2(\mathbb{R}^d)$ and $f \in L^2(\mathbb{R}^d)$, let

$$\mathcal{W}_{\psi}f: G \to \mathbb{C} \ , \ \mathcal{W}_{\psi}f(x,h) = \langle f, \pi(x,h)\psi \rangle$$

H. Führ (RWTH Aachen)

CIRM, Nov. 2016 10 / 38

(CRNTH) CRNTH) CRN

H. Führ	(RWTH	Aachen)
---------	-------	---------

Wavelet approximation theory

CIRM, Nov. 2016	11	/ 38
-----------------	----	------

Definition

Definition

H. Führ (RWTH Aachen)

ψ ∈ L²(ℝ^d) is called admissible if W_ψ : L²(ℝ^d) → L²(G) isometrically.

Definition

- ψ ∈ L²(ℝ^d) is called admissible if W_ψ : L²(ℝ^d) → L²(G) isometrically.
- π is called square-integrable if π is irreducible and has an admissible vector.

Definition

- ψ ∈ L²(ℝ^d) is called admissible if W_ψ : L²(ℝ^d) → L²(G) isometrically.
- π is called square-integrable if π is irreducible and has an admissible vector. If π is square-integrable, we call H irreducibly admissible.

Definition

- ψ ∈ L²(ℝ^d) is called admissible if W_ψ : L²(ℝ^d) → L²(G) isometrically.
- π is called square-integrable if π is irreducible and has an admissible vector. If π is square-integrable, we call *H* irreducibly admissible.

Wavelet inversion

If ψ is admissible, we obtain the wavelet inversion formula

$$f = \int_{\mathcal{G}} \mathcal{W}_{\psi} f(x,h) \ \pi(x,h) \psi \ d(x,h) \ .$$

with weak-sense convergence.

H. Führ (RWTH Aachen)

ORWTH

						×.	
	< □ →	<₽	\vdash	$\equiv +$	${}^{\scriptscriptstyle (4)} = {}^{\scriptscriptstyle (2)} = {}^{\scriptscriptstyle (4)}$	≣	$\mathcal{O} \land \mathcal{O}$
Wavelet approximation theory			CIRI	M, No	ov. 2016	5	12 / 38

H. Führ (RWTH Aachen)

• Wavelet transform of $f \in L^2(\mathbb{R}^d)$ is a family of convolution products,

$$\mathcal{W}_{\psi}f(x,h) = \left(f * \pi(0,h)\psi^*\right)(x)$$
.

ORWTH

Wavelet approximation theory				CI	RM	I, N	ov.	20	016		12 /	38
	4	►	< 🗗	►	<	≣ >		E	►	E	9	9, (?~

• Wavelet transform of $f \in \mathrm{L}^2(\mathbb{R}^d)$ is a family of convolution products,

$$\mathcal{W}_{\psi}f(x,h) = \left(f*\pi(0,h)\psi^*\right)(x)$$
 .

• Dual action of H on \mathbb{R}^d is defined by

$$H \times \mathbb{R}^d \ni (h,\xi) \mapsto h^T \xi$$
.

• Wavelet transform of $f \in L^2(\mathbb{R}^d)$ is a family of convolution products,

$$\mathcal{W}_{\psi}f(x,h) = \left(f * \pi(0,h)\psi^*\right)(x)$$
.

• Dual action of H on \mathbb{R}^d is defined by

$$H \times \mathbb{R}^d \ni (h, \xi) \mapsto h^T \xi$$
.

It describes influence of dilation on frequency content:

$$\mathcal{F}(\pi(0,h)\psi^*)(\xi) = |\det(h)|^{1/2} \overline{\mathcal{F}(\psi)(h^{\mathsf{T}}\xi)}$$

ORWTH

- b

• Wavelet transform of $f \in \mathrm{L}^2(\mathbb{R}^d)$ is a family of convolution products,

$$\mathcal{W}_{\psi}f(x,h) = \left(f * \pi(0,h)\psi^*\right)(x)$$
.

• Dual action of H on \mathbb{R}^d is defined by

$$H \times \mathbb{R}^d \ni (h, \xi) \mapsto h^T \xi$$
.

It describes influence of dilation on frequency content:

$$\mathcal{F}(\pi(0,h)\psi^*)(\xi) = |\det(h)|^{1/2} \overline{\mathcal{F}(\psi)(h^{\mathsf{T}}\xi)}$$

• Informal interpretation of \mathcal{W}_{ψ} : The transform acts as a filter bank labelled by elements of h, the frequencies associated to the "channel" ψ_h are contained in $h^{-T} \operatorname{supp}(\widehat{\psi})$.

H. Führ (RWTH Aachen)

Square-integrable representations and open dual orbits

ORWTH

Wavelet approximation theory			C	SIRM	1, N	ov.	20	16		13 /	38
	<	Þ	< ₫ >		≣⇒	4	$\equiv 0$	-	Ē	5	$\sim \mathbb{C}$

H. Führ (RWTH Aachen)

Square-integrable representations and open dual orbits

Theorem (Bernier/Taylor, 1996; HF, 2010)

H is irreducibly admissible iff there exists a single open orbit

$$\mathcal{O} = H^T \xi_0 = \{ h^T \xi_0 : h \in H \}$$

under the dual action, with the additional property that the associated stabilizer

$$H_{\xi_0} = \{h \in H ; h^T \xi_0 = \xi_0\} \subset H$$

is compact.

Square-integrable representations and open dual orbits

Theorem (Bernier/Taylor, 1996; HF, 2010)

H is irreducibly admissible iff there exists a single open orbit

$$\mathcal{O} = H^T \xi_0 = \{ h^T \xi_0 : h \in H \}$$

under the dual action, with the additional property that the associated stabilizer

$$H_{\xi_0} = \{h \in H ; h^T \xi_0 = \xi_0\} \subset H$$

is compact.

H. Eüh

Standing assumption

From now on: H is assumed irreducibly admissible.

			ORWTH
	4		$\equiv \mathcal{O} \land \mathcal{O}$
ır (RWTH Aachen)	Wavelet approximation theory	CIRM, Nov. 2016	13 / 38

Two-dimensional examples

Two-dimensional examples

Diagonal group:

$$H = \left\{ \left(egin{array}{cc} a & 0 \ 0 & b \end{array}
ight) : ab
eq 0
ight\}$$

Two-dimensional examples

Diagonal group:

$$H = \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & b \end{array} \right) : ab \neq 0 \right\}$$

② Similitude group:

$$H = \left\{ \left(\begin{array}{cc} a & b \\ -b & a \end{array} \right) : a^2 + b^2 \neq 0 \right\}$$

Two-dimensional examples

Diagonal group:

$$H = \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & b \end{array} \right) : ab \neq 0 \right\}$$

② Similitude group:

$$H = \left\{ \left(\begin{array}{cc} a & b \\ -b & a \end{array} \right) : a^2 + b^2 \neq 0 \right\}$$

3 Shearlet group(s):

$$H_c = \left\{ \pm \left(egin{array}{cc} a & b \\ 0 & a^c \end{array}
ight) : a
eq 0
ight\} \ (c \in \mathbb{R})$$

(c = 1/2: Kutyniok/Labate/Dahlke/Steidl/Teschke ...)

Two-dimensional examples

Diagonal group:

$$H = \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & b \end{array} \right) : ab \neq 0 \right\}$$

② Similitude group:

$$H = \left\{ \left(\begin{array}{cc} a & b \\ -b & a \end{array} \right) : a^2 + b^2 \neq 0 \right\}$$

3 Shearlet group(s):

$$H_{c} = \left\{ \pm \left(\begin{array}{cc} a & b \\ 0 & a^{c} \end{array} \right) : a \neq 0 \right\} \quad (c \in \mathbb{R})$$

(c = 1/2: Kutyniok/Labate/Dahlke/Steidl/Teschke ...)

Complete list in dimension two, up to conjugacy.

H. Führ (RWTH Aachen)

ORWTH

Wavelet approximation theory		CI	RM, No	ov. 2016	15	/ 38
	${} \mathrel{\triangleleft} \hspace{.1in} \square \hspace{.1in} \mathrel{\triangleright}$	< 🗇 →	${}^{<} \equiv {}^{\flat}$	$\leftarrow \equiv +$	Ē	000

H. Führ (RWTH Aachen)

• (B. Currey, HF, V. Oussa:) A complete list of irreducibly admissible matrix groups in dimension three, up to conjugation, consists of

H. Führ (RWTH Aachen)

 (B. Currey, HF, V. Oussa:) A complete list of irreducibly admissible matrix groups in dimension three, up to conjugation, consists of
 seven isolated cases.

- (B. Currey, HF, V. Oussa:) A complete list of irreducibly admissible matrix groups in dimension three, up to conjugation, consists of
 - seven isolated cases,
 - seven one-parameter families of groups,

- (B. Currey, HF, V. Oussa:) A complete list of irreducibly admissible matrix groups in dimension three, up to conjugation, consists of
 - seven isolated cases,
 - seven one-parameter families of groups,
 - six two-parameter families of groups.

- (B. Currey, HF, V. Oussa:) A complete list of irreducibly admissible matrix groups in dimension three, up to conjugation, consists of
 - seven isolated cases,
 - seven one-parameter families of groups,
 - six two-parameter families of groups.
- Well-understood classes in arbitrary dimensions, each contributing infinitely many new cases, are

- (B. Currey, HF, V. Oussa:) A complete list of irreducibly admissible matrix groups in dimension three, up to conjugation, consists of
 - seven isolated cases,
 - seven one-parameter families of groups,
 - six two-parameter families of groups.
- Well-understood classes in arbitrary dimensions, each contributing infinitely many new cases, are abelian dilation groups,

- (B. Currey, HF, V. Oussa:) A complete list of irreducibly admissible matrix groups in dimension three, up to conjugation, consists of
 - seven isolated cases,
 - seven one-parameter families of groups,
 - six two-parameter families of groups.
- Well-understood classes in arbitrary dimensions, each contributing infinitely many new cases, are abelian dilation groups, generalized shearlet dilation groups.

Overview

1) Introduction: Nice wavelets and sparse signals in dimension one

2 Continuous wavelet transforms over general dilation groups

3 Coorbit theory: A consistent wavelet approximation theory

- 4 Wavelet coorbit spaces over general dilation groups
- 5 Constructing compactly supported nice wavelets
 - Towards an understanding of coorbit spaces

b 4 = b

A sketch of coorbit theory

Elements of coorbit theory

<ロト < 団ト < 巨ト < 巨ト</p>

э

A sketch of coorbit theory

Elements of coorbit theory

• Blueprint: Wavelet characterization of homogeneous Besov spaces

э

A sketch of coorbit theory

Elements of coorbit theory

- Blueprint: Wavelet characterization of homogeneous Besov spaces
- Fix a Banach space Y of functions on G (solid, two-sided invariant).

< 口 > < 同 >

< ∃ >

Э

Elements of coorbit theory

- Blueprint: Wavelet characterization of homogeneous Besov spaces •
- Fix a Banach space Y of functions on G (solid, two-sided invariant). E.g., $Y = L^{p}(G), p < 2$.

< 口 > < 同 >

< ∃ >

Elements of coorbit theory

- Blueprint: Wavelet characterization of homogeneous Besov spaces
- Fix a Banach space Y of functions on G (solid, two-sided invariant). E.g., $Y = L^{p}(G)$, p < 2.
- Pick a suitable analyzing vector $\psi \in \mathrm{L}^2(\mathbb{R}^d)$

- - ∃ →

< 口 > < 同 >

Elements of coorbit theory

- Blueprint: Wavelet characterization of homogeneous Besov spaces
- Fix a Banach space Y of functions on G (solid, two-sided invariant). E.g., $Y = L^{p}(G)$, p < 2.
- Pick a suitable analyzing vector $\psi \in \mathrm{L}^2(\mathbb{R}^d)$

• Coorbit space norm on $L^2(\mathbb{R}^d)$:

$$\|f\|_{CoY} = \|\mathcal{W}_{\psi}f\|_{Y} \quad .$$

- - ∃ →

< 口 > < 同 >

Elements of coorbit theory

- Blueprint: Wavelet characterization of homogeneous Besov spaces
- Fix a Banach space Y of functions on G (solid, two-sided invariant). E.g., $Y = L^{p}(G)$, p < 2.
- Pick a suitable analyzing vector $\psi \in \mathrm{L}^2(\mathbb{R}^d)$

• Coorbit space norm on $L^2(\mathbb{R}^d)$:

$$\|f\|_{CoY} = \|\mathcal{W}_{\psi}f\|_{Y} \quad .$$

• Define CoY as (completion of) $\{g \in L^2(\mathbb{R}^d) : \|g\|_{CoY} < \infty\}$.

- - ∃ →

< 口 > < 同 >

Elements of coorbit theory

- Blueprint: Wavelet characterization of homogeneous Besov spaces
- Fix a Banach space Y of functions on G (solid, two-sided invariant). E.g., $Y = L^{p}(G)$, p < 2.
- Pick a suitable analyzing vector $\psi \in \mathrm{L}^2(\mathbb{R}^d)$

• Coorbit space norm on $L^2(\mathbb{R}^d)$:

$$\|f\|_{CoY} = \|\mathcal{W}_{\psi}f\|_{Y} \quad .$$

- Define CoY as (completion of) $\{g \in L^2(\mathbb{R}^d) : \|g\|_{CoY} < \infty\}$.
- Main issues addressed by coorbit theory:

I > <
 I >
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

3

Elements of coorbit theory

- Blueprint: Wavelet characterization of homogeneous Besov spaces
- Fix a Banach space Y of functions on G (solid, two-sided invariant). E.g., $Y = L^{p}(G)$, p < 2.
- Pick a suitable analyzing vector $\psi \in L^2(\mathbb{R}^d)$

• Coorbit space norm on $L^2(\mathbb{R}^d)$:

$$\|f\|_{CoY} = \|\mathcal{W}_{\psi}f\|_{Y}$$
 .

Define *CoY* as (completion of) $\{g \in L^2(\mathbb{R}^d) : ||g||_{CoY} < \infty\}$. •

• Main issues addressed by coorbit theory:

• Consistency: When is the norm independent of ψ ?

▶ < Ξ ▶</p>

I > <
 I >
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

Elements of coorbit theory

- Blueprint: Wavelet characterization of homogeneous Besov spaces
- Fix a Banach space Y of functions on G (solid, two-sided invariant). E.g., $Y = L^{p}(G)$, p < 2.
- Pick a suitable analyzing vector $\psi \in \mathrm{L}^2(\mathbb{R}^d)$

• Coorbit space norm on $L^2(\mathbb{R}^d)$:

$$\|f\|_{CoY} = \|\mathcal{W}_{\psi}f\|_{Y}$$
 .

- Define CoY as (completion of) $\{g \in L^2(\mathbb{R}^d) : \|g\|_{CoY} < \infty\}$.
- Main issues addressed by coorbit theory:
 - Consistency: When is the norm independent of ψ ? (I.e., is there a notion of nice wavelets?)

H. Führ (RWTH Aachen)

Wavelet approximation theory

I > <
 I >
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

3

Elements of coorbit theory

- Blueprint: Wavelet characterization of homogeneous Besov spaces
- Fix a Banach space Y of functions on G (solid, two-sided invariant). E.g., $Y = L^{p}(G)$, p < 2.
- Pick a suitable analyzing vector $\psi \in \mathrm{L}^2(\mathbb{R}^d)$
- Coorbit space norm on $L^2(\mathbb{R}^d)$:

$$\|f\|_{CoY} = \|\mathcal{W}_{\psi}f\|_{Y}$$
 .

- Define CoY as (completion of) $\{g \in L^2(\mathbb{R}^d) : \|g\|_{CoY} < \infty\}$.
- Main issues addressed by coorbit theory:
 - Consistency: When is the norm independent of ψ? (I.e., is there a notion of nice wavelets?)
 - Discretization: When can the norm be expressed in terms of a discrete set of sampled wavelet coefficients?

3

Definition

Let v denote the control weight for $L^{p}(G)$, given by

 $v(x,h) = \max(1,\Delta_G(h)).$

Definition

Let v denote the control weight for $L^{p}(G)$, given by

$$v(x,h) = \max(1,\Delta_G(h)).$$

 $\psi \in L^2(\mathbb{R}^d)$ is a nice wavelet with respect to $L^p(G)$ if $\mathcal{W}_{\psi}\psi \in W^R(L^{\infty}, L^1_{\nu})$,

Definition

Let v denote the control weight for $L^{p}(G)$, given by

$$v(x,h) = \max(1,\Delta_G(h)).$$

 $\psi \in L^2(\mathbb{R}^d)$ is a nice wavelet with respect to $L^p(G)$ if $\mathcal{W}_{\psi}\psi \in W^R(L^{\infty}, L^1_{\nu})$, i.e., the function

$$G \ni (x,h) \mapsto \sup_{(y,g) \in U} |\mathcal{W}_{\psi}\psi((x,h)(y,g))| \in \mathbb{R}^+$$

is in $L^1_{\nu}(G)$, for some compact neighborhood $U \subset G$ of the identity.

Definition

Let v denote the control weight for $L^{p}(G)$, given by

$$v(x,h) = \max(1,\Delta_G(h)).$$

 $\psi \in L^2(\mathbb{R}^d)$ is a nice wavelet with respect to $L^p(G)$ if $\mathcal{W}_{\psi}\psi \in W^R(L^{\infty}, L^1_{\nu})$, i.e., the function

$$G \ni (x,h) \mapsto \sup_{(y,g) \in U} |\mathcal{W}_{\psi}\psi((x,h)(y,g))| \in \mathbb{R}^+$$

is in $L^1_{\nu}(G)$, for some compact neighborhood $U \subset G$ of the identity. The set of nice wavelets is denoted by \mathcal{B}_{ν} .

Definition

Let v denote the control weight for $L^{p}(G)$, given by

$$v(x,h) = \max(1,\Delta_G(h)).$$

 $\psi \in L^2(\mathbb{R}^d)$ is a nice wavelet with respect to $L^p(G)$ if $\mathcal{W}_{\psi}\psi \in W^R(L^{\infty}, L^1_{\nu})$, i.e., the function

$$G \ni (x,h) \mapsto \sup_{(y,g) \in U} |\mathcal{W}_{\psi}\psi((x,h)(y,g))| \in \mathbb{R}^+$$

is in $L^1_{\nu}(G)$, for some compact neighborhood $U \subset G$ of the identity. The set of nice wavelets is denoted by \mathcal{B}_{ν} .

Recall main challenge

Coorbit theory is applicable whenever there exist nice wavelets.

H. Führ (RWTH Aachen)

Wavelet approximation theory

Definition

Let v denote the control weight for $L^{p}(G)$, given by

$$v(x,h) = \max(1,\Delta_G(h)).$$

 $\psi \in L^2(\mathbb{R}^d)$ is a nice wavelet with respect to $L^p(G)$ if $\mathcal{W}_{\psi}\psi \in W^R(L^{\infty}, L^1_{\nu})$, i.e., the function

$$G \ni (x,h) \mapsto \sup_{(y,g) \in U} |\mathcal{W}_{\psi}\psi((x,h)(y,g))| \in \mathbb{R}^+$$

is in $L^1_{\nu}(G)$, for some compact neighborhood $U \subset G$ of the identity. The set of nice wavelets is denoted by \mathcal{B}_{ν} .

Recall main challenge

Coorbit theory is applicable whenever there exist nice wavelets. Desirable: Explicit criteria for nice wavelets.

H. Führ (RWTH Aachen)

Wavelet approximation theory

Theorem (Feichtinger/Gröchenig)

Let $1 \le p \le 2$. The following are equivalent, for any $f \in L^2(\mathbb{R}^d)$:

< □ > < 何 >

Theorem (Feichtinger/Gröchenig)

Let $1 \leq p \leq 2$. The following are equivalent, for any $f \in L^2(\mathbb{R}^d)$: (a) $\mathcal{W}_{\psi}f \in L^p(G)$, for some (equivalently: any) $0 \neq \psi \in \mathcal{B}_{v}$.

 $\exists \rightarrow$

< □ > < 何 >

Theorem (Feichtinger/Gröchenig)

Let $1 \leq p \leq 2$. The following are equivalent, for any $f \in L^2(\mathbb{R}^d)$:

- (a) $W_{\psi}f \in L^{p}(G)$, for some (equivalently: any) $0 \neq \psi \in \mathcal{B}_{v}$.
- (b) $(\langle f, \pi(z)\psi \rangle)_{z \in Z} \in \ell^p(Z)$, for some (equivalently: any) $0 \neq \psi \in \mathcal{B}_v$ and all (right) uniformly discrete, sufficiently dense subsets $Z \subset G$.

Theorem (Feichtinger/Gröchenig)

Let $1 \leq p \leq 2$. The following are equivalent, for any $f \in L^2(\mathbb{R}^d)$:

- (a) $\mathcal{W}_{\psi}f \in L^{p}(G)$, for some (equivalently: any) $0 \neq \psi \in \mathcal{B}_{v}$.
- (b) $(\langle f, \pi(z)\psi \rangle)_{z \in Z} \in \ell^p(Z)$, for some (equivalently: any) $0 \neq \psi \in \mathcal{B}_v$ and all (right) uniformly discrete, sufficiently dense subsets $Z \subset G$.
- (c) For some (equivalently: any) $0 \neq \psi \in B_v$ and all (right) uniformly discrete, sufficiently dense subsets $Z \subset G$:

$$f = \sum_{z \in Z} c_z \pi(z) \psi$$
,

with coefficients $(c_z)_{z\in Z} \in \ell^p(Z)$ linearly depending on f.

< □ > < 何 >

Theorem (Feichtinger/Gröchenig)

Let $1 \le p \le 2$. The following are equivalent, for any $f \in L^2(\mathbb{R}^d)$:

- (a) $\mathcal{W}_{\psi}f \in L^{p}(G)$, for some (equivalently: any) $0 \neq \psi \in \mathcal{B}_{v}$.
- (b) $(\langle f, \pi(z)\psi \rangle)_{z \in \mathbb{Z}} \in \ell^p(\mathbb{Z})$, for some (equivalently: any) $0 \neq \psi \in \mathcal{B}_v$ and all (right) uniformly discrete, sufficiently dense subsets $Z \subset G$.
- (c) For some (equivalently: any) $0 \neq \psi \in \mathcal{B}_{v}$ and all (right) uniformly discrete, sufficiently dense subsets $Z \subset G$:

$$f = \sum_{z \in Z} c_z \pi(z) \psi$$
,

with coefficients $(c_z)_{z \in Z} \in \ell^p(Z)$ linearly depending on f. Here the series converges both in $\|\cdot\|_2$ and $\|\cdot\|_{Co(L^p)}$.

H. Führ (RWTH Aachen)

Image: A market in the second seco

Theorem (Feichtinger/Gröchenig)

Let $1 \leq p \leq 2$. The following are equivalent, for any $f \in L^2(\mathbb{R}^d)$:

- (a) $\mathcal{W}_{\psi}f \in L^{p}(G)$, for some (equivalently: any) $0 \neq \psi \in \mathcal{B}_{v}$.
- (b) $(\langle f, \pi(z)\psi \rangle)_{z \in Z} \in \ell^p(Z)$, for some (equivalently: any) $0 \neq \psi \in \mathcal{B}_v$ and all (right) uniformly discrete, sufficiently dense subsets $Z \subset G$.
- (c) For some (equivalently: any) $0 \neq \psi \in B_v$ and all (right) uniformly discrete, sufficiently dense subsets $Z \subset G$:

$$f = \sum_{z \in Z} c_z \pi(z) \psi$$
,

with coefficients $(c_z)_{z \in Z} \in \ell^p(Z)$ linearly depending on f. Here the series converges both in $\|\cdot\|_2$ and $\|\cdot\|_{Co(L^p)}$. Also: $Co(L^p)$ -norm is equivalent to norm on discrete coefficients!

(日) (同) (三) (三)

Theorem (Feichtinger/Gröchenig)

Let $1 \leq p \leq 2$. The following are equivalent, for any $f \in L^2(\mathbb{R}^d)$:

- (a) $\mathcal{W}_{\psi}f \in L^{p}(G)$, for some (equivalently: any) $0 \neq \psi \in \mathcal{B}_{v}$.
- (b) $(\langle f, \pi(z)\psi \rangle)_{z \in Z} \in \ell^p(Z)$, for some (equivalently: any) $0 \neq \psi \in \mathcal{B}_v$ and all (right) uniformly discrete, sufficiently dense subsets $Z \subset G$.
- (c) For some (equivalently: any) $0 \neq \psi \in B_v$ and all (right) uniformly discrete, sufficiently dense subsets $Z \subset G$:

$$f = \sum_{z \in Z} c_z \pi(z) \psi$$
,

with coefficients $(c_z)_{z \in Z} \in \ell^p(Z)$ linearly depending on f. Here the series converges both in $\|\cdot\|_2$ and $\|\cdot\|_{Co(L^p)}$. Also: $Co(L^p)$ -norm is equivalent to norm on discrete coefficients! I.e., $Co(L^p)$ is a consistently defined space of sparse signals.

H. Führ (RWTH Aachen)

< 17 b

Overview

1) Introduction: Nice wavelets and sparse signals in dimension one

- 2) Continuous wavelet transforms over general dilation groups
- 3 Coorbit theory: A consistent wavelet approximation theory

4 Wavelet coorbit spaces over general dilation groups

- 5 Constructing compactly supported nice wavelets
- Towards an understanding of coorbit spaces

Recall setup (for the remainder)

H. Führ (RWTH Aachen)

Recall setup (for the remainder)

• *H* is irreducibly admissible.

Recall setup (for the remainder)

- *H* is irreducibly admissible.
- The associated open dual orbit is denoted *O* = H^Tξ.
 Its complement is denoted *O^c*, it is the blind spot of the wavelet transform.

< ∃ >

Recall setup (for the remainder)

- *H* is irreducibly admissible.
- The associated open dual orbit is denoted *O* = H^Tξ.
 Its complement is denoted *O^c*, it is the blind spot of the wavelet transform.

• Looking for nice wavelets w.r.t. L^p.

< ∃ >

Recall setup (for the remainder)

- *H* is irreducibly admissible.
- The associated open dual orbit is denoted *O* = H^Tξ.
 Its complement is denoted *O^c*, it is the blind spot of the wavelet transform.
- Looking for nice wavelets w.r.t. L^p.

Theorem (HF, '12)

Under the standing assumptions, $Co(L^p)$ is well-defined.

< ∃ >

Recall setup (for the remainder)

- *H* is irreducibly admissible.
- The associated open dual orbit is denoted *O* = H^Tξ.
 Its complement is denoted *O^c*, it is the blind spot of the wavelet transform.
- Looking for nice wavelets w.r.t. L^p.

Theorem (HF, '12)

Under the standing assumptions, $Co(L^p)$ is well-defined. Let $\mathcal{F}^{-1}C_c^{\infty}(\mathcal{O})$ denote the set of bandlimited Schwartz functions with Fourier support contained in \mathcal{O} .

Recall setup (for the remainder)

- *H* is irreducibly admissible.
- The associated open dual orbit is denoted *O* = H^Tξ.
 Its complement is denoted *O^c*, it is the blind spot of the wavelet transform.
- Looking for nice wavelets w.r.t. L^p.

Theorem (HF, '12)

Under the standing assumptions, $Co(L^p)$ is well-defined. Let $\mathcal{F}^{-1}C_c^{\infty}(\mathcal{O})$ denote the set of bandlimited Schwartz functions with Fourier support contained in \mathcal{O} . Then

$$\mathcal{F}^{-1}\mathcal{C}^\infty_c(\mathcal{O})\subset \mathcal{B}_v$$
 .

▶ < ∃ >

CIRM, Nov. 2016

Overview

1) Introduction: Nice wavelets and sparse signals in dimension one

- 2 Continuous wavelet transforms over general dilation groups
- 3 Coorbit theory: A consistent wavelet approximation theory
- 4 Wavelet coorbit spaces over general dilation groups
- 5 Constructing compactly supported nice wavelets
 - Towards an understanding of coorbit spaces

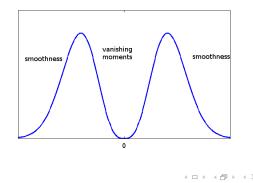
Reminder: Nice wavelets in dimension one

Desirable properties of wavelets

A nice wavelet $\psi \in L^2(\mathbb{R})$ typically has three properties: Fast decay, smoothness, vanishing moments.

Concisely: Nice wavelets have good time-frequency localization.

(Note: Frequency-side localization is understood away from zero.)



Vanishing moments and wavelet coefficient decay

Assumptions on nice wavelet ψ guarantee fast decay of $\mathcal{W}_{\psi}\psi$:

$$|\mathcal{W}_\psi\psi(x,s)| \leq \sum_{j < \ell} \left\| \partial^j \left(\widehat{\psi} \cdot \overline{\widehat{\psi}(s \cdot)}
ight)
ight\|_1 |s|^{-1/2} (1 + |x|)^{-\ell}$$

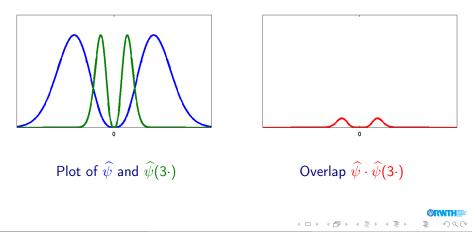
ORWTH

< 口 > < 同 >

Vanishing moments and wavelet coefficient decay

Assumptions on nice wavelet ψ guarantee fast decay of $\mathcal{W}_{\psi}\psi$:

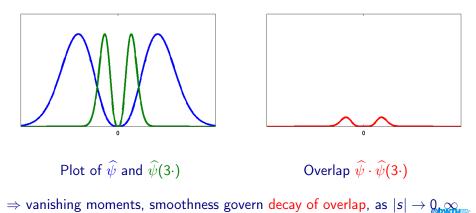
$$|\mathcal{W}_{\psi}\psi(x,s)| \leq \sum_{j < \ell} \left\| \partial^{j} \left(\widehat{\psi} \cdot \overline{\widehat{\psi}(s \cdot)} \right) \right\|_{1} |s|^{-1/2} (1 + |x|)^{-\ell}$$



Vanishing moments and wavelet coefficient decay

Assumptions on nice wavelet ψ guarantee fast decay of $\mathcal{W}_{\psi}\psi$:

$$|\mathcal{W}_{\psi}\psi(x,s)| \leq \sum_{j < \ell} \left\| \partial^{j} \left(\widehat{\psi} \cdot \overline{\widehat{\psi}(s \cdot)} \right) \right\|_{1} |s|^{-1/2} (1 + |x|)^{-\ell}$$



H. Führ (RWTH Aachen)

Wavelet approximation theory

CIRM, Nov. 2016 24 / 38

Generalizing this to higher dimensions

Central idea

Generalizing this to higher dimensions

Central idea

• Characterize nice wavelets in terms of smoothness,

Central idea

• Characterize nice wavelets in terms of smoothness, fast decay,

Central idea

• Characterize nice wavelets in terms of smoothness, fast decay, vanishing moments.

Central idea

• Characterize nice wavelets in terms of smoothness, fast decay, vanishing moments. The last property has to reflect the choice of dilation group.

Central idea

- Characterize nice wavelets in terms of smoothness, fast decay, vanishing moments. The last property has to reflect the choice of dilation group.
- Right notion of vanishing moments turns out to be: Speed of decay $\widehat{\psi}(\xi) \to 0$, as $\xi \to \mathcal{O}^c$, the blind spot.

25 / 38

Central idea

- Characterize nice wavelets in terms of smoothness, fast decay, vanishing moments. The last property has to reflect the choice of dilation group.
- Right notion of vanishing moments turns out to be: Speed of decay $\widehat{\psi}(\xi) \to 0$, as $\xi \to \mathcal{O}^c$, the blind spot.
- A first indicator that this works:

Central idea

- Characterize nice wavelets in terms of smoothness, fast decay, vanishing moments. The last property has to reflect the choice of dilation group.
- Right notion of vanishing moments turns out to be: Speed of decay $\widehat{\psi}(\xi) \to 0$, as $\xi \to \mathcal{O}^c$, the blind spot.
- A first indicator that this works:

 $\mathcal{F}^{-1}\mathcal{C}^\infty_c(\mathcal{O})\subset \mathcal{B}_v$.

Central idea

- Characterize nice wavelets in terms of smoothness, fast decay, vanishing moments. The last property has to reflect the choice of dilation group.
- Right notion of vanishing moments turns out to be: Speed of decay $\widehat{\psi}(\xi) \to 0$, as $\xi \to \mathcal{O}^c$, the blind spot.
- A first indicator that this works:

$$\mathcal{F}^{-1}C^\infty_c(\mathcal{O})\subset \mathcal{B}_{v}$$
 .

Definition

Let $r \in \mathbb{N}$ be given. $f \in L^1(\mathbb{R}^d)$ has vanishing moments in \mathcal{O}^c of order r if all distributional derivatives $\partial^{\alpha} \widehat{f}$ with $|\alpha| < r$ are continuous functions, identically vanishing on \mathcal{O}^c .

イロト イポト イヨト イヨト

3

Fourier envelope

								ORWITH					
1	⊩	4	E	⊩	4	Ξ	Þ	≣	~ ~ ~				
	CIRM, Nov. 2016							26 / 38					

Fourier envelope

Definition

Let $\mathcal{O} \subset \mathbb{R}^d$ denote the dual orbit. Given $\xi \in \mathcal{O}$, let $\operatorname{dist}(\xi, \mathcal{O}^c)$ denote the euclidean distance of ξ to \mathcal{O}^c . Let

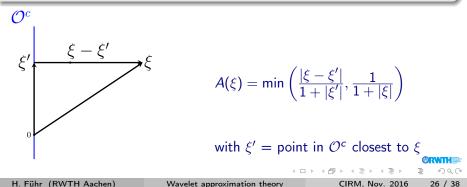
$$A(\xi) = \min\left(\frac{\operatorname{dist}(\xi, \mathcal{O}^c)}{1 + \sqrt{|\xi|^2 - \operatorname{dist}(\xi, \mathcal{O}^c)^2}}, \frac{1}{1 + |\xi|}\right)$$

Fourier envelope

Definition

Let $\mathcal{O} \subset \mathbb{R}^d$ denote the dual orbit. Given $\xi \in \mathcal{O}$, let $dist(\xi, \mathcal{O}^c)$ denote the euclidean distance of ξ to \mathcal{O}^c . Let

$$A(\xi) = \min\left(\frac{\operatorname{dist}(\xi, \mathcal{O}^c)}{1 + \sqrt{|\xi|^2 - \operatorname{dist}(\xi, \mathcal{O}^c)^2}}, \frac{1}{1 + |\xi|}\right)$$



Wavelet approximation theory

H. Führ (RWTH Aachen)

Wavelet approximation theory

Theorem (HF, '13; HF, R. Raisi Tousi, '14)

Fix $\xi_0 \in \mathcal{O}$, and define

$$A_H: H o \mathbb{R}^+ , A_H(h) = A(h^T \xi_0) .$$

ि ते भाग कि

3

(日) (同) (三) (三)

Theorem (HF, '13; HF, R. Raisi Tousi, '14)

Fix $\xi_0 \in \mathcal{O}$, and define

$$A_H: H \to \mathbb{R}^+$$
, $A_H(h) = A(h^T \xi_0)$.

Assume that for suitable $e_1, e_2, e_3 \ge 0$ the following hold:

$$\|h^{\pm 1}\|A_{H}(h)^{e_{1}} \leq 1$$

$$|\det(h^{\pm 1})|A_{H}(h)^{e_{2}} \leq 1$$
(1)
(2)

Image: A matrix of the second seco

$$\Delta_H(h^{\pm 1})A_H(h)^{e_3} \preceq 1$$
.

(3)

Theorem (HF, '13; HF, R. Raisi Tousi, '14)

Fix $\xi_0 \in \mathcal{O}$, and define

$$A_H: H \to \mathbb{R}^+$$
, $A_H(h) = A(h^T \xi_0)$.

Assume that for suitable $e_1, e_2, e_3 \ge 0$ the following hold:

$$\begin{split} \|h^{\pm 1}\|A_{H}(h)^{e_{1}} &\preceq 1 \\ \det(h^{\pm 1})|A_{H}(h)^{e_{2}} &\preceq 1 \\ \Delta_{H}(h^{\pm 1})A_{H}(h)^{e_{3}} &\preceq 1 . \end{split}$$
(1)

$$\Delta_H(h^{\perp 1})A_H(h)^{e_3} \leq 1$$
.

Define $r := |e_1(2s + 2d + 2) + \frac{5}{2}e_2 + 2e_3| + 2d + 2$.

H. Führ (RWTH Aachen)

ARANTE

Theorem (HF, '13; HF, R. Raisi Tousi, '14)

Fix $\xi_0 \in \mathcal{O}$, and define

$$A_H: H \to \mathbb{R}^+, A_H(h) = A(h^T \xi_0).$$

Assume that for suitable $e_1, e_2, e_3 \ge 0$ the following hold:

$$\|h^{\pm 1}\|\mathcal{A}_{H}(h)^{e_{1}} \leq 1 \tag{1}$$

$$\det(h^{\pm 1})|A_{H}(h)^{e_{2}} \leq 1$$

$$\Delta_{H}(h^{\pm 1})A_{H}(h)^{e_{3}} \leq 1 .$$
(2)
(2)
(3)

Define $r := \lfloor e_1(2s + 2d + 2) + \frac{5}{2}e_2 + 2e_3 \rfloor + 2d + 2$. Then any function ψ with $|\widehat{\psi}|_{r,r} < \infty$ and vanishing moments in \mathcal{O}^c of order r is in \mathcal{B}_v .

> <mark>े २००७</mark> २७ २०७ २७ / ३८

 $\prec \equiv \rightarrow$

Theorem (HF, '13; HF, R. Raisi Tousi, '14)

Fix $\xi_0 \in \mathcal{O}$, and define

$$A_H: H \to \mathbb{R}^+, A_H(h) = A(h^T \xi_0).$$

Assume that for suitable $e_1, e_2, e_3 \ge 0$ the following hold:

$$\|h^{\pm 1}\|A_{H}(h)^{e_{1}} \leq 1$$
(1)

$$\det(h^{\pm 1})|A_H(h)|^{e_2} \leq 1$$

$$\Delta_H(h^{\pm 1})A_H(h)^{e_3} \leq 1.$$

$$(3)$$

Define $r := \lfloor e_1(2s + 2d + 2) + \frac{5}{2}e_2 + 2e_3 \rfloor + 2d + 2$. Then any function ψ with $|\hat{\psi}|_{r,r} < \infty$ and vanishing moments in \mathcal{O}^c of order r is in \mathcal{B}_v . Here $|\cdot|_{r,r}$ denotes a Schwartz norm.

ORWTH

 $\exists \rightarrow$

ORWTH

		< □ →	《聞》 《臣》 《臣》	E
nen)	Wavelet approximation theory		CIRM, Nov. 2016	28 / 38

H. Führ (RWTH Aachen)

Lemma (HF, '98)

There exists a polynomial $P \in \mathbb{R}[X_1, \dots, X_d]$ such that

$$\mathcal{O}^c = \{\xi \in \mathbb{R}^d : P(\xi) = 0\}$$
.

Sar

Lemma (HF, '98)

There exists a polynomial $P \in \mathbb{R}[X_1, \dots, X_d]$ such that

$$\mathcal{O}^{c} = \{\xi \in \mathbb{R}^{d} : P(\xi) = 0\}$$
.

Construction procedure

Lemma (HF, '98)

There exists a polynomial $P \in \mathbb{R}[X_1, \dots, X_d]$ such that

$$\mathcal{O}^{c} = \{\xi \in \mathbb{R}^{d} : P(\xi) = 0\}$$
.

Construction procedure

• Define the partial differential operator $D_{\mathcal{O}} = P(-iD)$, where P is the polynomial from the previous lemma, and D stands for partial differentiation.

Lemma (HF, '98)

There exists a polynomial $P \in \mathbb{R}[X_1, \dots, X_d]$ such that

$$\mathcal{O}^{c} = \{\xi \in \mathbb{R}^{d} : P(\xi) = 0\}$$
.

Construction procedure

- Define the partial differential operator $D_{\mathcal{O}} = P(-iD)$, where P is the polynomial from the previous lemma, and D stands for partial differentiation.
- Let r be the required number of vanishing moments from the previous Theorem. Pick $f \in C_c^{\infty}(\mathbb{R}^d) \setminus \{0\}$, and define

$$\psi = \mathrm{D}^{r}_{\mathcal{O}}(f)$$
.

Lemma (HF, '98)

There exists a polynomial $P \in \mathbb{R}[X_1, \dots, X_d]$ such that

$$\mathcal{O}^{c} = \{\xi \in \mathbb{R}^{d} : P(\xi) = 0\}$$
.

Construction procedure

- Define the partial differential operator $D_{\mathcal{O}} = P(-iD)$, where P is the polynomial from the previous lemma, and D stands for partial differentiation.
- Let r be the required number of vanishing moments from the previous Theorem. Pick $f \in C_c^{\infty}(\mathbb{R}^d) \setminus \{0\}$, and define

$$\psi = \mathrm{D}^{r}_{\mathcal{O}}(f)$$
.

• Then $\psi \in C_c^{\infty}(\mathbb{R}^d)$ has vanishing moments of order r in \mathcal{O}^c .

Lemma (HF, '98)

There exists a polynomial $P \in \mathbb{R}[X_1, \dots, X_d]$ such that

$$\mathcal{O}^{\boldsymbol{c}} = \{ \xi \in \mathbb{R}^d : P(\xi) = 0 \} .$$

Construction procedure

- Define the partial differential operator $D_{\mathcal{O}} = P(-iD)$, where P is the polynomial from the previous lemma, and D stands for partial differentiation.
- Let r be the required number of vanishing moments from the previous Theorem. Pick $f \in C_c^{\infty}(\mathbb{R}^d) \setminus \{0\}$, and define

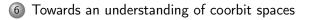
$$\psi = \mathrm{D}^{r}_{\mathcal{O}}(f)$$
.

- Then $\psi \in C^{\infty}_{c}(\mathbb{R}^{d})$ has vanishing moments of order r in \mathcal{O}^{c} .
- Clearly, picking $f \in C_c^k(\mathbb{R}^d)$, for k sufficiently large, is enough.

Overview

1) Introduction: Nice wavelets and sparse signals in dimension one

- 2 Continuous wavelet transforms over general dilation groups
- 3 Coorbit theory: A consistent wavelet approximation theory
- 4 Wavelet coorbit spaces over general dilation groups
- 5 Constructing compactly supported nice wavelets



Conclusions so far

ORWTH

Wavelet approximation theory		C	IRM	1, No	ov.	2016		30 / 38
	$\leftarrow \square \rightarrow$	- 4 🗗 →		≣ ►		≣ >	E	990

Conclusions so far

• Coorbit theory is applicable in a wide variety of cases.

< ∃ >

Conclusions so far

• Coorbit theory is applicable in a wide variety of cases. Explicit criteria for nice wavelets.

Conclusions so far

H. Führ (RWTH Aachen)

- Coorbit theory is applicable in a wide variety of cases. Explicit criteria for nice wavelets.
- Important consequence of consistency: Coorbit spaces depend (only) on the way the dilation group determines the wavelet system.

Conclusions so far

- Coorbit theory is applicable in a wide variety of cases. Explicit criteria for nice wavelets.
- Important consequence of consistency: Coorbit spaces depend (only) on the way the dilation group determines the wavelet system.

Questions

H. Führ (RW

									Ø	RWTH
		< □	Þ	<∂>	3	. ►	< 3	€ ►	Ē	$\mathcal{O} \land \mathcal{O}$
TH Aachen)	Wavelet approximation theory			C	IRM	, No	ov. 1	2016		30 / 38

Conclusions so far

- Coorbit theory is applicable in a wide variety of cases. Explicit criteria for nice wavelets.
- Important consequence of consistency: Coorbit spaces depend (only) on the way the dilation group determines the wavelet system.

Questions

• Are coorbit spaces necessarily smoothness spaces?

Conclusions so far

- Coorbit theory is applicable in a wide variety of cases. Explicit criteria for nice wavelets.
- Important consequence of consistency: Coorbit spaces depend (only) on the way the dilation group determines the wavelet system.

Questions

- Are coorbit spaces necessarily smoothness spaces?
- Given different dilation groups H_1 and H_2 , how are their coorbit spaces related? Are they necessarily different?

Conclusions so far

- Coorbit theory is applicable in a wide variety of cases. Explicit criteria for nice wavelets.
- Important consequence of consistency: Coorbit spaces depend (only) on the way the dilation group determines the wavelet system.

Questions

- Are coorbit spaces necessarily smoothness spaces?
- Given different dilation groups H_1 and H_2 , how are their coorbit spaces related? Are they necessarily different?
- Is there a way of comparing coorbit spaces over different groups? (i.e., determine equality, embeddings)

▶ < ∃ >

Conclusions so far

- Coorbit theory is applicable in a wide variety of cases. Explicit criteria for nice wavelets.
- Important consequence of consistency: Coorbit spaces depend (only) on the way the dilation group determines the wavelet system.

Questions

- Are coorbit spaces necessarily smoothness spaces?
- Given different dilation groups H_1 and H_2 , how are their coorbit spaces related? Are they necessarily different?
- Is there a way of comparing coorbit spaces over different groups? (i.e., determine equality, embeddings)

Answer

Decomposition space description!

H. Führ (RWTH Aachen)

Decomposition spaces

Decomposition spaces (Feichtinger/Gröbner)

Informal description: Cover the frequencies by a family of open relatively compact sets.

Decomposition spaces

Decomposition spaces (Feichtinger/Gröbner)

Informal description: Cover the frequencies by a family of open relatively compact sets. Decompose functions using a subordinate partition of unity.

Decomposition spaces

Decomposition spaces (Feichtinger/Gröbner)

Informal description: Cover the frequencies by a family of open relatively compact sets. Decompose functions using a subordinate partition of unity. Take the L^p -norm of each frequency-localized piece,

Decomposition spaces (Feichtinger/Gröbner)

Informal description: Cover the frequencies by a family of open relatively compact sets. Decompose functions using a subordinate partition of unity. Take the L^p -norm of each frequency-localized piece, and then combine using weighted ℓ^q norm.

Decomposition spaces (Feichtinger/Gröbner)

Informal description: Cover the frequencies by a family of open relatively compact sets. Decompose functions using a subordinate partition of unity. Take the L^p -norm of each frequency-localized piece, and then combine using weighted ℓ^q norm.

Definition

Let $Q = (Q_i)_{i \in I}$ denote a covering of an open set $\mathcal{O} \subset \mathbb{R}^d$. Let $(\varphi_i)_{i \in I} \subset C_c^{\infty}(\mathcal{O})$ denote a partition of unity subordinate to Q_i .

Decomposition spaces (Feichtinger/Gröbner)

Informal description: Cover the frequencies by a family of open relatively compact sets. Decompose functions using a subordinate partition of unity. Take the L^p -norm of each frequency-localized piece, and then combine using weighted ℓ^q norm.

Definition

Let $Q = (Q_i)_{i \in I}$ denote a covering of an open set $\mathcal{O} \subset \mathbb{R}^d$. Let $(\varphi_i)_{i \in I} \subset C_c^{\infty}(\mathcal{O})$ denote a partition of unity subordinate to Q_i . Both Q and the partition fulfill certain admissibility conditions.

Decomposition spaces (Feichtinger/Gröbner)

Informal description: Cover the frequencies by a family of open relatively compact sets. Decompose functions using a subordinate partition of unity. Take the L^p -norm of each frequency-localized piece, and then combine using weighted ℓ^q norm.

Definition

Let $Q = (Q_i)_{i \in I}$ denote a covering of an open set $\mathcal{O} \subset \mathbb{R}^d$. Let $(\varphi_i)_{i \in I} \subset C_c^{\infty}(\mathcal{O})$ denote a partition of unity subordinate to Q_i . Both Q and the partition fulfill certain admissibility conditions. Given $1 \leq p, q \leq \infty$ and a weight v on I, define the decomposition space norm of $u \in \mathcal{S}'(\mathbb{R}^d)$ as

$$\|u\|_{\mathcal{D}(\mathcal{Q},L^{p},\ell^{q}_{\nu})} = \left\| \left(\|u * \varphi^{\vee}_{i}\|_{p} \right)_{i \in I} \right\|_{\ell^{q}_{\nu}},$$

Decomposition spaces (Feichtinger/Gröbner)

Informal description: Cover the frequencies by a family of open relatively compact sets. Decompose functions using a subordinate partition of unity. Take the L^p -norm of each frequency-localized piece, and then combine using weighted ℓ^q norm.

Definition

Let $Q = (Q_i)_{i \in I}$ denote a covering of an open set $\mathcal{O} \subset \mathbb{R}^d$. Let $(\varphi_i)_{i \in I} \subset C_c^{\infty}(\mathcal{O})$ denote a partition of unity subordinate to Q_i . Both Q and the partition fulfill certain admissibility conditions. Given $1 \leq p, q \leq \infty$ and a weight v on I, define the decomposition space norm of $u \in \mathcal{S}'(\mathbb{R}^d)$ as

$$\|u\|_{\mathcal{D}(\mathcal{Q},L^p,\ell^q_\nu)} = \left\| \left(\|u * \varphi^{\vee}_i\|_p \right)_{i \in I} \right\|_{\ell^q_\nu} ,$$

and the decomposition space $\mathcal{D}(\mathcal{Q}, L^p, \ell_v^q)$ as the space of all u for which this norm is finite.

H. Führ (RWTH Aachen)

• Decomposition space norms measure decay in Fourier domain.

-

• Decomposition space norms measure decay in Fourier domain. This suggests an interpretation as smoothness spaces.

- Decomposition space norms measure decay in Fourier domain. This suggests an interpretation as smoothness spaces.
- Consistency: The definition is independent of the choice of partition of unity.

14 h

- Decomposition space norms measure decay in Fourier domain. This suggests an interpretation as smoothness spaces.
- Consistency: The definition is independent of the choice of partition of unity. I.e., the frequency covering is the decisive feature.

- Decomposition space norms measure decay in Fourier domain. This suggests an interpretation as smoothness spaces.
- Consistency: The definition is independent of the choice of partition of unity. I.e., the frequency covering is the decisive feature.
- Large variety of admissible decompositions allows diverse ways of measuring the decay.

- Decomposition space norms measure decay in Fourier domain. This suggests an interpretation as smoothness spaces.
- Consistency: The definition is independent of the choice of partition of unity. I.e., the frequency covering is the decisive feature.
- Large variety of admissible decompositions allows diverse ways of measuring the decay.
- Very flexible scheme: Describes (homogeneous and inhomogeneous) Besov spaces, α -modulation spaces, shearlet and curvelet approximation spaces, and

- Decomposition space norms measure decay in Fourier domain. This suggests an interpretation as smoothness spaces.
- Consistency: The definition is independent of the choice of partition of unity. I.e., the frequency covering is the decisive feature.
- Large variety of admissible decompositions allows diverse ways of measuring the decay.
- Very flexible scheme: Describes (homogeneous and inhomogeneous) Besov spaces, α-modulation spaces, shearlet and curvelet approximation spaces, and wavelet coorbit spaces!

- Decomposition space norms measure decay in Fourier domain. This suggests an interpretation as smoothness spaces.
- Consistency: The definition is independent of the choice of partition of unity. I.e., the frequency covering is the decisive feature.
- Large variety of admissible decompositions allows diverse ways of measuring the decay.
- Very flexible scheme: Describes (homogeneous and inhomogeneous) Besov spaces, α-modulation spaces, shearlet and curvelet approximation spaces, and wavelet coorbit spaces!

Theorem (HF, F. Voigtlaender, 2015)

For any admissible matrix group H and weight u on H there exists an admissible covering $Q = (Q_j)_{j \in J}$ and a weight v on J such that

$$Co(L^{p,q}_u) = \mathcal{D}(\mathcal{Q}, L^p, \ell^q_v)$$

H. Führ (RWTH Aachen)

CRM, Nov. 2016 33 / 38

• Relevant recent results from decomposition space theory: Rigidity theorems, embedding theorems. (F. Voigtlaender)

< 口 > < 同 >

Э

Sac

- Relevant recent results from decomposition space theory: Rigidity theorems, embedding theorems. (F. Voigtlaender)
- Sample applications of rigidity: Different dilation groups may induce the same scale of coorbit spaces.

Э

- ∢ /⊐ >

- Relevant recent results from decomposition space theory: Rigidity theorems, embedding theorems. (F. Voigtlaender)
- Sample applications of rigidity: Different dilation groups may induce the same scale of coorbit spaces.

On the other hand: Different shearlet groups in dimensions 2 and 3 give rise to different scales of coorbit spaces (F. Voigtlaender, R. Koch).

• Embedding results for decomposition spaces give rise to

Э

- Relevant recent results from decomposition space theory: Rigidity theorems, embedding theorems. (F. Voigtlaender)
- Sample applications of rigidity: Different dilation groups may induce the same scale of coorbit spaces.

On the other hand: Different shearlet groups in dimensions 2 and 3 give rise to different scales of coorbit spaces (F. Voigtlaender, R. Koch).

- Embedding results for decomposition spaces give rise to
 - embeddings of shearlet coorbit spaces into Besov spaces, modulation spaces,

Э

- Relevant recent results from decomposition space theory: Rigidity theorems, embedding theorems. (F. Voigtlaender)
- Sample applications of rigidity: Different dilation groups may induce the same scale of coorbit spaces.

On the other hand: Different shearlet groups in dimensions 2 and 3 give rise to different scales of coorbit spaces (F. Voigtlaender, R. Koch).

- Embedding results for decomposition spaces give rise to
 - embeddings of shearlet coorbit spaces into Besov spaces, modulation spaces,
 - embeddings of shearlet coorbit spaces into Sobolev spaces,

Э

- Relevant recent results from decomposition space theory: Rigidity theorems, embedding theorems. (F. Voigtlaender)
- Sample applications of rigidity: Different dilation groups may induce the same scale of coorbit spaces.

On the other hand: Different shearlet groups in dimensions 2 and 3 give rise to different scales of coorbit spaces (F. Voigtlaender, R. Koch).

- Embedding results for decomposition spaces give rise to
 - embeddings of shearlet coorbit spaces into Besov spaces, modulation spaces,
 - embeddings of shearlet coorbit spaces into Sobolev spaces,

▶ ..

• As a rule, the criteria for embeddings between or equality of decomposition spaces are based on explicit computations involving the induced coverings.

(日) (同) (三) (三)

Э

©RWTH 🔤	0	RV.	Ш	12	i.
---------	---	-----	---	----	----

achen)	Wavelet approximation theory								_	34 / 38	-
		< □	Þ	< A	Þ	4.3	÷.	Ξ÷	\equiv	590	V

H. Führ (RWTH Aachen

• Main purpose of the talk: Describe a unified and systematic approach for the simultaneous treatment of sparse signal spaces attached to wavelet systems over a large variety of dilation groups.

DRWTH

- Main purpose of the talk: Describe a unified and systematic approach for the simultaneous treatment of sparse signal spaces attached to wavelet systems over a large variety of dilation groups.
- Results facilitate understanding of the role of the dilation group H.

DRWTH

- Main purpose of the talk: Describe a unified and systematic approach for the simultaneous treatment of sparse signal spaces attached to wavelet systems over a large variety of dilation groups.
- Results facilitate understanding of the role of the dilation group H.
- The objects in the theorems (i.e., open orbit, envelope function, vanishing moment conditions etc.) are explicitly computable for concretely given dilation groups.

- Main purpose of the talk: Describe a unified and systematic approach for the simultaneous treatment of sparse signal spaces attached to wavelet systems over a large variety of dilation groups.
- Results facilitate understanding of the role of the dilation group H.
- The objects in the theorems (i.e., open orbit, envelope function, vanishing moment conditions etc.) are explicitly computable for concretely given dilation groups.
- The prerequisites of the theorems in this talk have been verified for large classes of groups.

- Main purpose of the talk: Describe a unified and systematic approach for the simultaneous treatment of sparse signal spaces attached to wavelet systems over a large variety of dilation groups.
- Results facilitate understanding of the role of the dilation group H.
- The objects in the theorems (i.e., open orbit, envelope function, vanishing moment conditions etc.) are explicitly computable for concretely given dilation groups.
- The prerequisites of the theorems in this talk have been verified for large classes of groups.
- Decomposition space approach also covers other types of smoothness spaces that are not associated to dilation groups, such as (α-)modulation spaces, anisotropic Besov spaces, etc.

- Main purpose of the talk: Describe a unified and systematic approach for the simultaneous treatment of sparse signal spaces attached to wavelet systems over a large variety of dilation groups.
- Results facilitate understanding of the role of the dilation group H.
- The objects in the theorems (i.e., open orbit, envelope function, vanishing moment conditions etc.) are explicitly computable for concretely given dilation groups.
- The prerequisites of the theorems in this talk have been verified for large classes of groups.
- Decomposition space approach also covers other types of smoothness spaces that are not associated to dilation groups, such as (α-)modulation spaces, anisotropic Besov spaces, etc.
- The scheme extends to quasi-Banach setting (e.g. p < 1).

I > <
 I >
 I

References: Wavelets and Besov spaces

Influential papers

- R. De Vore, B. Jawerth, V. Popov, Compression of wavelet decompositions, Am. J. Math. 114, 737-785 (1992)
- R. De Vore, B. Jawerth, B. Lucier, Image compression through wavelet transform coding, IEEE Trans. Inform. Theory 38, 719–746 (1992)
- D. Donoho, I. Johnstone, Adapting to unknown smoothness via wavelet shrinkage, J. Amer. Statist. Assoc. 90, 1200-1224 (1995)
- M. Frazier, B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34, 777-799 (1985).

Books

H. Fül

- M. Frazier, B. Jawerth, G. Weiss. Littlewood-Paley theory and the study of function spaces. Am. Math. Soc. 1991.
- Y. Meyer: Wavelets and operators. Cambridge University Press, 1992.
- P. Wojtaszczyk: A mathematical introduction to wavelets. Cambridge University Press, 1997.

			ORWTH
	- 1	- > 《문》 《혼》 《론》	$\equiv \circ \circ \circ$
ühr (RWTH Aachen)	Wavelet approximation theory	CIRM, Nov. 2016	35 / 38

References: Coorbit and decomposition spaces

Foundational papers

- H. Feichtinger, P. Gröbner, Banach spaces of distributions defined by decomposition methods. I. Math. Nachr. 123, 97-120 (1985)
- H. Feichtinger, K. Gröchenig, A unified approach to atomic decompositions via integrable group representations, Lect. Notes Math. 1302, 52-73 (1988)
- H. Feichtinger, K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions. I. J. Func. Anal. 86, 307-340 (1989)
- H. Feichtinger, K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions. II. Monatsh. Math. 108, 129-148 (1989)
- K. Gröchenig, Describing functions: Atomic decompositions vs. frames, Monatsh. Math. 112 1-41 (1991)

Extensions

- J.G. Christensen, G. Olafsson, Coorbit spaces for dual pairs, Appl. Comput. Harmon. Anal. 31, 303–324 (2011)
- S. Dahlke, M. Fornasier, Massimo, H. Rauhut, G. Steidl, G. Teschke, Generalized coorbit theory, Banach frames, and the relation to α-modulation spaces, Proc. Lond. Math. Soc. 96, 464-506 (2008)
- H. Rauhut, Coorbit space theory for quasi-Banach spaces, Studia Math. 180, 237-253 (2007)
- H. Rauhut, T. Ullrich, Generalized coorbit space theory and inhomogeneous function spaces of Besov-Lizorkin-Triebel type, J. Funct. Anal. 260 3299–3362 (2011)

ORWTH

H. Führ (RWTH Aachen)

< ロト < 同ト < ヨト < ヨト

References: Coorbit spaces and their relatives

Examples beyond Besov and modulation spaces

H. Eüł

- L. Borup, M. Nielsen, Frame decomposition of decomposition spaces, J. Fourier Anal. Appl. 13 39–70 (2007).
- S. Dahlke, G. Steidl, G. Teschke, Weighted coorbit spaces and Banach frames on homogeneous spaces, J. Fourier Anal. Appl. 10, 507–539 (2004)
- S. Dahlke, G. Kutyniok, G. Steidl, G. Teschke, Shearlet coorbit spaces and associated Banach frames, Appl. Comput. Harmon. Anal. 27, 195–214 (2009)
- S. Dahlke, S. Häuser, G. Teschke, Coorbit space theory for the Toeplitz shearlet transform, Int. J. Wavelets Multiresolut. Inf. Process. 10 1250037, 13 pp. (2012)
- S. Dahlke, S. Häuser, G. Steidl, G. Teschke, Shearlet coorbit spaces: traces and embeddings in higher dimensions, Monatsh. Math. 169, 15-32 (2013)
- H.G. Feichtinger, M. Pap, Coorbit theory and Bergman spaces, pp. 231–259 in Harmonic and complex analysis and its applications, Birkhäuser/Springer, (2014)
- D. Labate, L. Mantovani, P. Negi, Shearlet smoothness spaces, J. Fourier Anal. Appl. 19 577–611 (2013)
- M. Nielsen, Frames for decomposition spaces generated by a single function, Collect. Math. 65, 183–201 (2014)
- M. Pap, Properties of the voice transform of the Blaschke group and connections with atomic decomposition results in the weighted Bergman spaces, J. Math. Anal. Appl. 389, 340–350 (2012) 43A32 (42C15 46E30)

			ORWTH
	4		$\equiv \mathcal{O} \land \mathcal{O}$
hr (RWTH Aachen)	Wavelet approximation theory	CIRM, Nov. 2016	37 / 38

References directly related to this talk

- HF, Generalized Calderón conditions and regular orbit spaces, Colloq. Math. 120, 103–126 (2010)
- HF, Coorbit spaces and wavelet coefficient decay over general dilation groups, Trans. AMS 367, 7373-7401 (2015)
- HF, F. Voigtlaender, Wavelet coorbit spaces viewed as decomposition spaces, J. Funct. Anal. 269, 80-154 (2015)
- HF, Vanishing moment conditions for wavelet atoms in higher dimensions, Adv. Comput. Math. 42, 127-153 (2016)
- HF, R. Raisi Tousi, Simplified vanishing moment criteria for wavelets over general dilation groups, with applications to abelian and shearlet dilation groups, Appl. Comp. Harm. Anal., to appear.
- B. Currey, HF, V. Oussa, A classification of continuous wavelet transforms in dimension three. Preprint, available under https://arxiv.org/abs/1610.07739
- F. Voigtlaender: Embedding Theorems for Decomposition Spaces with Applications to Wavelet Coorbit Spaces. Ph.D. Thesis, RWTH Aachen, 2015
- F. Voigtlaender, Embeddings of decomposition spaces. Preprint, available under http://arxiv.org/abs/1605.09705
- F. Voigtlaender, Embeddings of decomposition spaces into Sobolev and BV spaces. Preprint, available under http://arxiv.org/abs/1601.02201
- H.G. Feichtinger, F. Voigtlaender From Frazier-Jawerth characterizations of Besov spaces to wavelets and decomposition spaces. Preprint, available under http://arxiv.org/abs/1606.04924

Ø	λ)T	н	
-	5	Q	R

3

イロト イポト イヨト イヨト