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Wavelet orthonormal bases
Definition
A wavelet ONB (ψj ,k)j ,k∈Z ⊂ L2(R) is an ONB of the form

(ψj ,k)j ,k∈Z ⊂ L2(R) , ψj ,k = 2j/2ψ(2jx − k) , ψ fixed

Simultaneous wavelet bases of smoothness spaces
For sufficiently nice wavelets ψ, the wavelet expansion

f =
∑
j ,k∈Z
〈f , ψj ,k〉ψj ,k

converges in the norm of a homogeneous Besov space Ḃαp,q, as soon as
f ∈ Ḃαp,q. Furthermore, the property f ∈ Ḃαp,q is equivalent to weighted
summability of the coefficients. (Frazier/Jawerth)
There exist arbitrarily nice compactly supported wavelets.
(Daubechies)
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Significance of wavelet characterization

Reinterprets smoothness spaces as spaces of sparse signals with
respect to wavelet ONB.
Important byproduct: Consistency.
All sufficiently nice wavelets have the same spaces of sparse signals!
Yields mathematically rigourous justification for many wavelet-based
methods and algorithms, such as denoising, compression etc.
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What are nice wavelets?

Desirable properties of wavelets

A nice wavelet ψ ∈ L2(R) typically has three properties
(a) Fast decay, e.g. |ψ(x)| ≤ C (1 + |x |)−n;
(b) Smoothness, e.g. ψ(j) ∈ L1(R), for all 1 ≤ j ≤ m;
(c) Vanishing moments, e.g.

∀0 ≤ j < k :

∫
R
x jψ(x)dx = 0

with absolute convergence of the integral
Shortly: Nice wavelets have good time-frequency localization.
(Note: Frequency-side localization is understood away from zero.)
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Cartoon: Fourier side decay of wavelets

Plot of |ψ̂|.
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Aims of this talk

Main objective
Establish notion of nice wavelets for higher-dimensional wavelet transforms,
with dilations coming from a suitable matrix group, the dilation group.

Previously studied for: Similitude groups ( isotropic Besov spaces),
shearlet dilation groups (Kutyniok, Dahlke, Steidl, Teschke; Dahlke,
Häuser, Teschke)

Strategy
Verify prerequisites for coorbit theory (Feichtinger/Gröchenig).
This provides access to:

I Consistent notion of sparse signals, via associated function spaces
I A related definition of nice wavelets

Need to show: Nice wavelets exist!
Better yet: Identify easily accessible classes of nice wavelets
( bandlimited Schwartz functions, vanishing moment criteria)
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Overview
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Higher-dimensional CWT

H < GL(d ,R) a closed matrix group
G = Rd o H, the affine group generated by H and translations. As a
set, G = Rn × H, with group law

(x , h)(y , g) = (x + hy , hg) .

Quasi-regular representation of G on L2(Rd), acting via

(π(x , h)f )(y) = | det(h)|−1/2f (h−1(y − x)) .

Continuous wavelet transform: Given suitable ψ ∈ L2(Rd) and
f ∈ L2(Rd), let

Wψf : G → C , Wψf (x , h) = 〈f , π(x , h)ψ〉
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Admissible vectors and wavelet inversion

Definition
ψ ∈ L2(Rd) is called admissible if Wψ : L2(Rd) ↪→ L2(G )
isometrically.
π is called square-integrable if π is irreducible and has an admissible
vector. If π is square-integrable, we call H irreducibly admissible.

Wavelet inversion
If ψ is admissible, we obtain the wavelet inversion formula

f =

∫
G
Wψf (x , h) π(x , h)ψ d(x , h) .

with weak-sense convergence.

H. Führ (RWTH Aachen) Wavelet approximation theory CIRM, Nov. 2016 11 / 38



Admissible vectors and wavelet inversion

Definition

ψ ∈ L2(Rd) is called admissible if Wψ : L2(Rd) ↪→ L2(G )
isometrically.
π is called square-integrable if π is irreducible and has an admissible
vector. If π is square-integrable, we call H irreducibly admissible.

Wavelet inversion
If ψ is admissible, we obtain the wavelet inversion formula

f =

∫
G
Wψf (x , h) π(x , h)ψ d(x , h) .

with weak-sense convergence.

H. Führ (RWTH Aachen) Wavelet approximation theory CIRM, Nov. 2016 11 / 38



Admissible vectors and wavelet inversion

Definition
ψ ∈ L2(Rd) is called admissible if Wψ : L2(Rd) ↪→ L2(G )
isometrically.

π is called square-integrable if π is irreducible and has an admissible
vector. If π is square-integrable, we call H irreducibly admissible.

Wavelet inversion
If ψ is admissible, we obtain the wavelet inversion formula

f =

∫
G
Wψf (x , h) π(x , h)ψ d(x , h) .

with weak-sense convergence.

H. Führ (RWTH Aachen) Wavelet approximation theory CIRM, Nov. 2016 11 / 38



Admissible vectors and wavelet inversion

Definition
ψ ∈ L2(Rd) is called admissible if Wψ : L2(Rd) ↪→ L2(G )
isometrically.
π is called square-integrable if π is irreducible and has an admissible
vector.

If π is square-integrable, we call H irreducibly admissible.

Wavelet inversion
If ψ is admissible, we obtain the wavelet inversion formula

f =

∫
G
Wψf (x , h) π(x , h)ψ d(x , h) .

with weak-sense convergence.

H. Führ (RWTH Aachen) Wavelet approximation theory CIRM, Nov. 2016 11 / 38



Admissible vectors and wavelet inversion

Definition
ψ ∈ L2(Rd) is called admissible if Wψ : L2(Rd) ↪→ L2(G )
isometrically.
π is called square-integrable if π is irreducible and has an admissible
vector. If π is square-integrable, we call H irreducibly admissible.

Wavelet inversion
If ψ is admissible, we obtain the wavelet inversion formula

f =

∫
G
Wψf (x , h) π(x , h)ψ d(x , h) .

with weak-sense convergence.

H. Führ (RWTH Aachen) Wavelet approximation theory CIRM, Nov. 2016 11 / 38



Admissible vectors and wavelet inversion

Definition
ψ ∈ L2(Rd) is called admissible if Wψ : L2(Rd) ↪→ L2(G )
isometrically.
π is called square-integrable if π is irreducible and has an admissible
vector. If π is square-integrable, we call H irreducibly admissible.

Wavelet inversion
If ψ is admissible, we obtain the wavelet inversion formula

f =

∫
G
Wψf (x , h) π(x , h)ψ d(x , h) .

with weak-sense convergence.

H. Führ (RWTH Aachen) Wavelet approximation theory CIRM, Nov. 2016 11 / 38



Wavelet inversion and dual action

Wavelet transform of f ∈ L2(Rd) is a family of convolution products,

Wψf (x , h) = (f ∗ π(0, h)ψ∗) (x) .

Dual action of H on Rd is defined by

H × Rd 3 (h, ξ) 7→ hT ξ .

It describes influence of dilation on frequency content:

F (π(0, h)ψ∗) (ξ) = |det(h)|1/2F(ψ)(hT ξ)

Informal interpretation of Wψ: The transform acts as a filter bank
labelled by elements of h, the frequencies associated to the “channel”
ψh are contained in h−T supp(ψ̂).
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Square-integrable representations and open dual orbits

Theorem (Bernier/Taylor, 1996; HF, 2010)
H is irreducibly admissible iff there exists a single open orbit

O = HT ξ0 = {hT ξ0 : h ∈ H}

under the dual action, with the additional property that the associated
stabilizer

Hξ0 = {h ∈ H ; hT ξ0 = ξ0} ⊂ H

is compact.

Standing assumption
From now on: H is assumed irreducibly admissible.
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A gallery of irreducibly admissible groups, part I

Two-dimensional examples

1 Diagonal group:

H =

{(
a 0
0 b

)
: ab 6= 0

}
2 Similitude group:

H =

{(
a b
−b a

)
: a2 + b2 6= 0

}
3 Shearlet group(s):

Hc =

{
±
(

a b
0 ac

)
: a 6= 0

}
(c ∈ R)

(c = 1/2: Kutyniok/Labate/Dahlke/Steidl/Teschke ...)

Complete list in dimension two, up to conjugacy.
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A gallery of irreducibly admissible groups, part II

(B. Currey, HF, V. Oussa:) A complete list of irreducibly admissible
matrix groups in dimension three, up to conjugation, consists of

I seven isolated cases,
I seven one-parameter families of groups,
I six two-parameter families of groups.

Well-understood classes in arbitrary dimensions, each contributing
infinitely many new cases, are abelian dilation groups, generalized
shearlet dilation groups.
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Overview

1 Introduction: Nice wavelets and sparse signals in dimension one

2 Continuous wavelet transforms over general dilation groups

3 Coorbit theory: A consistent wavelet approximation theory

4 Wavelet coorbit spaces over general dilation groups

5 Constructing compactly supported nice wavelets

6 Towards an understanding of coorbit spaces
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A sketch of coorbit theory

Elements of coorbit theory

Blueprint: Wavelet characterization of homogeneous Besov spaces
Fix a Banach space Y of functions on G (solid, two-sided invariant).
E.g., Y = Lp(G ), p < 2.
Pick a suitable analyzing vector ψ ∈ L2(Rd)

Coorbit space norm on L2(Rd):

‖f ‖CoY = ‖Wψf ‖Y .

Define CoY as (completion of) {g ∈ L2(Rd) : ‖g‖CoY <∞}.
Main issues addressed by coorbit theory:

I Consistency: When is the norm independent of ψ?
(I.e., is there a notion of nice wavelets?)

I Discretization: When can the norm be expressed in terms of a discrete
set of sampled wavelet coefficients?
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Nice wavelets according to coorbit theory
Definition
Let v denote the control weight for Lp(G ), given by

v(x , h) = max(1,∆G (h)).

ψ ∈ L2(Rd) is a nice wavelet with respect to Lp(G ) if
Wψψ ∈W R(L∞,L1

v ), i.e., the function

G 3 (x , h) 7→ sup
(y ,g)∈U

|Wψψ ((x , h)(y , g))| ∈ R+

is in L1
v (G ), for some compact neighborhood U ⊂ G of the identity.

The set of nice wavelets is denoted by Bv .

Recall main challenge
Coorbit theory is applicable whenever there exist nice wavelets.
Desirable: Explicit criteria for nice wavelets.
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Central theorem of coorbit theory

Theorem (Feichtinger/Gröchenig)

Let 1 ≤ p ≤ 2. The following are equivalent, for any f ∈ L2(Rd):

(a) Wψf ∈ Lp(G ), for some (equivalently: any) 0 6= ψ ∈ Bv .
(b) (〈f , π(z)ψ〉)z∈Z ∈ `p(Z ), for some (equivalently: any) 0 6= ψ ∈ Bv

and all (right) uniformly discrete, sufficiently dense subsets Z ⊂ G .
(c) For some (equivalently: any) 0 6= ψ ∈ Bv and all (right) uniformly

discrete, sufficiently dense subsets Z ⊂ G :

f =
∑
z∈Z

czπ(z)ψ ,

with coefficients (cz)z∈Z ∈ `p(Z ) linearly depending on f .
Here the series converges both in ‖ · ‖2 and ‖ · ‖Co(Lp).

Also: Co(Lp)-norm is equivalent to norm on discrete coefficients!
I.e., Co(Lp) is a consistently defined space of sparse signals.
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Overview

1 Introduction: Nice wavelets and sparse signals in dimension one

2 Continuous wavelet transforms over general dilation groups

3 Coorbit theory: A consistent wavelet approximation theory

4 Wavelet coorbit spaces over general dilation groups

5 Constructing compactly supported nice wavelets

6 Towards an understanding of coorbit spaces
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Is coorbit theory applicable?

Recall setup (for the remainder)

H is irreducibly admissible.
The associated open dual orbit is denoted O = HT ξ.
Its complement is denoted Oc , it is the blind spot of the wavelet
transform.
Looking for nice wavelets w.r.t. Lp.

Theorem (HF, ’12)
Under the standing assumptions, Co(Lp) is well-defined.
Let F−1C∞c (O) denote the set of bandlimited Schwartz functions with
Fourier support contained in O. Then

F−1C∞c (O) ⊂ Bv .
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Reminder: Nice wavelets in dimension one

Desirable properties of wavelets
A nice wavelet ψ ∈ L2(R) typically has three properties: Fast decay,
smoothness, vanishing moments.
Concisely: Nice wavelets have good time-frequency localization.
(Note: Frequency-side localization is understood away from zero.)

H. Führ (RWTH Aachen) Wavelet approximation theory CIRM, Nov. 2016 23 / 38



Vanishing moments and wavelet coefficient decay

Assumptions on nice wavelet ψ guarantee fast decay of Wψψ:

|Wψψ(x , s)| ≤
∑
j<`

∥∥∥∂j (ψ̂ · ψ̂(s·)
)∥∥∥

1
|s|−1/2(1 + |x |)−`

Plot of ψ̂ and ψ̂(3·) Overlap ψ̂ · ψ̂(3·)

⇒ vanishing moments, smoothness govern decay of overlap, as |s| → 0,∞
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Generalizing this to higher dimensions

Central idea

Characterize nice wavelets in terms of smoothness, fast decay,
vanishing moments. The last property has to reflect the choice of
dilation group.
Right notion of vanishing moments turns out to be: Speed of decay
ψ̂(ξ)→ 0, as ξ → Oc , the blind spot.
A first indicator that this works:

F−1C∞c (O) ⊂ Bv .

Definition

Let r ∈ N be given. f ∈ L1(Rd) has vanishing moments in Oc of order r if
all distributional derivatives ∂αf̂ with |α| < r are continuous functions,
identically vanishing on Oc .
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Fourier envelope

Definition
Let O ⊂ Rd denote the dual orbit. Given ξ ∈ O, let dist(ξ,Oc) denote the
euclidean distance of ξ to Oc . Let

A(ξ) = min

(
dist(ξ,Oc)

1 +
√
|ξ|2 − dist(ξ,Oc)2

,
1

1 + |ξ|

)
.

Oc

0

ξ
ξ − ξ′

ξ′

A(ξ) = min
(
|ξ − ξ′|
1 + |ξ′| ,

1
1 + |ξ|

)

with ξ′ = point in Oc closest to ξ
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A general vanishing moment criterion

Theorem (HF, ’13; HF, R. Raisi Tousi, ’14)

Fix ξ0 ∈ O, and define

AH : H → R+ ,AH(h) = A(hT ξ0) .

Assume that for suitable e1, e2, e3 ≥ 0 the following hold:

‖h±1‖AH(h)e1 � 1 (1)
|det(h±1)|AH(h)e2 � 1 (2)
∆H(h±1)AH(h)e3 � 1 . (3)

Define r := be1(2s + 2d + 2) + 5
2e2 + 2e3c+ 2d + 2.

Then any function ψ with |ψ̂|r ,r <∞ and vanishing moments in Oc of
order r is in Bv . Here | · |r ,r denotes a Schwartz norm.
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Fix ξ0 ∈ O, and define

AH : H → R+ ,AH(h) = A(hT ξ0) .

Assume that for suitable e1, e2, e3 ≥ 0 the following hold:

‖h±1‖AH(h)e1 � 1 (1)
|det(h±1)|AH(h)e2 � 1 (2)
∆H(h±1)AH(h)e3 � 1 . (3)

Define r := be1(2s + 2d + 2) + 5
2e2 + 2e3c+ 2d + 2.

Then any function ψ with |ψ̂|r ,r <∞ and vanishing moments in Oc of
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Constructing compactly supported atoms

Lemma (HF, ’98)
There exists a polynomial P ∈ R[X1, . . . ,Xd ] such that

Oc = {ξ ∈ Rd : P(ξ) = 0} .

Construction procedure
Define the partial differential operator DO = P(−iD), where P is the
polynomial from the previous lemma, and D stands for partial
differentiation.
Let r be the required number of vanishing moments from the previous
Theorem. Pick f ∈ C∞c (Rd) \ {0}, and define

ψ = Dr
O(f ) .

Then ψ ∈ C∞c (Rd) has vanishing moments of order r in Oc .
Clearly, picking f ∈ C k

c (Rd), for k sufficiently large, is enough.
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Overview

1 Introduction: Nice wavelets and sparse signals in dimension one

2 Continuous wavelet transforms over general dilation groups

3 Coorbit theory: A consistent wavelet approximation theory

4 Wavelet coorbit spaces over general dilation groups

5 Constructing compactly supported nice wavelets

6 Towards an understanding of coorbit spaces
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Making sense of wavelet coorbit spaces
Conclusions so far

Coorbit theory is applicable in a wide variety of cases.
Explicit criteria for nice wavelets.
Important consequence of consistency: Coorbit spaces depend (only)
on the way the dilation group determines the wavelet system.

Questions
Are coorbit spaces necessarily smoothness spaces?
Given different dilation groups H1 and H2, how are their coorbit
spaces related? Are they necessarily different?
Is there a way of comparing coorbit spaces over different groups?
(i.e., determine equality, embeddings)

Answer
Decomposition space description!
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Decomposition spaces
Decomposition spaces (Feichtinger/Gröbner)
Informal description: Cover the frequencies by a family of open relatively
compact sets.

Decompose functions using a subordinate partition of unity.
Take the Lp-norm of each frequency-localized piece, and then combine
using weighted `q norm.

Definition
Let Q = (Qi )i∈I denote a covering of an open set O ⊂ Rd . Let
(ϕi )i∈I ⊂ C∞c (O) denote a partition of unity subordinate to Qi . Both Q
and the partition fulfill certain admissibility conditions. Given 1 ≤ p, q ≤ ∞
and a weight v on I , define the decomposition space norm of u ∈ S ′(Rd) as

‖u‖D(Q,Lp ,`qv ) =
∥∥∥(‖u ∗ ϕ∨i ‖p)i∈I∥∥∥`qv ,

and the decomposition space D(Q, Lp, `qv ) as the space of all u for which
this norm is finite.

Theorem
Feichtinger/Gröbner The space D(Q, Lp, `qv ) is independent of the choice
of partition of unity.
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Interpretation

Decomposition space norms measure decay in Fourier domain.
This suggests an interpretation as smoothness spaces.
Consistency: The definition is independent of the choice of partition of
unity. I.e., the frequency covering is the decisive feature.
Large variety of admissible decompositions allows diverse ways of
measuring the decay.
Very flexible scheme: Describes (homogeneous and inhomogeneous)
Besov spaces, α-modulation spaces, shearlet and curvelet
approximation spaces, and
wavelet coorbit spaces!

Theorem (HF, F. Voigtlaender, 2015)
For any admissible matrix group H and weight u on H there exists an
admissible covering Q = (Qj)j∈J and a weight v on J such that

Co(Lp,qu ) = D(Q, Lp, `qv )
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Applications to coorbit spaces

Relevant recent results from decomposition space theory: Rigidity
theorems, embedding theorems. (F. Voigtlaender)
Sample applications of rigidity: Different dilation groups may induce
the same scale of coorbit spaces.
On the other hand: Different shearlet groups in dimensions 2 and 3
give rise to different scales of coorbit spaces (F. Voigtlaender, R.
Koch).
Embedding results for decomposition spaces give rise to

I embeddings of shearlet coorbit spaces into Besov spaces, modulation
spaces,

I embeddings of shearlet coorbit spaces into Sobolev spaces,
I ...

As a rule, the criteria for embeddings between or equality of
decomposition spaces are based on explicit computations involving the
induced coverings.
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Final remarks

Main purpose of the talk: Describe a unified and systematic approach
for the simultaneous treatment of sparse signal spaces attached to
wavelet systems over a large variety of dilation groups.
Results facilitate understanding of the role of the dilation group H.
The objects in the theorems (i.e., open orbit, envelope function,
vanishing moment conditions etc.) are explicitly computable for
concretely given dilation groups.
The prerequisites of the theorems in this talk have been verified for
large classes of groups.
Decomposition space approach also covers other types of smoothness
spaces that are not associated to dilation groups, such as
(α-)modulation spaces, anisotropic Besov spaces, etc.
The scheme extends to quasi-Banach setting (e.g. p < 1).
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