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Motivations



Motivations: Finite dimensional LS-SVM regression

Given a sample {(xi, yi)}Ni=1 where (xi, yi) ∈ Rd × R
Minimization of the errors with a regularization term

min
w∈Rh
ei,b∈R

1

2
‖w‖22 +

γ

2

N∑
i=1

e2i s.t. yi = wTϕ(xi) + b+ ei,

with i = 1, . . . , N , γ > 0 and where ϕ : Rd → Rh. The solution is obtained
thanks to the symmetric positive definite kernel

K(x, x′) = ϕT (x)ϕ(x′) for x, x′ ∈ Rd

The Lagrange multipliers are obtained by solving a linear system

yi =
N∑
j=1

αjK(xj , xi) + b+ ei,

for the Lagrange multipliers α’s. The prediction is done by the “model”:
y(x) =

∑N
j=1 αjK(xj , x) + b.
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Extension to infinite dimensional Hilbert space

Usually, in machine learning, use of the popular gaussian
Kσ(x, x′) = exp(− 1

2σ2 ‖x− x′‖22).

• Infinite dimensional feature space?
Non rigorous view:

x 7→ ϕ(x) =


ϕ1(x)

ϕ2(x)
...

 ,

• Generalization?

Rd → H

x 7→ |ηx〉,

H is an infinite dimensional Hilbert (separable), with inner product 〈·|·〉H.
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Coherent states from a Reproducing Kernel Hilbert Space

Light introduction: Let us assume

• RKHS {HK , 〈·|·〉K} orthonormal basis {ψn}∞n=0 with∑+∞
n=0 |ψn(x)|2 <∞ for all x ∈ X.

• Hilbert space {H, 〈·|·〉H} orthonormal basis {φn}∞n=0 .

A “measure-free” coherent state (non-normalized)1

|ηx〉 =

∞∑
n=0

ψ̄n(x)|φn〉 ∈ H.

Reproducing kernel of HK is K(x, x′) =
∑∞
n=0 ψn(x)ψ̄n(x′) = 〈ηx|ηx′〉H.

1A. Horzela and F. H. Szafraniec J. Phys. A45 (24),244018,2012
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Coherent states and SVM

Primal problem

min
|w〉∈H
ei,b∈R

1

2
〈w|w〉H +

γ

2

N∑
i=1

e2i subject to yi = 〈w|ηxi〉H + b+ ei,

for i = 1, . . . , N . The solution is obtained by solving a linear system

yi =

N∑
j=1

αj〈ηxj |ηxi〉H + b+ ei,

Kernel function K(xj , xi) = 〈ηxj |ηxi〉H,

Model used for prediction:

y(x) =

N∑
j=1

αjK(xj , x) + b.
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Design of a kernel

In machine learning, the self-tuned kernel2 is used

Ks(x, x′) = exp
(
− ‖x− x

′‖22
σxσx′

)
.

One alternative possibility is to associate the pair
(x, σx) 7→ ψ(x,σx)(·) = ψ( ·−x

σx
) so that the kernel

k(x, x′) = 〈ψ(x,σx)|ψ(x′,σx′ )
〉

can be used, if there is an empirical way to estimate σx (related statistical
theory).

2T. Berry, J. Harlim, Variable bandwidth diffusion kernels, Applied Comput. Harmon. Anal.,
40(1),2016 (in the context of diffusion maps)
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Wavelets on graphs



Broader context

• Graph-based data analysis methods
Diffusion maps3 Diffusion wavelets4

• Signal processing on graphs
Spectral Graph Wavelet5

Signal processing on graphs6

Compressive spectral clustering7

Decomposition of pictures in patches...

• Common basic ingredient: the combinatorial Laplacian on graphs.

3R.R. Coifman, S. Lafon, Applied Comput. Harmon. Anal., 21(1), 5-30, 2006
4R.R. Coifman, M. Maggioni, Applied Comput. Harmon. Anal., 21(1), 53-94, 2006
5J.-P. Antoine et al. Applied Comput. Harmon. Anal., 28(2):189 - 202, 2010

D. K. Hammond et al. Applied Comput. Harmon. Anal., 30(2):129 - 150, 2011
6D. I. Shuman et al. IEEE Signal Processing Magazine,30(3), 83-98, 2013
7N. Tremblay, G. Puy, R. Gribonval, P. Vandergheynst, In ICML, June 2016
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Discrete differential operators

Definition of the wavelets in Fourier space. Connected graph G = (V, E) with
a finite set of nodes V and E edges with positive weights wij = wji ≥ 0.
Given a function on the nodes p(i), its gradient on the edge [i, j] reads

dp(i, j) = p(j)− p(i).

A (discrete) vector field is given by a skew symmetric matrix element
aij = −aji mapped to each pair of nodes i and j connected by an edge. The
divergence of the vector field is simply

div a(i) =
∑
j∈V

wijaij ,

which corresponds to the adjoint of the discrete gradient: −d∗a, with respect
to the inner products:

〈p, p′〉 =
∑
i∈V

p(i)p′(i), and 〈a, a′〉E =
1

2

∑
[i,j]∈E

wija(i, j)a′(i, j).
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Discrete Laplacian

Composing the divergence of the gradient, we obtain the combinatorial
Laplacian

−(L0p)(i) =
∑
j∈V

wij
(
p(j)− p(i)

)
,

defined as a positive semi-definite operator (convention). Its eigenvalues are
0 = λ0 < λ1 ≤ · · · ≤ λN−1, and the eigenvectors satisfy

L0|u`〉 = λ`|u`〉.

Notice that if |δi〉 is a discrete Dirac, then p(i) = 〈δi|p〉. The u`’s are the
discrete Fourier modes of the graph. Notice that u0 = cst. In particular we
can have a diffusion equation

dpt(i)

dt
= −

(
L0pt

)
(i),

solved by using the propagator T t = exp(−tL0) (or heat kernel).
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Broader context

Deformed combinatorial Laplacians

• Connection Laplacian 8(Synchronization of rotations)

• Magnetic Laplacian 9

• Signed Laplacian 10(Clustering signed graphs)

• Dilation Laplacian11(Ranking objects from pairwise comparisons)

8A. Singer and H-T. Wu, Vector Diffusion Maps and the Connection Laplacian, Comm. Pure Appl.
Math., 65: 1067-1144, 2012
9M. A. Shubin. Discrete magnetic Laplacian, Comm. Math. Phys.,164, 259-275, 1994

10J. Kunegis et al. Spectral Analysis of Signed Graphs for Clustering, Prediction and Visualization,
chapter 48, 559-570, 2010
11M. Fanuel and J.A.K. Suykens, Deformed Laplacians and spectral ranking in directed networks,
arxiv:1511.00492
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Towards graph wavelets

• In general, we have no translation group, no rotation group. We use only
the existence of a “Fourier Space”.

• Two main constructions exist: the diffusion wavelets (orthogonal) and the
spectral graph wavelets.

• In the diffusion wavelets case, we assume a semi-group {T t}t≥0

associated to a diffusion operator (for instance, T = exp(−ε∆)).

• For the spectral graph wavelets case, the construction is based on an
analogy with 1-D wavelet in Fourier space

(T sf)(x) =

∫ +∞

−∞
dy

1

s
ψ̄(
y − x
s

)f(y) =

∫ +∞

−∞

dk

2π
eikx

¯̂
ψ(sk)f̂(k).

Notice that eikx is an eigenfunction of the Laplacian d2/dx2.
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Spectral Graph Wavelets

Defined in Fourier Space12. Given g : R+ → R satisfying g(0) = 0 and the
admissibility condition ∫ +∞

0

dt

t
g2(t) = c <∞,

a spectral graph wavelet at i and of scale parameter t > 0 is

|ψi,t〉 = g(−tL0)|δi〉 =

N−1∑
`=1

g(−tλ`)u`(i)|u`〉.

Resolution of the identity

1

c

∑
i∈V

∫ +∞

0

dt

t
|ψi,t〉〈ψi,t| = I− |u0〉〈u0|,

We observe that they are symmetric waveforms.

12J.-P. Antoine et al. Applied Comput. Harmon. Anal., 28(2):189 - 202, 2010
D. K. Hammond et al. Applied Comput. Harmon. Anal., 30(2):129 - 150, 2011

13 / 39



Diffusion with drift

• Starting point: Fokker-Planck equation

dpt
dt

(x) = −
(
∇ · ~Jt

)
(x), with ~Jt(x) = −~∇pt(x) + ~µ(x)pt(x).

• Discrete analogue? Fix a discrete vector field aij = −aji and define the
rate r(β)j→i = exp(βaji/2).

dpt(i)

dt
= −

(
divJt

)
(i), with Jt(i, j) = −

(
rj→ipt(j)− ri→jpt(i)

)
.

We have

Jt(i, j) = −dpt(i, j) + βaij
1

2

(
pt(i) + pt(j)

)
+O(β2).

This provides a deformed “Laplacian” Lβ given by the rhs of

d

dt
pt(i) =

∑
j∈V

wij
(
pt(j)e

βaji/2 − pt(i)eβaij/2
)
, −(Lβpt)(i).
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Deformed gradient

The current is given by

Jt(i, j) = −
(

exp(βaji/2)pt(j)− exp(βaij/2)pt(i)
)

= −(dapt)(i, j)

“Covariance property”(
dae

αp
)

(i, j) = e
α(i)+α(j)

2

(
da−dαp

)
(i, j)

which is a discrete analogue of

−~∇(eαp)(x) + ~µ(x)(eαp)(x) = eα(x)
(
− ~∇p(x) +

(
~µ(x)− ~∇α(x)

)
p(x)

)
.

See also13.

13R. Kenyon, Ann. Probab., 39, 5 (2011)
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Diffusion with drift

The properties of the deformed Laplacian

Lβp(i) =
∑
j∈V

wij
(
p(i)eβaij/2 − p(j)eβaji/2

)
are:

- It is non-symmetric, but the real part of its eigenvalues is positive.

- There is a stationary distribution mβ such that Lβmβ = 0.

- By construction,
∑
i∈V Lβp(i) = 0.
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Diffusion with drift

Connection with a random walk:

Lβp(i) =
∑
j

p(j)rj
(
δi,j − Pβ(j → i)

)
,

where rj =
∑
k∈V wjkr

(β)
j→k and the transition matrix

Pβ(j → i) =
wjir

(β)
j→i∑

k∈V wjkr
(β)
j→k

with r(β)j→i = eβaji/2.

There exists a stationary distribution
∑
j π(j)Pβ(j → i) = π(i). Then, we

have
Lβmβ = 0

with
mβ(j) =

π(j)/rj∑
k∈V π(k)/rk

> 0.

The eigenvalues of Lβ depend on aij . More precisely, we have a Hodge
decomposition

a = dh+ aM .

We ask a detailed balance condition (Kolmogorov criterion), then
aij = −dU(i, j).
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Generator of the diffusion with drift

If aij = −dU(i, j), then the stationary distribution is the Boltzmann-Gibbs
measure

µβ(i) =
1

Zβ
e−βU(i), with Zβ =

∑
i∈V

e−βU(i),

and L†β is quasi-Hermitian14 (pseudo-Hermitian15), that is,

µ̂βL
†
β = Lβµ̂β .

with the Hermitian strictly positive operator µ̂β with matrix elements
µβ(i, j) = µβ(i)δi,j .

14J.-P. Antoine and C. Trapani, J. Math. Phys. 55, 013503 (2014)
15A. Mostafazadeh, J. Math. Phys. 43, 205-214 (2002)
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Generator of the diffusion with drift

The generator Lβ has non-negative eigenvalues 0 = λ0 < λ1 ≤ · · · ≤ λN−1

associated to real right-eigenvectors v` satisfying the orthonormality condition

〈v`|w`′〉 = δ`,`′

and we have v0 = µβ . Spectral representation

Lβ =

N−1∑
`=0

λ`|v`〉〈w`|

with bi-orthonormal basis of eigenvectors. More interestingly, we have the
resolution of the identity

N−1∑
`=0

|v`〉〈w`| = I.
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Graph wavelets drift

Let us choose two functions16 g1 : R+ → R and g2 : R+ → R such that
g1(0)g2(0) = 0 and satisfying∫ +∞

0

dt

t
g1(t)g2(t) = c12 <∞.

Then, two sets of spectral graph wavelets centered at i and of scale
parameter t > 0 are defined:

|Ψi,t〉 = g2(−tLβ)|δi〉 =

N−1∑
`=1

g2(−tλ`)w`(i)|v`〉.

and

|Φi,t〉 = g1(−tL
†
β)|δi〉 =

N−1∑
`=1

g1(−tλ`)v`(i)|w`〉.

16I. Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, 1992
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Graph wavelets drift

The resolution of the identity is given by

1

c12

∑
i∈V

∫ +∞

0

dt

t
|Ψi,t〉〈Φi,t| = I− |v0〉〈w0|,

in analogy with the bi-coherent states. 17 18(2 resolutions formulas) In the
sequel, we choose g(u) = u2 exp(−u2).

17J. Govaerts et al. J. Phys. A, 42(44):445304, 2009
18F. Bagarello, Geometric Methods in Physics, Trends in Mathematics pp 15-23, 2016
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Illustration
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Graph wavelet with drift

The drift is caused by a linear potential of the graph (regular grid).
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Deformation of a spectral graph wavelet

No deformation.
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Deformation of a spectral graph wavelet

Increasing the β parameter.
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Deformation of a spectral graph wavelet

Increasing the β parameter.
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Graph wavelet at various scales

Increasing the scale parameter t.
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Graph wavelet at various scales

Increasing the scale parameter t.
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Graph wavelet at various scales

Increasing the scale parameter t.
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Drifting wavelet
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Conclusions



Conclusions

• Study of directed diffusion maps.

• Design of novel graph kernels.

• Interest for signal processing?
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