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Introduction

It seems that the isotropy of space is dynamically unstable
towards the big-bang singularity1.
If the present Universe originated from an inflationary phase, then
the pre-inflationary universe is supposed to have been both
inhomogeneous and anisotropic.
Numerical evidence2 suggests that the dynamics of such universe
backwards in time becomes ultralocal: approximately identical
with the homogeneous but anisotropic one at each spatial point.
Therefore an anisotropic model, comprising the Friedmann model
as a particular case, is expected to be better suited for describing
the earliest Universe.
Mixmaster universe, Bianchi IX model, has sufficient generality.

1V. A. Belinskii, I. M. Khalatnikov and E. M. Lifshitz, Adv. Phys. 19, 525 (1970).
2D. Garfinkle, Phys. Rev. Lett. 93, 161101 (2004).
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Introduction (cont)
The Mixmaster describes the space-time metric:

ds2 = −dt2 + a2(e2β)ijσ
iσj (1)

σi are differential forms on a three-sphere, satisfying
dσi = 1

2εijkσ
j ∧ σk .

The diagonal form of the metric is assumed in the absence of
matter or for simple fluids:

(e2β)ij := diag (e2(β++
√

3β−),e2(β+−
√

3β−),e−4β+),

where
β± are distortion parameters, a is the averaged scale factor:

β+ = ln
a3√
a1a2

, β− =
1

2
√

3
ln

a1

a2
, a = 3

√
a1a2a3

a1, a2, a3 being the anisotropic scale factors.
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Introduction (cont): Mixmaster universe

The canonical description of diagonal Bianchi IX model is given in
terms of Misner’s variables3.
The dynamics resembles motion of a particle in a
three-dimensional Minkowskian space-time and in a
space-and-time-dependent confining potential.
The spatial coordinates β± of this particle describe the distortion
to the spherical shape.
The particle is moving in a potential representing the curvature of
spatial geometry, undergoing infinitely many oscillations.

3C. W. Misner, Phys. Rev. Lett. 22, 1071 (1969); Phys. Rev. 186, 1319 (1969).
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Classical Bianchi IX potential

The potential of the Bianchi IX model has the form

Vn(β) = n2 e4β+

3

[(
2 cosh(2

√
3β−)− e−6β+

)2
− 4
]

+ n2 ,

where n is the structure constant and may be put n = 1 in the
subsequent considerations

Equivalent form more suitable to the subsequent considerations:

V (β) =
1
3

[
2e4β+

(
e4
√

3β− + e−4
√

3β−
)
− 2e4β+

(
e2
√

3β− + e−2
√

3β−
)

+e−8β+ − 2e4β+
]

+ 1.
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Classical Bianchi IX potential
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Figure: The plot of Bianchi IX potential near its minimum.

This potential has three “open” C3v symmetry directions.
They can be viewed as three deep “canyons”, increasingly narrow
until their respective wall edges close up at the infinity whereas
their respective bottoms tend to zero.
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Comment on Bianchi IX potential

V (β) is bounded from below and reaches its minimum value,
V (β) = −n2, at β± = 0.

V (β) is expanded around its minimum as follows (harmonic
approximation)

V (β) = −n2 + 8n2(β2
+ + β2

−) + o(β2
±) .

V (β) is asymptotically confining except for the following three directions ,
in which V (β)→ 0:

(i) β− = 0, β+ → +∞, (ii) β+ = − β−√
3
, β− → +∞,

(iii) β+ =
β−√

3
, β− → −∞
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Comment on Bianchi IX potential

The motion of the Misner particle in this potential is chaotic:
though the curvature, which is proportional to the potential,
flattens with time, the confined particle undergoes infinitely many
oscillations.
In the so-called steep wall approximation, the particle is locked in
the triangular potential with its infinitely steep walls moving apart
in time. At the quantum level, the confining shape originates a
discrete spectrum.
On the other hand, it is unclear (but probably not) whether or not
the Bianchi-IX potential also originates a continuum spectrum.
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The idea is to attempt to regularize a potential itself, by applying
the Weyl-Heisenberg quantization scheme.
We expect this procedure should smooth out the potential,
specially problematic escape canyons, which can give contribution
to non-discrete spectrum of the quantum model.
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Weyl-Heisenberg integral quantization
From the resolution of the identity obeyed by the operator-valued
function Q(r̂) on phase space R2 = {(q,p) ≡ r̂}∫

R2
Q(r̂)

d2r̂
2πcQ0

= I , Q(r̂) = U(r̂)Q0U(r̂)†

where U(r̂) = ei(pQ−qP), [Q,P] = i ~I ≡ i I is the unitary
displacement operator and Q0 an operator, the choice of it is left
to us provided that 0 < cQ0 <∞

Equipped with one choice of Q0, the corresponding WH covariant
integral quantization reads

f (r̂) 7→ Af =

∫
R2

f (r̂)Q(r̂)
d2r̂

2πcQ0

Quantization based on Q0 is only possible IF Q0 is trace class, i.e.
Tr(Q0) is finite
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Weight or “apodization” function, WH transform, and
constant cQ0

Introduce the “WH-transform” of operator Q0 and its inverse

Π(r̂) = Tr (U(−r̂)Q0) ⇔ Q0 =

∫
R2

U(r̂) Π(r̂)
d2r̂
2π

where P = P−1 is the parity operator defined as PU(r̂)P = U(−r̂)

The function Π(r̂) is like a weight, or better, an apodization, on the
plane, which determines the extent of our coarse graining of the
phase space

The value of constant cQ0 derives from the above

cQ0 = Tr (Q0) = Π(~0)
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Alternative quantization formula through symplectic
Fourier transform

Symplectic Fourier transform

Fs[f ](r̂) =

∫
R2

e−îr∧~r′ f (~r′)
d2~r′

2π

It is involutive, Fs [Fs[f ]] = f like its “dual” defined as
Fs[f ](r̂) = Fs[f ](−r̂)

Equivalent form of WH integral quantization

Af =

∫
R2

U(r̂)Fs[f ](r̂)
Π(r̂)

Π(~0)

d2r̂
2π
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Permanent issues of WH covariant integral quantizations

Canonical commutation rule is preserved

Aq = Q + c0 , Ap = P + d0 , c0,d0 ∈ R ,⇒ [Aq,Ap] = iI ,

Kinetic energy

Ap2 = P2 + e1 P + e0 , e0,e1 ∈ R

Dilation
Aqp = Aq Ap + if0 , f0 ∈ R

Potential energy is multiplication operator in position
representation

AV (q) = V(Q) , V(Q) =
1√
2π

V ∗ F [Π(0, ·)](Q)

where F is the inverse 1-D Fourier transform

If F (r̂) ≡ h(p) is a function of p only, then Ah depends on P only

Ah =
1√
2π

h ∗ F [Π(·,0)](P) .

Ewa Czuchry (NCBJ) Integrable part of the regularized Mixmaster Marseille, November 14, 2016 13 / 23



WH Integral quantization of the anisotropic part

For each canonical pair (β±,p±) we choose separable Gaussian
weights

Π(β±,p±) = e
−

β2
±

2σ2
± e
−

p2
±

2τ2
±

which yield manageable formulae with familiar probabilistic
content
The “limit” Weyl-Wigner case holds as the widths σ± and τ± are
infinite (Weyl-Wigner is singular in this respect!)
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WH Integral quantization of the anisotropic part (cont.)

It results in the quantized form of the Bianchi IX potential (as a
multiplication operator)

AV (β) =
1
3

(
2D4

+D12
− e4β+ cosh 4

√
3β− − 4D+D3

−e−2β+ cosh 2
√

3β−

+D16
+ e−8β+ − 2D4

+e4β+
)

+ 1,

where D± := e
2

σ2
±

The original Bianchi IX potential V (β) ≡ V (β+, β−) is recovered
for D+ = 1 = D−, thus for weights σ+, σ− →∞.
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Regularized BIX potentials after quantization
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Plot of the original Bianchi IX potential V (β) (top) and its regularized
version after quantization, near its minimum, for sample values
D+ = 1.1, D− = 1.4.

The original escape canyons became regularized and the whole
potential is now fully confining.
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Regularized BIX potentials after quantization (cont.)

However the potential has become anisotropic in the variables β+
and β− and its minimum is shifted from the (0,0) position, namely
it is at the (β0,0) point, where the value β0 is obeys

−D16
+ e−8β0 + D+D3

−e−2β0 − D4
+e4β0 + D4

+D12
− e4β0 = 0

arriving from the condition ∂AV (β+,β−)/∂β+ = 0 for (β0,0).
Condition ∂AV (β+,β−)/∂β− = 0 is fulfilled automatically at this
point.
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After suppressing shift of the minimum
Imposing anisotropy or no shift condition yields the same result D+ = D−, which
also preserves C3v symmetry.

The resulting potential reads as

AV (β+,β−) =
1
3

(
D16

+

(
2e4β+ cosh 4

√
3β− + e−8β+

)
−D4

+

(
4e−2β+ cosh 2

√
3β− − 2e4β+

))
+ 1

The form of this potential is shown on the picture below. Direct verification shows
it is invariant with respect to rotations by 2π/3 and 4π/3.
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Proximity to an integrable system

The regularized potential may be viewed as perturbation of the
following integrable one:

A0 =
1
3

(
2D16

+ e4β+ cosh 4
√

3β− + D16
+ e−8β+

)
+ 1

with A1 = D4
+

(
4e−2β+ cosh 2

√
3β− − 2e4β+

)
. Indeed direct

verification shows that
∣∣∣ A1

A0−1

∣∣∣ ≤ 2D−12
+ � 1.
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Proximity to an integrable system

Thus in the first order of approximation we deal with Hamiltonian
of the following form:

H0 =
1
2

(p2
+ + p2

−) +
D16
+

3

(
2e4β+ cosh 4

√
3β− + e−8β+

)
+ 1

=
1
2

(p2
+ + p2

−) +
D16
+

3

(
e4(β++

√
3β−) + e4(β+−

√
3β−) + e−8β+

)
+ 1

Let us introduce new non-intuitive coordinates 4 as follows:

q3 − q2 := 4(β+ +
√

3β−), q1 − q3 := 4(β+ −
√

3β−),
q2 − q1 := −8β+,

and corresponding momenta pi .

4M. Berry, Topics in Nonlinear Mechanics, ed. S Jorna, Am. Inst. Ph. Conf. Proc
No. 46 1978, 16-120
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Liouville integrable Hamiltonian
First approximation Hamiltonian H0 may be rewritten in terms of
those coordinates as follows:

H0 =
1
2

(p2
1 + p2

2 + p2
3) +

D16
+

3
(
eq3−q2 + eq1−q3 + eq2−q1

)
+ 1.

The system described by the above Hamiltonian is a well known
the three particle periodic Toda lattice, up to multiplication
coefficient.
It is the simplest non trivial crystal consisting of three particles
moving on a ring and interacting via exponential forces.

1

2

3

q2 − q1

q3 − q2
q1 − q3

Ewa Czuchry (NCBJ) Integrable part of the regularized Mixmaster Marseille, November 14, 2016 21 / 23



Liouville integrable Hamiltonian

This system has three independent conserved quantities: total
momentum, energy and a third invariant:

K = −p1p2p3 + aD16
+

(
p1eq3−q2 + p2eq1−q3 + p3eq2−q1

)
,

where a is an arbitrary coefficient.
We know that 2D system is Liouville-integrable if we can find a
first integral K different of the energy, that is a function K 6= f (H)
on phase space such as {H,K} = 0.
Thus the above system is completely integrable, with complete
solution given by e.g. M. Kac M and P van Moerbeke, A complete
solution of the periodic Toda problem. Proceedings of the National
Academy of Sciences of the United States of America, 1975;
72(8), 2879-2880.
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Future prospects

Classical solutions of the periodic Toda lattice give rise to solving
dynamic of the Bianchi IX model in the first order of approximation.
The quantization of a three particle Toda system should provide
the spectrum of the main, integrable part of the quantum Bianchi
IX. There exist numerical simulations 5 for canonical quantization
and Taylor expansion of the Toda potential.
The full quantum Mixmaster might be obtained by adding the
second order part of the potential as a perturbation to the existing
solutions.
The work is in progress.

5S. Isola, H. Kantz and R. Livi, On the quantization of the three-particle Toda
lattice, Journal of Physics A, 24 24 (1991), 3061
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