NEW APPLICATIONS OF COHERENT STATES IN QUANTUM INFORMATION

Giulio Chiribella

Department of Computer Science, The University of Hong Kong, CIFAR-Azrieli Global Scholars Program, QIS

Coherent States and their applications: a contemporary panorama November 14-18, 2016, CIRM Marseille

CANADIAN INSTITUTE FOR ADVANCED RESEARCH

National Natural Science Foundation of China

Which applications?

1) State transformation games: what is the best way to turn a given input into a desired output?

2) Quantum benchmarks: how to certify a quantum advantage?

APPLICATION 1:

STATE TRANSFORMATION GAMES

State transformation games

and the second second

X HE WERE AND

A Referee prepares a quantum system in a random state and sends it to a Player, who has to return an output state.

The Referee then tests the output state and assigns score 1 if the test is passed and 0 otherwise. Player

 $\mathcal{I}_{\mathcal{X}}$

pass

Quantum machine

Referee

Test x

fail

Mathematical description

• Random input state: ensemble $\{\rho_x, p_x\}_{x \in X}$

- Test x: binary POVM $\{T_x, I T_x\}$
 - Average payoff: $F = \sum_{x \in X} p_x \operatorname{Tr}[T_x \widetilde{\rho}_x]$

Examples

• Preserving pure states:

$$\rho_x = |\psi_x\rangle \langle \psi_x|$$
$$T_x = |\psi_x\rangle \langle \psi_x|$$

• Making copies: $\rho_x = (|\psi_x\rangle\langle\psi_x|)^{\otimes N}$ $T_x = (|\psi_x\rangle\langle\psi_x|)^{\otimes M}$

• Amplifying coherent states

$$\rho_{\alpha} = |\alpha\rangle \langle \alpha|$$

$$T_{\alpha} = |g \alpha\rangle \langle g \alpha|, \qquad g > 1$$

The player wants to maximize her payoff. *What is the best strategy*?

 Strategy: physical transformation Mathematically: completely positive, trace-preserving map

$$\mathcal{C}: \operatorname{St}(\mathcal{H}_{in}) \to \operatorname{St}(\mathcal{H}_{out})$$

- Output state: $\widetilde{\rho}_{\mathcal{X}} := \mathcal{C}(\rho_{\mathcal{X}})$
- Maximum payoff: $F_Q := \max_{\mathcal{C}} \sum_{x} p_x [T_x \mathcal{C}(\rho_x)]$

The maximum payoff

Optimizing over all physical transformations, the Player can reach the payoff

$$F_Q = \min_{\sigma > 0, \operatorname{Tr}[\sigma]=1} \left\| (I_{out} \otimes \sigma^{-\frac{1}{2}}) \Omega \left(I_{out} \otimes \sigma^{-\frac{1}{2}} \right) \right\|_{\infty}$$

$$\Omega := \sum_{x} p_x T_x \otimes \rho_x^T \qquad \text{"game operator"}$$

where $||A||_{\infty} := \max_{||\Psi\rangle||=1} \langle \Psi|A|\Psi\rangle$, $A \ge 0$

Koenig, Renner, Schaffner, IEEE Trans. Inf. Th. 55, 4337 (2009) Chiribella and Xie, PRL 110, 213602 (2013)

Variant: games with abstention

Now the Referee gracefully grants the Player the right to pass, as many times as she wants.

• Strategy: *probabilistic* transformation

 $|\psi
angle \qquad {Probabilistic} \ {Machine}$

Mathematically: completely positive, trace non-increasing map ${\cal P}$

• Maximum payoff $F_Q^{\text{prob}} := \sup_{\mathcal{P}} \frac{\sum_x p_x \operatorname{Tr}[T_x \mathcal{P}(\rho_x)]}{\sum_x p_x \operatorname{Tr}[\mathcal{P}(\rho_x)]}$

The maximum payoff

Optimizing over all probabilistic transformations, the Player can reach the payoff

$$F_Q^{prob} = \left\| (I_{out} \otimes \rho^{-\frac{1}{2}})^T \ \Omega \ (I_{out} \otimes \rho^{-\frac{1}{2}})^T \right\|_{\infty}$$
$$\mathbf{\Omega} := \sum n \ T \ \otimes \ n^T$$

$$\Omega := \sum_{x} p_{x} T_{x} \otimes \rho_{x}^{*}$$
$$\rho := \sum_{x} p_{x} \rho_{x}$$

Chiribella and Xie, PRL 110, 213602 (2013)

EXAMPLE:

AMPLIFYING COHERENT STATES OF THE HARMONIC OSCILLATOR

Amplifying coherent states of light

Coherent state: $|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$ $\alpha \in \mathbb{C}$

Ideally we wish to transform $|\alpha\rangle$ into $|g\alpha\rangle$, g > 1 ("amplifier gain")

Modelling the source

To model the source of coherent states we assume a Gaussian distribution:

$$p_{\lambda}(\alpha) = \lambda e^{-\lambda |\alpha|^2}$$

with this choice the expected photon number is $\,\langle n
angle = 1/\lambda\,$

 λ represents our prior information about the input:

 $\lambda = 0 \implies$ no information

 $\lambda = \infty \quad \Rightarrow \quad \text{complete information}$

No perfect amplification

The transformation $|\alpha\rangle \rightarrow |g\alpha\rangle \qquad \forall \alpha \in \mathbb{C}$ is not physically realizable.

For good reasons:

- it would violate the uncertainty principle
- it would lead to faster-than-light communication
- it would violate the no-cloning theorem

How can we approximate amplification with a physical process allowed by quantum mechanics?

Approximate amplification

Most popular example: parametric amplifier

$$\mathcal{C}_{r}(\rho) = \operatorname{Tr}_{B}[e^{r(a^{\dagger}b^{\dagger}-ab)}(\rho \otimes |0\rangle\langle 0|)e^{-r(a^{\dagger}b^{\dagger}-ab)}]$$

two-mode squeezing operator

ancillary mode in the vacuum state

For the input $|\alpha\rangle$ the output is a thermal state displaced by $g\alpha$, $g = \cosh r$

The best deterministic amplifiers

Theorem (Namiki 2008,GC-Xie 2013): the best deterministic amplifiers are two-mode squeezing processes with squeezing parameter depending on the amount of information about the input.

The maximum fidelity that can be achieved using two-mode squeezing is given by

$$F_{g,\lambda}^{opt} = \begin{cases} \frac{\lambda+1}{g^2}, & \lambda \leq g-1 & \text{amplification of } \frac{g}{\lambda+1} \\ \frac{\lambda}{\lambda+(g-1)^2}, & \lambda > g-1. & \text{no amplification at all (!)} \end{cases}$$

critical behaviour at the value $\lambda_c^{det} = g - 1$

The best probabilistic amplifiers

Dramatic effect of the critical value: When the prior information is larger than the critical value, nearly perfect amplification becomes possible!

$$F_{g,\lambda}^{prob} = \begin{cases} \frac{\lambda+1}{g^2}, & \lambda \leq g^2 - 1\\ 1 & \lambda > g^2 - 1. \end{cases}$$

critical behaviour at the value $\ \lambda_c^{prob} = g^2 - 1$

Chiribella and Xie, PRL 110, 213602 (2013)

The importance of the prior information

The dramatic difference between deterministic and probabilistic amplifiers discovered here is a genuine effect of the finite photon number.

In the idealized scenario of "no prior information" ($\lambda = 0$) there is no difference! The best amplifier is just two-mode squeezing and has fidelity

$$F_{g,\lambda=0}^{opt} = \frac{1}{g^2}$$

How to achieve unit fidelity?

Ralph and Lund (2008) proposed a probabilistic scheme that achieves almost perfect amplification.

$$Q_N(\rho) = Q_N \rho Q_N^{\dagger} \quad Q_N := \sum_{n=0}^N \frac{g^n}{g^N} |n\rangle \langle n|$$

For large N: $Q_N(|\alpha\rangle\langle\alpha|) \approx |g\alpha\rangle\langle g\alpha|$

(caveat: the probability of success drops exponentially)

Probabilistic amplifiers in the lab

N Bruno, V Pini, A Martin and R T Thew¹

PUBLISHED ONLINE: 28 MARCH 2010 | DOI: 10.1038/NPHOTON.2010.35

photonics

nature

Heralded noiseless linear amplification and distillation of entanglement

G. Y. Xiang¹, T. C. Ralph², A. P. Lund^{1,2}, N. Walk² and G. J. Pryde^{1*}

LETTERS PUBLISHED ONLINE: 15 AUGUST 2010 | DOI: 10.1038/NPHYS1743

Noise-powered probabilistic concentration of phase information

Mario A. Usuga^{1,2†}, Christian R. Müller^{1,3†}, Christoffer Wittmann^{1,3}, Petr Marek⁴, Radim Filip⁴, Christoph Marquardt^{1,3}, Gerd Leuchs^{1,3} and Ulrik L. Andersen^{2*}

ARTICLES PUBLISHED ONLINE: 21 NOVEMBER 2010 | DOI: 10.1038/NPHOTON.2010.260 nature photonics

A high-fidelity noiseless amplifier for quantum light states

A. Zavatta^{1,2}, J. Fiurášek³ and M. Bellini^{1,2}*

QUANTUM BENCHMARKS

How to certify genuine quantum information processing?

Suppose that you have an experimentalist friend who claims that she built a device that implements a *quantum* strategy for certain state transformation game.

How can she prove her claim?

Unfortunately, there are experimental imperfections and the actually fidelity is smaller than the optimal fidelity...

Classical strategies: measure and prepare (m&p)

"Classical way": processing via measurement information about the input state is extracted by a measurement, the output state copies is prepared based on this information

Mathematical formulation

Classical strategies: measure-and-prepare channels

• Measurement: POVM

$$\{P_y\}_{y \in \mathsf{Y}}, \quad P_y \ge 0 \,\forall y \in \mathsf{Y}, \quad \sum_{y \in \mathsf{Y}} P_y = I$$

- Measure-and-prepare channel
$$\mathcal{C}(\rho) := \sum_{y \in \mathbf{Y}} \, \widetilde{\rho}_y \, \mathrm{Tr}[P_y \, \rho]$$

• Quantum benchmark:

$$F_{MP} = \sup_{\{P_y\},\{\widetilde{\rho}_y\}} \sum_{x,y} p_x \operatorname{Tr}[T_x \widetilde{\rho}_y] \operatorname{Tr}[P_y \rho_x]$$

Quantum benchmark

$$F_{MP} = \min_{\sigma > 0, \operatorname{Tr}[\sigma]=1} \left\| (I_{out} \otimes \sigma^{-\frac{1}{2}}) \Omega \left(I_{out} \otimes \sigma^{-\frac{1}{2}} \right) \right\|_{\times}$$

$$\Omega := \sum_{x} p_x T_x \otimes \rho_x^T$$

where $||A||_{\times} := \max_{||\psi\rangle||=||\psi\rangle||=1} \langle \varphi |\langle \psi |A|\varphi\rangle |\psi\rangle \quad A \ge 0$ Chiribella and Xie, PRL 110, 213602 (2013)

Probabilistic benchmarks

Suppose that the Player is allowed to pass.

Mathematically: POVM

$$\{P_y\}_{y \in \mathbf{Y}} \cup \{P_{\text{pass}}\}$$
$$\sum_{y \in \mathbf{Y}} P_y + P_{\text{pass}} = I$$

What is the maximum payoff?

$$\begin{split} F_{MP}^{prob} &= \left\| (I_{out} \otimes \rho^{-\frac{1}{2}})^T \ \Omega \ (I_{out} \otimes \rho^{-\frac{1}{2}})^T \right\|_{\times} \\ \Omega &:= \sum_x p_x \ T_x \otimes \rho_x^T \qquad \rho := \sum_x p_x \ \rho_x \ \rho_x \end{split}$$

Chiribella and Xie, PRL 110, 213602 (2013)

QUANTUM BENCHMARKS FOR GILMORE-PERELOMOV COHERENT STATES

Yang, Chiribella, and Adesso, PRA 90, 042319 (2014) Chiribella and Adesso, Phys. Rev. Lett. 112, 010501 (2014)

Gilmore-Perelomov CS

Gilmore-Perelomov coherent states (GPCS):

$$|\psi_g\rangle := U_g |\psi\rangle \qquad g \in \mathsf{G}, \ U = \mathrm{irrep}$$

(quotient w.r.t. stabilizer implicit)

• Mutually coherent GPCS: two families of GPCS $\{|\varphi_g\rangle\}$ and $\{|\psi_g\rangle\}$ are mutually coherent if $\{|\varphi_g\rangle \otimes |\psi_g\rangle\}$ is a family of GPCS

GPCS state transformation games **Player** Referee

 $\{ \left| \phi_g \right\rangle, dg \}$

input ensemble
(limit of "uniform prior")

 $\{ |\psi_g\rangle \langle \psi_g| \,, I - |\psi_g\rangle \langle \psi_g| \}$ test g

The benchmark

If $\{|\varphi_g\rangle\}$ and $\{|\psi_g\rangle\}$

are mutually coherent GPCS

then

• the quantum benchmark is $F_{MP} = \frac{J^{-\alpha g}}{2}$

$$\frac{\int dg |\langle \phi | \phi_g \rangle|^2 |\langle \psi | \psi_g \rangle|^2}{\int dg |\langle \phi | \phi_g \rangle|^2}$$

- the optimal measurement has POVM $P_g = |\varphi_g\rangle\langle\varphi_g|$
- the optimal state preparation is $\ket{\psi_q}$

Example 1: benchmark for quantum copy machines

State transformation game: given N copies of a completely unknown pure state produce M≥N copies of the same quantum state

Quantum benchmark:

$$F_{MP}(N \to M) = \prod_{k=1}^{d-1} \frac{N+k}{N+M+k}$$

Example 2: quantum benchmark for coherent state modulation

 $\begin{array}{l} \mbox{State transformation game: given a coherent state } \left| \alpha \right\rangle \\ \mbox{transform it into the state } \left| g \alpha \right\rangle, \quad g \geq 0 \end{array}$

- g>1 ----- amplification
- g=1 \longrightarrow storage/transmission of the coherent state $|\alpha\rangle$
- g<1 -----> attenuation

Quantum benchmark: $F_{MP}(g) = \frac{1}{1+q^2}$

Recovers

Hammerer, M. M. Wolf, E. S. Polzik, and J. I. Cirac, PRL 94, 150503 (2005) Namiki, Koashi, Imoto, PRL 101,100502 (2008).

Including prior information

So far, we considered the limit of "uniform prior distribution".

What about the realistic case where the input GPCS have a non-uniform prior?

Good priors:

$$p_{\lambda}(g) = d_{\lambda} |\langle \lambda | \lambda_g \rangle|^2 \qquad d_{\lambda} = \left(\int dg |\langle \lambda | \lambda_g \rangle|^2 \right)^{-1}$$

Example: gaussian prior $p_{\lambda}(\alpha) = \lambda e^{-\lambda |\alpha|^2} = d_{\lambda} |\langle 0|\lambda \alpha \rangle|^2$

The probabilistic benchmark

If $\{|\phi_g\rangle\}$, $\{|\psi_g\rangle\}$, and $\{|\lambda_g\rangle\}$

are mutually coherent GPCS

then

the probabilistic quantum benchmark is

$$F_{MP} = \frac{\int dg \, p_{\lambda}(g) \, |\langle \phi | \phi_g \rangle|^2 \, |\langle \psi | \psi_g \rangle|^2}{\int dg \, p_{\lambda}(g) \, |\langle \phi | \phi_g \rangle|^2}$$

Example 1: coherent state modulation

 $\begin{array}{l} \mbox{State transformation game: given a coherent state } \left| \alpha \right\rangle \\ \mbox{transform it into the state } \left| g \alpha \right\rangle, \quad g \geq 0 \end{array}$

Probabilistic benchmark:

$$F_{MP}(g,\lambda) = \frac{1+\lambda}{1+g^2+\lambda}$$

(accidentally, this benchmark can be achieved with deterministic operations)

Comparison with experiment

Experiment designed to demonstrate high-fidelity probabilistic amplification with gain g = 2.

Values tested in the experiment: $|\alpha| \approx 0.4/0.7/1.0$ Experimental fidelities: $F_{exp} \approx 0.99/0.91/0.67$

Reasonable choice of $\lambda:\ \lambda=3$ gives the quantum benchmark

 $\widetilde{F}_{g=2,\lambda=3} = 50\%$

passed by the experiment (although more data would be needed...)

Nature Photonics 5, 5260 (2011)

Example 2: storage/transmission/ cloning of qubit states

State transformation game: given N copies a qubit state $|\theta, \varphi\rangle := \cos \frac{\theta}{2} |0\rangle + e^{-i\varphi} \sin \frac{\theta}{2} |1\rangle$ produce M copies of the same state.

Probability distribution:

$$p_{\beta}(d\theta, d\varphi) = (\beta + 1) \left(\cos\frac{\theta}{2}\right)^{2\beta + 1} \sin\frac{\theta}{2} d\theta \frac{d\varphi}{2\pi}$$

 $F^{(}$

Probabilistic benchmark:

$$S^{(2)}(\beta) = \frac{N+\beta+1}{M+N+\beta+1}$$

Example 2: d-dimensional states

State transformation game: given N copies an unknown state $|\psi\rangle\in\mathbb{C}^d$

produce M copies of the same state.

Probability distribution:

$$p_{\beta}(\psi) = d_{\beta} |\langle 0|\psi\rangle|^{\beta}$$

Probabilistic benchmark:

$$F_{MP}^{(d)}(\beta) = \prod_{k=1}^{d-1} \frac{N+\beta+k}{N+M+\beta+k}$$

Example 5: squeezed vacuum states

State transformation game:

given N copies an unknown squeezed vacuum state

 $|\xi\rangle := S(\xi) |0\rangle, \qquad S(\xi) = e^{\xi \left(a^{\dagger}\right)^2 - \overline{\xi}a^2}$

produce M copies of the same state.

Probability distribution: $p_{\beta}^{S}(\xi) = \frac{p_{\beta}(s)}{2\pi}, \text{ with } p_{\beta}(s) = \frac{\beta \sinh s}{(\cosh s)^{\beta+1}}$ Probabilistic benchmark: $F_{MP}(\beta) = \frac{N+\beta}{N+M+\beta} \begin{array}{c} p_{\beta} & s := |\xi| \\ 0.8 \\ 0.4 \\ 0.2 \\ 0.0 \end{array}$

Example 6: squeezed one-photon states

State transformation game:

given N copies an unknown squeezed one-photon state $S(\xi)|1\rangle$ produce M copies of the same state.

Probabilistic distribution: same as before

Probabilistic benchmark: $F_{MP}(\beta) = \frac{3N + \beta}{3(N + M) + \beta}$

Application: teleportation of cat states.

Example 7: single-mode Gaussian states

State transformation game: given N copies an unknown single-mode Gaussian state $|\alpha, \xi\rangle := D(\alpha)S(\xi)|0\rangle$

produce M copies of the same state.

CONCLUSIONS & OPEN DIRECTIONS

Conclusion

 State transformation games: a general framework for many quantum tasks

GPCS appearing naturally in many of them

 Quantum benchmarks: how to certify quantum advantages.

general expressions for GPCS that are coherent to each other Benchmarks for teleportation, cloning, storage, and transmission.

• Open problems: gate simulation games different type of "coherent states" playing a role there.

THANKS FOR YOUR ATTENTION