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1) State transformation games:  
   what is the best way to turn a given input  
   into a desired output?

 
2) Quantum benchmarks:  
    how to certify a quantum advantage? 

Which applications?



APPLICATION 1: 

STATE TRANSFORMATION
GAMES



State transformation games

A Referee prepares a 
quantum system in a 
random state and sends it 
to a Player, 
who has to return an 
output state.
 
The Referee then tests the 
output state and assigns 
score 
1 if the test is passed and 
0 otherwise.

Referee

Player

Quantum
machine

Test x

pass fail



Mathematical description

• Average payoff:

• Random input state:        ensemble

• Test x:           binary POVM



Examples

• Preserving pure states:

• Making copies:

• Amplifying coherent states



Strategies
The player wants to maximize her payoff. 
What is the best strategy?

• Strategy:   physical transformation   
                   Mathematically: completely positive, trace-preserving map

• Output state:

• Maximum payoff:



The maximum payoff
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Optimizing over all physical transformations, 
the Player can reach the payoff 

where kAk1 := max

k| ik=1
h |A| i , A � 0

Koenig, Renner, Schaffner, IEEE Trans. Inf.Th. 55, 4337 (2009)  
Chiribella and Xie, PRL 110, 213602 (2013)

“game operator”



Now the Referee gracefully grants the Player the right to pass,
as many times as she wants.  

Variant: games with abstention

• Strategy:   probabilistic transformation

sorry,
failure| i| i Probabilistic

Machine

• Maximum payoff
    (conditional)

Mathematically: completely positive, trace non-increasing map



The maximum payoff
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Optimizing over all probabilistic transformations, 
the Player can reach the payoff 

Chiribella and Xie, PRL 110, 213602 (2013)
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EXAMPLE:

AMPLIFYING 
COHERENT STATES
OF THE HARMONIC 

OSCILLATOR



Amplifying coherent states of light

Coherent state:

|�� = e�|�|2/2
⇥X

n=0

�n

⇥
n!

|n�
↵ 2 C

Ideally we wish to transform        into                       (“amplifier gain”)|↵� |g��, g > 1



Modelling the source

To model the source of coherent states we assume a 
Gaussian distribution:  

p�(�) = ⇥e��|↵|2

with this choice the expected photon number is hni = 1/�

� represents our prior information about the input:             

� = 0 ) no information

� = 1 ) complete information



For good reasons:

• it would violate the uncertainty principle  
• it would lead to faster-than-light communication  
• it would violate the no-cloning theorem  
• ...  

The transformation 
is not physically realizable. 

|�⌅ � |g�⌅ ⇤� ⇥ C

How can we approximate amplification with a physical process 
allowed by quantum mechanics?  

No perfect amplification



Most popular example: parametric amplifier
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Let us first state the problem of finding the op-
timal amplifiers. The most general physical process
that can be used to amplify an unknown state |�⇧ =

e�|�|2/2⌦⇤
n=0 �

n/n!|n⇧ will be described by a quantum
channel (completely positive trace-preserving map) C.
The ideal target of the amplifier is to transform the input
state |�⇧ into the the output state |g�⇧, where g > 1 is
the desired amplification gain. The success of the ampli-
fier on a particular input can be measured by the fidelity
F� := ⌅g�|C(|�⇧⌅�|)|g�⇧, namely the probability that
the output state passes a test set up by a verifier who
knows �. If all coherent states |�⇧ were equally likely,
then the best amplifier would be the one that maximizes
the worst-case fidelity Fg,wc = inf�⌅C Fg,�. In this sce-
nario, one can easily show that the maximum fidelity is
Fmax
g,wc = 1/g2 and that is achieved by two-mode squeezer,

given by the quantum channel

Cr(⇧) = TrB [e
r(a†b†�ab)(⇧⇥ |0⇧⌅0|)e�r(a†b†�ab)], (1)

where r is the squeezing parameter, a and b are the anni-
hilation operators of the input mode and of an ancillary
mode, respectively, TrB denotes the partial trace over
the Hilbert space of the ancillary mode, and |0⇧ is the
vacuum state. Precisely, the optimal value of the squeez-
ing parameter is r = cosh�1 g. However, the assumption
that all coherent states are equally likely is highly un-
physical: in practice, there is always an upper bound on
the number of photons that can be produced by a re-
alistic device. To model this situation, we choose here
a Gaussian probability distribution for the input states,
denoted by p⇥(�) = ⇤e�⇥|�|2 , normalized with respect to
the measure d2�/⌅. With this choice, the expected pho-
ton number is ⇥ = 1/⇤ and a coherent state with more
than n⇥ = 9/2⇤ photons is unlikely to occur. The best
amplifier is the one that maximizes the average fidelity

Fg,⇥ =

�

�⌅C

d2�

⌅
p⇥(�)Fg,�. (2)

Let us first establish the performances that can be
achieved using two-mode squeezing. Computing the aver-
age fidelity and optimizing over the value of the squeezing
parameter we obtain [23]

F opt
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Note that the fidelity is a continuous function of both g
and ⇤, although at the critical value ⇤c = g � 1 there is
a discontinuity in the first derivative. The critical value
⇤c = g� 1 separates two qualitatively di⇤erent domains:
for ⇤ ⇤ ⇤c the optimal amount of squeezing in Eq. (1) is

r = cosh�1
⇥

g
⇥+1

⇤
, while for all values ⇤ > ⇤c the opti-

mal value is r = 0, corresponding to no squeezing at all.
In other words, when the prior information about the in-
put state is large (compared to the desired gain) there

is no genuine amplifier based on two-mode squeezing:
quite paradoxically, the best amplifying strategy consists
in leaving the state unamplified. In the case of cloning,
this fact was noted by Cochrane, Ralph, and Dolińska
in Ref. [15], who considered cloning processes based on
two-mode squeezing.
We now prove that no physical process can have bet-

ter amplifying performances than two-mode squeezing.
First, we provide a general upper bound on the fidelity
of an arbitrary amplifier, without invoking Gaussianity
or any other simplifying assumption.

Lemma 1 Every physical process has amplification fi-
delity upper bounded by

Fg,⇥ ⇤⌃Ag,⇥,⌅⌃⇤
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where ⌃ is any quantum state satisfying ⌃ > 0,
⌃Ag,⇥,⌅⌃⇤ denotes the operator norm ⌃Ag,⇥,⌅⌃⇤ :=
sup⇧�⇧=1⌅⇥|Ag,⇥,⌅|⇥⇧, and �̄ denotes the complex con-
jugate.

Proof. We have

Fg,⇥ =

�

�⌅C

�

i⌅X

p⇥(�) ⌅g�|C
⇥
⌃̄

1
2 ⌃̄� 1

2 |�⇧⌅�|⌃̄� 1
2 ⌃̄

1
2

⇤
|g�⇧

=

�

�⌅C
p⇥(�) Tr[|g�⇧⌅g�|⇥ ⌃� 1

2 |�̄⇧⌅�̄|⌃� 1
2�C ]

= Tr[Ag,⇥,⌅�C ],

where �C is the quantum state defined by

⌅k|⌅l|�C |m⇧|n⇧ := ⌅k|C
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bound of Eq. (4) then follows from the inequality
|Tr[Ag,⇥,⌅�C ]| ⇤ ⌃Ag,⇥,⌅⌃⇤. ⌅

Remark. Note that in Eq. (4) there is no need for
the prior distribution to be Gaussian: for every prior
distribution, and for every quantum state ⌃ in Eq. (4)
provides an upper bound on the fidelity.
We are now ready to prove our key result:

Theorem 1 (Optimality of two-mode squeezing)
Two-mode squeezing is the optimal amplifying process
for Gaussian-distributed coherent states.

Proof. Our strategy is to find a state ⌃ such that
the upper bound of Eq. (4) matches the lower
bound of Eq. (3), thus proving the optimality of
two-mode squeezing. As an ansatz, we assume ⌃
to be the thermal state ⌃ = (1 � x)

⌦⇤
n=0 x

n|n⇧⌅n|,
so that the operator in Eq. (4) becomes Ag,⇥,⌅ =
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1
p . Omitting the
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two-mode squeezing 
operator

ancillary mode in the 
vacuum state

For the input     |↵�
the output is a thermal state displaced by 

g�, g = cosh r

Approximate amplification



The best deterministic amplifiers
Theorem (Namiki 2008,GC-Xie 2013):  the best 
deterministic amplifiers are two-mode squeezing processes 
with squeezing parameter depending  
on the amount of information about the input.  

The maximum fidelity that can be achieved using two-mode squeezing 
is given by 
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channel (completely positive trace-preserving map) C.
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Remark. Note that in Eq. (4) there is no need for
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distribution, and for every quantum state ⌃ in Eq. (4)
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Theorem 1 (Optimality of two-mode squeezing)
Two-mode squeezing is the optimal amplifying process
for Gaussian-distributed coherent states.

Proof. Our strategy is to find a state ⌃ such that
the upper bound of Eq. (4) matches the lower
bound of Eq. (3), thus proving the optimality of
two-mode squeezing. As an ansatz, we assume ⌃
to be the thermal state ⌃ = (1 � x)
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The best probabilistic amplifiers

Dramatic effect of the critical value:  
 When the prior information is larger than the critical value,  
nearly perfect amplification becomes possible! 

critical behaviour at the value

3

processes the gap between the quantum fidelity and the
CFT is equal to the gap between the maximum Bell cor-
relation achievable with entangled states and the max-
imum Bell correlation achievable with separable states.
This relation establishes a tight connection between the
demonstration of genuine quantum processing and the
violation of suitable Bell-type inequalities.

We are now ready to tackle the optimal design of quan-
tum amplifiers and to find the corresponding CFT. To
account for the prior information about the input, we
introduce a probability distribution p(�), normalized as�

d2�
⇤ p(�) = 1. The most popular choice for p(�), typi-

cally considered in the literature [23, 27–31], is a Gaus-
sian distribution with mean �0 and variance V = 1/⇥.
The idealized “uniform prior” can be retrieved here in the
limit ⇥ ⌅ 0. Note that it is not restrictive to consider
probability distributions centred around �0 = 0: indeed,
both in the deterministic and probabilistic case, the fi-
delity does not change if one 1) replaces the prior p(�)
by p(���0), 2) displaces the input state by ��0, and 3)
displaces the output of the amplifier by g�0. For �0 = 0,
the Gaussian p⇥(�) = ⇥e�⇥|�|2 represents the distribu-
tion of coherent states generated by a classical oscillator
obeying the Boltzmann distribution and ⌥n� = 1/⇥ is
the expected photon number. A controlled way to gener-
ate Gaussian-distributed coherent states is to prepare a
two-mode squeezed state and perform a heterodyne mea-
surement on one mode.

To determine the optimal deterministic amplifiers, it
is useful to assess first the performances that can be
achieved using two-mode squeezing, i.e. using quantum
channels of the form

Cr(⇤) = TrB [e
r(a†b†�ab)(⇤⇥ |0�⌥0|)e�r(a†b†�ab)], (5)

where r is the squeezing parameter, a and b are the an-
nihilation operators of the input mode and of an ancil-
lary mode, respectively, and TrB denotes the partial trace
over the ancillary Hilbert space. Optimizing the value of
the squeezing parameter one obtains the fidelity [33]

F squeez
g,⇥ =

⇤
⌃⌃⇧

⌃⌃⌅

⇥+ 1

g2
, ⇥ ⇤ g � 1

⇥

⇥+ (g � 1)2
, ⇥ > g � 1.

(6)

Note the discontinuity of the first derivative of the fi-
delity at the critical value ⇥det

c = g � 1. This value sep-
arates two di�erent domains: for ⇥ ⇤ ⇥det

c the optimal

amount of squeezing in Eq. (5) is r = cosh�1
�

g
⇥+1

⇥
,

while for all values ⇥ > ⇥det
c the optimal value is r = 0,

corresponding to no squeezing at all. In other words,
when the prior information about the input state is large
(i.e. when the variance is small), the best amplifying
strategy consists in leaving the state unamplified. In the
case of 1-to-2 cloning, this fact was noted by Cochrane,

Ralph, and Dolińska [15], who assumed from the start
cloning processes based on two-mode squeezing. Armed
with Theorem 1, we are now in position to prove that no
deterministic process can beat two-mode squeezing:

Theorem 3 (Optimal design of deterministic am-
plifiers [33]) Two-mode squeezing is the best determin-
istic process for the amplification of Gaussian-distributed
coherent states.

For probabilistic amplifiers, however, the situation is
very di�erent. Evaluating Eq. (2) we get [33]

F prob
g,⇥ =

⇤
⇧

⌅

⇥+ 1

g2
, ⇥ ⇤ g2 � 1

1 ⇥ > g2 � 1.

(7)

The di�erence with the deterministic case is dramatic:
above the the critical value ⇥prob

c = g2 � 1 probabilis-
tic processes allow for noiseless amplification. Fidelity
arbitrarily close to F prob

g,⇥ can be reached as follows:

Theorem 4 (Optimal design of probabilistic am-
plifiers [33]) The best probabilistic amplifier for
Gaussian-distributed coherent states is

1. for ⇥ ⇤ ⇥det
c , the two-mode squeezer (5) with

squeezing parameter r = cosh�1[g/(⇥+ 1)]

2. for ⇥det
c < ⇥ ⇤ ⇥prob

c , a quantum operation

QN (⇤) = QN⇤QN with QN ⇧
⌥N

n=0[(⇥ +

1)/g]n|n�⌥n|, achieving fidelity F prob
g,⇥ = (1 + ⇥)/g2

exponentially fast in the limit N ⌅ ⌃

3. for ⇥ > ⇥prob
c , a quantum operation QN (⇤) =

QN⇤QN with QN ⇧
⌥N

n=0 g
n|n�⌥n|, achieving the

fidelity F prob
g,⇥ = 1 exponentially fast in the limit

N ⌅ ⌃.

Note that for ⇥ > g� 1 the optimal quantum operations
are non-Gaussian, whereas for ⇥ = 0 (“uniform prior”)
the optimal deterministic and probabilistic amplifiers co-
incide and are Gaussian. Noiseless amplification is only
possible when the expected photon number is finite.
Suppose now that an experiment aims at demonstrat-

ing quantum amplification—or equivalently, cloning—of
a coherent state. Thanks to Theorem 2, we can easily
find the analytical expression of the CFT, also specify-
ing the best measure-and-prepare channel. The result
applies to both deterministic and probabilistic protocols,
and, as an extra bonus, provides a coincise derivation of
the quantum benchmark for teleportation and storage of
coherent states found by Hammerer, Wolf, Polzik, and
Cirac [23], which is retrieved here in the special case of
no amplification (g = 1).

�prob

c

= g2 � 1
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The dramatic difference between deterministic and 
probabilistic amplifiers discovered here is a  
genuine effect of the finite photon number.

In the idealized scenario of “no prior information”(           )  
there is no difference!  
The best amplifier is just two-mode squeezing and has 
fidelity   

F opt
g,�=0 =

1

g2

The importance of the prior 
information

� = 0



How to achieve unit fidelity?

Ralph and Lund (2008) proposed a probabilistic scheme
that achieves almost perfect amplification.  

QN (⇢) = QN ⇢Q†
N

QN :=
NX

n=0

gn

gN
|nihn|

For large N: QN (|↵ih↵|) ⇡ |g↵ihg↵|

(caveat: the probability of success drops exponentially)



Probabilistic amplifiers in the lab
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Abstract
Heralded noiseless amplification of photons has recently been shown to provide a means to overcome
losses in complex quantum communication tasks. In particular, to overcome transmission losses that
could allow for the violation of a Bell inequality free from the detection loophole, for device independent
quantum key distribution (DI-QKD). Several implementations of a heralded photon amplifier have been
proposed and the first proof of principle experiments realized. Here we present the first full
characterization of such a device to test its functional limits and potential for DI-QKD. This device is
tested at telecom wavelengths and is shown to be capable of overcoming losses corresponding to a
transmission through 20 km of single mode telecom fibre. We demonstrate heralded photon amplifier
with a gain >100 and a heralding probability >83%, required by DI-QKD protocols that use the Clauser–
Horne–Shimony–Holt inequality. The heralded photon amplifier clearly represents a key technology for
the realization of DI-QKD in the real world and over typical network distances.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0
licence (http://creativecommons.org/licenses/by/3.0) . Any further distribution of this work must
maintain attribution to the author(s) and the title of the work, journal citation and DOI.

1. Introduction
The concept of amplification in communication systems has long been used in the classical regime to
overcome transmission loss. However, for quantum systems, amplification of quantum states is generally

1

1

Heralded noiseless linear amplification and
distillation of entanglement
G. Y. Xiang1, T. C. Ralph2, A. P. Lund1,2, N. Walk2 and G. J. Pryde1*

Signal amplification is ubiquitous in the control of physical
systems, and the ultimate performance limit of amplifiers is
set by quantum physics. Increasing the amplitude of an
unknown quantum optical field, or any harmonic oscillator
state, must introduce noise1. This linear amplification noise pre-
vents perfect copying of the quantum state2, enforces quantum
limits on communications andmetrology3, and is themechanism
preventing the increase of entanglement via local operations.
Non-deterministic versions of ideal cloning4 and local entangle-
ment increase (distillation)5 are allowed, suggesting the possi-
bility of non-deterministic noiseless linear amplification. Here
we introduce, and experimentally demonstrate, such a noiseless
linear amplifier for quantum states of the optical field, and
use it for distillation of field-mode entanglement. This simple
but powerful circuit enables practical devices for enhancing
quantum technologies. The idea of noiseless amplification
unifies approaches to cloning and distillation, and will find
applications in quantum metrology and communications.

A quantum-noise-free amplifier, if it could be constructed, could
aid a wide variety of quantum-enhanced information protocols, pri-
marily through its ability to distill and purify continuous-variable
entanglement. This type of entanglement is characterized by non-
classical correlations between the field quadrature, or position and
momentum, variables of two or more subsystems3. The ability to
distill and purify entanglement is essential for increasing the
range of protocols, such as continuous-variable teleportation6,
dense coding7,8 and quantum key distribution9,10. Additionally,
more general field-mode entanglement is the basis for many
approaches to quantum-enhanced metrology11.

Deterministic, noiseless linear amplification is impossible1,2. We
therefore consider a device that performs the transformation

jalkaj ! rðaÞ ¼ Pjgalkgajþ ð1% PÞj0lk0j ð1Þ

where g is a real number obeying jgj. 1 and jal is a coherent state
of the field with complex amplitude a. We assume a heralding signal
identifies which term in the output density operator has been pro-
duced by any particular run of the device. Thus, with probability
P, noiseless amplification of the input is achieved. When amplifica-
tion fails, we assume, without loss of generality, that the output state
is vacuum. The linearity of quantum mechanics requires that the
distinguishability of quantum states cannot be increased. This
bounds P, so that if P & ð1% e%jaj2Þ=ð1% e%jgaj2Þ, non-determinis-
tic noiseless linear amplification is physically allowed.

Our circuit for realizing the noiseless linear amplification (NLA)
of equation (1) is shown schematically in Fig. 1a. The optical mode
to be amplified is divided evenly between N paths. Each path under-
goes an amplification stage (Fig. 1b), which implements a general-
ization of the quantum scissors of Pegg et al.12 using a single
photon ancilla and photon counting. The amplification is successful

if exactly one photon is counted at exactly one of the conditioning
detectors. The N paths are then recombined interferometrically.
Without the amplifier stages ‘A’, all input light would emerge in
the original mode. Successful operation is heralded when photon
counters on the other N2 1 modes register no counts, given that
each amplifier stage ‘A’ also yielded a heralding signal. We note
that the efficiency of these detectors is not a critical parameter
because, even with the amplification stages, the interferometer
remains close to balanced and so the probability that any photons
exit through these ports is very small.

First consider an input coherent state jal. The 2N-port splitter
divides it into the product state ja0l ja0l ja0l. . . , with a0 ¼ a/

p
N.

Hence we can consider each amplifier stage separately. The general-
ized quantum scissor truncates the coherent state to first order and
simultaneously amplifies it. Specifically, detection of a single photon
at port D2 and zero photons at port D3, or vice versa, produces
the transformation

ja0la0 ! exp %ja0j2=2
! " ffiffiffi

h

2

r
1+

ffiffiffiffiffiffiffiffiffiffiffiffi
1% h

h

r
âya0

$ %
j0l ð2Þ

where the+corresponds to the two possibilities and â† is the optical
creation operator. A phase flip can be corrected by feedforward to a
phase shifter. In the original scissors, h¼ 0.5, and the truncated
state is not amplified12. A sucessful coherent recombination of the
modes at the second 2N-port splitter produces

exp %jaj2=2
! "

hN=2 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1% h

h

r
ây

a

N

$ %N

j0l ð3Þ

For large N (that is, N' g jaj),

lim
N!1

1þ gây
a

N

& 'N
j0l ¼ exp gâya

! "
j0l ð4Þ

where g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1% hÞ=h

p
. We recognize the right-hand side of

equation (4) as being proportional to a coherent state with amplitude
jgaj. Thus, in the large N limit, the device of Fig. 1 effects the trans-
formation

jal ! hN=2 exp %ð1% g2Þjaj2=2
! "

jgal ð5Þ

For h, 1/2, g. 1, and hence we achieve a NLA according to
equation (1). The amplitude gain is g, and g2 is the intensity gain.
The probability of success is given by the norm, P ¼ hNe%ð1%g2Þjaj2 .

The key component of the noiseless linear amplifier of Fig. 1a is
the single amplifier stage (Fig. 1b), which we experimentally
implemented using linear optics and photon counting. Previously,
the truncation properties—without amplification—of the scissors
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Franck Ferreyrol, Marco Barbieri, Rémi Blandino, Simon Fossier, Rosa Tualle-Brouri, and Philippe Grangier
Groupe d’Optique Quantique, Laboratoire Charles Fabry, Institut d’Optique, CNRS, Université Paris-Sud, Campus Polytechnique,
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Quantum mechanics imposes that any amplifier that works independently on the phase of the input

signal has to introduce some excess noise. The impossibility of such a noiseless amplifier is rooted in the

unitarity and linearity of quantum evolution. A possible way to circumvent this limitation is to interrupt

such evolution via a measurement, providing a random outcome able to herald a successful—and

noiseless—amplification event. Here we show a successful realization of such an approach; we perform

a full characterization of an amplified coherent state using quantum homodyne tomography, and observe a

strong heralded amplification, with about a 6 dB gain and a noise level significantly smaller than the

minimal allowed for any ordinary phase-independent device.

DOI: 10.1103/PhysRevLett.104.123603 PACS numbers: 42.50.Dv, 03.67.Hk, 42.50.Ex, 42.50.Xa

Quantum optical detection techniques are so advanced
that quantum fluctuations are the main source of noise.
Therefore, when amplifying optical signals, one has to
look at the intrinsic limitations of the process: any ampli-
fier cannot work independently on the phase of the input
unless some additional noise is added [1]. The origin of this
limitation is that adding extra noise is needed for the output
field to obey Heisenberg’s uncertainty relation. Also, it is
connected to the impossibility of realizing arbitrarily faith-
ful copies of a quantum signal [2,3], and it is thus deeply
rooted in the linear and unitary evolution of quantum
mechanical systems.

Various aspects of this limitation have been studied by
using optical parametric amplifiers [4–7]. For instance, a
nondegenerate optical parametric amplifier amplifies all
input phases, and introduces the minimal level of added
noise, which degrades the signal-to-noise ratio [1]. The
same process, driven in the degenerate regime, may pro-
vide amplification preserving the signal-to-noise ratio.
However, this occurs in a phase-dependent fashion: only
the part of the signal in phase with the pump light will be
amplified, while the part which is 90! out of phase with the
pump will be deamplified [4,5].

Amore intriguing idea is to find a way to tamper with the
linear evolution of quantum mechanics; this is actually
possible, though nondeterministically, by conditioning
our observation upon the result of a measurement [8].
Noiseless amplification can then take place, but only a
fraction of the times, and the correct operation is heralded
[9,10]. This strategy is commonly adopted for building
effective nonlinearities in linear quantum optical gates
[11–13].

Here we follow the proposal of Ralph and Lund [9] to
demonstrate experimentally that heralded nondeterministic
amplification can realize processes which would be impos-
sible for usual amplifiers. Unlike another realization [14],
we have direct access to the output state via state tomog-

raphy, so we can provide a complete description of the
process, and analyze the limitations arising from nonideal
components. Our study is relevant in the long-term view of
the integration of amplifiers in quantum communication
lines [15].
The conceptual layout of the noiseless amplifier is pre-

sented in Fig. 1. The operating principle is closely related
to quantum teleportation [16–19], and is actually a varia-
tion of the quantum scissors protocol [20,21]: the phase
and amplitude information of the input are transferred via a
generalized teleportation onto a superposition of the vac-
uum and a single photon. If the input is not too large, such
superposition is still adequate to describe a coherent state
with a good fidelity. The amplification is allowed by the
use of a nonmaximally entangled resource [9].
More in detail, a coherent state j!i is fed into the input

mode of the amplifier; at the same time an auxiliary single-

FIG. 1 (color online). Conceptual layout of the noiseless am-
plifier. A single photon is split on an asymmetric beam splitter
(A-BS). The input state j!i is superposed with reflected output
of the A-BS on asymmetric beam splitter (S-BS). A successful
run of the amplifier is flagged by a single-photon event on
detector D1 and no photons on detector D2. The transmitted
mode constitutes the output mode of the amplifier, and is
approximately in an amplified state jg!i, conditioned on the
right detection events, as described by Eq. (1).
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Noise-powered probabilistic concentration of
phase information
Mario A. Usuga1,2†, Christian R. Müller1,3†, Christoffer Wittmann1,3, Petr Marek4, Radim Filip4,
Christoph Marquardt1,3, Gerd Leuchs1,3 and Ulrik L. Andersen2*
Phase-insensitive optical amplification of an unknownquantum
state is known to be a fundamentally noisy operation that
inevitably adds noise to the amplified state1–5. However,
this fundamental noise penalty in amplification can be
circumvented by resorting to a probabilistic scheme as
recently proposed and demonstrated in refs 6–8. These
amplifiers are based on highly non-classical resources in a
complex interferometer. Here we demonstrate a probabilistic
quantum amplifier beating the fundamental quantum limit
using a thermal-noise source and a photon-number-subtraction
scheme9. The experiment shows, surprisingly, that the addition
of incoherent noise leads to a noiselessly amplified output state
with a phase uncertainty below the uncertainty of the state
before amplification. This amplifier might become a valuable
quantum tool in future quantum metrological schemes and
quantum communication protocols.

Besides being the subject of a fundamental discussion going
back to Dirac10, the measurement of phase is at the heart of many
quantum metrological and quantum informational applications
such as gravitational wave detection, global positioning, clock syn-
cronization, quantum computing and quantum key distribution.
In many of these applications, the phase is most often imprinted
onto a coherent state of light and subsequently estimated using
an interferometric measurement scheme. Such a phase-estimation
process11 is however hampered by the fundamental quantum noise
of the coherent state, which plays an increasingly devastating role
as the excitation of the coherent state becomes smaller. Small
coherent-state excitations and associated large phase uncertainties
are typical in real systems such as long-distance coherent-state
communication and lossy interferometry.

To reduce the phase uncertainty and thus concentrate the
phase information, the state must be amplified noiselessly. This
can be done probabilistically using either a highly complicated
interferometric set-up of single-photon sources6–8, a sophisticated
sequence of photon-addition and -subtraction schemes9,12 or a very
strong cross-Kerr nonlinearity13.However, aswe show in this Letter,
it is possible to amplify the phase information noiselessly without
the use of any non-classical resources or any strong parametric
interactions. Remarkably, the supply of energy in our amplifier is
simply a thermal-light source.

A schematic of the probabilistic amplifier9 is shown in Fig. 1a.
It is solely based on phase-insensitive noise addition and photon
subtraction. To explain in simple terms why the addition of noise
can help amplify a coherent state, we consider the phase-space
pictures in Fig. 1b. The addition of thermal noise induces random

1Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1, 91058 Erlangen, Germany, 2Department of Physics, Technical University of
Denmark, 2800 Kongens Lyngby, Denmark, 3Institute for Optics, Information and Photonics, University Erlangen-Nuremberg, Staudtstr. 7/B2, 91058
Erlangen, Germany, 4Department of Optics, Palack< University 17, listopadu 50, 772 07 Olomouc, Czech Republic. †These authors contributed equally to
this work. *e-mail: ulrik.andersen@fysik.dtu.dk.

displacements to the coherent state, thus resulting in a Gaussian
mixture of coherent states; some with excitations that are larger
than the original excitation and some with smaller excitations.
In the photon-subtraction process, the coherent states with large
excitations are probabilistically heralded, thereby rendering the
state in amixture consisting of themost excited coherent states from
the original Gaussianmixture. As illustrated in Fig. 1b, the resulting
state is amplified and possesses a reduced phase uncertainty.

The probabilistic photon-subtraction procedure can be approx-
imated by a largely asymmetric beam splitter combined with a
photon-number-resolving detector (PNRD; see Fig. 1a). A small
portion of the displaced thermal state is directed to the photon
counter and when a pre-specified number of photons is detected,
the transmitted state is heralded. Such an approach for photon-
number subtraction has also been employed for the generation of
coherent-state superpositions14,15. However, in contrast to previous
implementations that were limited to the demonstration of two-
photon subtraction16, here we subtract up to four photons.

To elucidate the function of the amplifier, theoretically,
we consider the amplification of a small-amplitude (|�| ⇧ 1)
coherent state that can be approximately described in the two-
dimensional Fock space: |�⌦ ⌅ |0⌦ + �|1⌦. As the amplitude is
small, the canonical-phase variance of this state is to a very good
approximation given by17

VC ⌅ 1
|�|2 (1)

This variance represents the fundamental uncertainty in estimating
the phase of the coherent state when a hypothetically ideal
phase measurement is employed18. The aim is to produce an
amplified state with a phase variance reduced with respect to the
coherent-state variance in (1), thereby concentrating the phase
information. If a conventional phase-insensitive amplifier is used
to amplify the coherent state, the resulting variance is larger
than (1) (see Supplementary Information). On the other hand,
if our amplifier is employed with weak Gaussian noise addition
followed by single-photon subtraction, the resulting state is9

⇥̂ ⌅ 1
|�|2 +Nth +4|�|2Nth

⇥ [|�|2|0⌦ 0|+Nth(|0⌦+2�|1⌦)( 0|+  1|2�⇤)]

with the canonical-phase variance

V amp
C ⌅ 1

4|�|2
�
1+ |�|2

Nth

⇥
�1
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A high-fidelity noiseless amplifier for quantum
light states
A. Zavatta1,2, J. Fiurášek3 and M. Bellini1,2*

Noise is the price to pay when trying to clone or amplify arbitrary quantum states. However, the quantum noise associated
with linear phase-insensitive amplifiers can be avoided by relaxing the requirement of a deterministic operation. Here we
present the experimental realization of a novel concept of a probabilistic noiseless linear amplifier that is able to amplify
coherent states at the highest levels of effective gain and final state fidelity ever reached. Based on a sequence of photon
addition and subtraction, this high-fidelity amplification scheme is likely to become an essential tool for applications of
quantum communication and metrology.

Noise is unavoidably added in any deterministic linear amplifi-
cation or cloning of quantum states, and any input pure
state results in a mixed output one1,2. Being a consequence

of the linearity and unitary evolution of quantum mechanics, it
guarantees against unphysical situations such as the violation of
the Heisenberg uncertainty principle or the superluminal exchange
of information3,4.

This has profound implications from a practical point of view in
the frame of quantum information processing and quantummetrol-
ogy. Let us consider the case where some quantum information (or
classical parameter value) is encoded in the complex amplitude a of
a coherent state |al. If the state amplitude is made too small (gen-
erally by losses), then the strong overlap between different states
can make it impossible to correctly distinguish among them.
Simply amplifying the states would not solve the problem,
because it would also amplify the quantum fluctuations of the
coherent states, in fact increasing their overlap and making the situ-
ation worse (Fig. 1).

A solution to this problem would be provided by an ideal noise-
less amplifier of coherent states of light, the action of which can be
mathematically described as

|al ! |gal (1)

where g. 1 is the amplification gain. Referring to the above example,
a sufficient noiseless amplification of partially overlapped coherent
states would allow one to make them exactly distinguishable.

Transformation (1) is unphysical, but can be implemented
probabilistically in an approximate way. Ralph and Lund5 recently
proposed a scheme based on the application of multiple
quantum-scissors blocks6,7 to non-deterministically amplify the
low-amplitude portions obtained by splitting a coherent state before
their coherent recombination in an interferometric setup. Although
the complete scheme is almost impossible to realize with current
technologies, the functioning of its quantum-scissors core element
has been recently demonstrated by two experimental groups8,9.

We follow a completely different route, based on a combination
of photon addition and subtraction, and show that the perform-
ances of this approach are far superior, both in terms of higher effec-
tive amplification and higher fidelity of the final states to the ideal
target coherent state |gal.

Addition and subtraction of single photons are the result of the
application of the creation and annihilation operators â† and â to an
arbitrary state of light. Depending on the ordering of such oper-
ations, a transformation ââ† or â†â can be applied to the initial
state. Sequences and coherent superpositions of such quantum
operators have recently been demonstrated experimentally10,11. By
making a coherent linear combination of these two operations
with suitable weights, one can obtain

Ĝ = (g − 2)â†â+ ââ† = (g − 1)n̂+ 1 (2)

where n̂¼ â†â is the photon number operator. As shown in
ref. 12, operation (2) is a good approximation of the ideal noiseless
amplification process (1) for weak coherent states. Of particular
interest is the nominal gain g¼ 2. In this case, the formula

Noiseless amplifier

Classical amplifier

Quantum limited amplifier

x

p

Figure 1 | Wigner function contours of input and amplified coherent states.
The quantum-noise-limited amplifier with amplitude gain g invariably adds
noise equivalent to at least 2(g22 1) vacuum-noise units1. The best classical
linear amplifier based on a measure-and-prepare strategy adds even more
noise, at least 2g2 vacuum-noise units. In contrast, the probabilistic noiseless
amplifier preserves the noise of coherent states while amplifying
their amplitude.
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Heralded noiseless amplification of a photon
polarization qubit
S. Kocsis1,2, G. Y. Xiang2,3, T. C. Ralph1,4 and G. J. Pryde1,2*

Photons are the best long-range carriers of quantum
information, but the unavoidable absorption and scattering
in a transmission channel places a serious limitation on
viable communication distances. Signal amplification will
therefore be an essential feature of quantum technologies,
with direct applications to quantum communication, metrology
and fundamental tests of quantum theory. Non-deterministic
noiseless amplification of a single mode1–5 can circumvent
the challenges related to amplifying a quantum signal, such
as the no-cloning theorem6 and the minimum noise cost for
deterministic quantum state amplification7. However, existing
devices are not suitable for amplifying the fundamental optical
quantum information carrier: a qubit coherently encoded
across two optical modes. Here, we construct a coherent
two-mode amplifier to demonstrate the first heralded noiseless
linear amplification of a qubit encoded in the polarization state
of a single photon. In doing so, we increase the transmission
fidelity of a realistic qubit channel by up to a factor of five.Qubit
amplifiers promise to extend the range of secure quantum
communication8,9 and other quantum information science and
technology protocols.

The quintessential model for encoding quantum information is
the qubit. Qubits, or systems of entangled qubits, are central tomost
protocols for transmitting and processing quantum information10,
and play a large role in other proposed quantum technologies11,12
and proposed investigations of quantum mechanics (for example
ref. 13). A natural implementation of a travelling qubit is
one excitation shared between two harmonic oscillators. (This
implementation may also be relevant to cavities or other bounded
oscillators.) In optics, this implementation is a photonic qubit,
in which the information is encoded in orthogonal polarization,
spatial or temporal modes of a single photon.

A great deal of attention has been devoted to the problem
of efficiently transmitting quantum states—such as qubits—over
significant distances. Some key examples serve to demonstrate why
overcoming loss is of both fundamental and practical interest.
From a fundamental standpoint, all long-range Bell inequality
tests have been vulnerable to the detection loophole: owing
to losses, not all entangled pairs are detected, and the fair
sampling assumption is invoked to argue that the undetected pairs
would not have significantly changed the measurement statistics.
Inevitable transmission losses can in principle be compensated
by amplifying the signal. The theoretical limitation forbidding
noiseless amplification of a quantum state can be circumvented
only by making the process non-deterministic. Such a noiseless
qubit amplifier, although non-deterministic, could amplify a
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quantum state in a heralded way. A heralding signal allows
two parties to be certain that they share a maximally entangled
pair before measurement. This implies that the overall detection
efficiency in the presence of heralding would no longer depend
on transmission efficiency, but only on the intrinsic efficiencies of
the measuring devices.

Closing the detection loophole in an optical Bell test experi-
ment is essentially equivalent to establishing device-independent
quantum key distribution (DIQKD) between two parties, as the
rigorous violation of a Bell inequality guarantees the presence of en-
tanglement independent of the specific measurement procedure8,14.
Other approaches to overcoming the detection loophole have been
proposed, such as heralding qubit states using quantum non-
demolition measurements15, for example, but so far these other
protocols have not been experimentally realized.

After transmission through any quantum channel with non-zero
loss, a photonic qubit will be in the mixed state ⌅in, consisting of a
vacuum and a single-photon component,

⌅in = ⇤0|00�⌥00|+⇤1|⇧ in
1 �⌥⇧ in

1 | (1)

where the vacuum component will dominate (⇤0 > ⇤1) for a very
lossy channel. The qubit is encoded in the polarization state of the
single-photon subspace:

|⇧ in
1 � =�|1H0V�+⇥|0H1V� ⇤�|H�+⇥|V�

The state⌅in is the input to the qubit amplifier, H denotes horizontal
and V vertical. Such a heralded noiseless amplifier is a quantum cir-
cuit that works probabilistically, but with an independent heralding
signal, and generates the transformation

⌅in ⌅ (1�P)|00�⌥00|⇥⌃f +P⌅out ⇥⌃h (2)

Here⌃h is the projector onto the subspace of heraldingmode states
corresponding to successful amplification, with the amplified state
⌅out at the circuit output:

⌅out =
⇤0|00�⌥00|+g 2⇤1|⇧ in

1 �⌥⇧ in
1 |

N
(3)

and ⌃f (fail) is the projector onto the subspace of cases where the
heralding success signal is not received. The relative weighting of
the qubit subspace |⇧ in

1 � in the mixed state is increased by a factor
g 2. In the absence of imperfections, the qubit amplifier leaves the
qubit subspace itself unchanged; experimental imperfections may
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QUANTUM BENCHMARKS



Suppose that you have an experimentalist friend who claims that 
she built a device that implements a quantum strategy for certain 
state transformation game.

How can she prove her claim?  

How to certify genuine quantum 
information processing?

Unfortunately, there are experimental  
imperfections  
and the actually fidelity is smaller  
than the optimal fidelity... 



Classical strategies:  
measure and prepare (m&p)

“Classical way”:  processing via measurement

information about the input state is extracted by a 
measurement, 

the output state copies is prepared based on this 
information 

Measurement

outcome

State 
preparation

y



Classical strategies:  measure-and-prepare channels  

Mathematical formulation

• Measurement:  POVM

• Measure-and-prepare channel

• Quantum benchmark:



F
MP

= min
�>0 ,Tr[�]=1

���(I
out

⌦ �� 1
2 )⌦ (I

out

⌦ �� 1
2 )
���
⇥

where kAk⇥ := max

k| ik=k| ik=1
h'|h |A|'i| i A � 0

Quantum benchmark

Chiribella and Xie, PRL 110, 213602 (2013)
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T
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Probabilistic benchmarks
Suppose that the Player is allowed to pass.

What is the maximum payoff?

Chiribella and Xie, PRL 110, 213602 (2013)
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Mathematically:  POVM



QUANTUM BENCHMARKS 
FOR 

GILMORE-PERELOMOV
COHERENT STATES

Yang, Chiribella, and Adesso,  PRA 90, 042319 (2014)

Chiribella and Adesso, Phys. Rev. Lett. 112, 010501 (2014)



Gilmore-Perelomov CS

• Gilmore-Perelomov coherent states (GPCS):

| gi := Ug| i g 2 G , U = irrep

(quotient w.r.t. stabilizer implicit)

• Mutually coherent GPCS:  two families of GPCS  
                                           

                                            are mutually coherent if   

is a family of GPCS



GPCS state transformation games 

Referee

Player

input ensemble  
(limit of “uniform prior”)

test g



The benchmark

If

are mutually coherent GPCS

then 

• the quantum benchmark is

• the optimal measurement has POVM

• the optimal state preparation is



Example 1: benchmark  
for quantum copy machines
State transformation game:  given N copies  
                                         of a completely unknown pure state  
                                         produce M≥N copies  
                                         of the same quantum state

Quantum benchmark:

d=2 d=3 d=4



Example 2: quantum benchmark 
for coherent state modulation
State transformation game:  given a coherent state   
                                         transform it into the state

• g>1             amplification

Recovers 
Hammerer, M. M. Wolf, E. S. Polzik, and J. I. Cirac, PRL 94, 150503 (2005)  
Namiki, Koashi, Imoto, PRL 101,100502 (2008).  

• g=1              storage/transmission of the coherent state

• g<1             attenuation

Quantum benchmark:



Including prior information

So far, we considered the limit of “uniform prior distribution”.

What about the realistic case where the input GPCS have  
a non-uniform prior? 

Good priors:

Example:  gaussian prior



The probabilistic benchmark

If

are mutually coherent GPCS

then 

the probabilistic quantum benchmark is



Example 1:  
coherent state modulation

State transformation game:  given a coherent state   
                                         transform it into the state

(accidentally,  
 this benchmark can be achieved with  
 deterministic operations)

Probabilistic benchmark:



Comparison with experiment

for Ĝ simplifies, because one term in the superposition (2) vanishes
to give

Ĝg=2 = ââ† (3)

Application of such a transformation for noiseless amplification was
first proposed by Marek and Filip13, and its action is evident if
applied to a weak coherent state approximately described as |al¼
|0lþ a|1l. One obtains ââ†(|0l+ a|1l) ! â(|1l+

!!
2

√
a|2l) !

|0l+ 2a|1l, that is, a doubling of the coherent state amplitude.
We have implemented the probabilistic noiseless amplifier (3)

with nominal gain g¼ 2, the experimental realization of which
does not require interferometric stability, unlike the general case
of g= 2. The experiment is based on a unique and versatile setup
for implementing creation and annihilation operators that has
been recently used to arbitrarily engineer quantum light states
and test fundamental quantum-mechanical rules10,11,14–16. The
addition of a single photon to an arbitrary light state is obtained
by conditional stimulated parametric down-conversion in a non-
linear crystal. Photon addition in the output signal mode is heralded
by the detection (by an on/off photodetector Da) of a single photon
in the idler down-conversion channel15,16. On the other hand,

single-photon subtraction is implemented by conditionally attenu-
ating a state by detecting (with an on/off photodetector Ds) a
single photon reflected from a high-transmissivity beamsplitter
(BS). By placing the parametric down-converter and the beamsplit-
ter in series along the path of a travelling coherent state, one can
herald the application of the ââ† operator by looking for coincident
detections from Da and Ds , as shown in Fig. 2. As discussed else-
where10,11,14–16, the low parametric gain and the low reflectivity of
the BS (set to #5% for these measurements) ensure that multipho-
ton terms are negligible in the addition and subtraction processes,
and guarantee that this experimental scheme is a very faithful
implementation of the ideal operator sequence.

The performance of the implemented approximate amplifier (3)
can be quantified by its effective gain and fidelity. One can define the
effective amplification gain geff as the ratio of the mean values of
amplitude quadrature operators for the output state and the input
coherent state |al, whereas the fidelity of the amplifier is defined
as the normalized overlap of the output state with the ideal target
coherent state |gal (see Methods). Experimental estimation of the
effective gain geff is therefore done by measuring the mean values
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Figure 3 | Amplifier performances. a,b, Dependence of (a) effective gain
and (b) final state fidelity on input state amplitude |a| for a nominal gain
g¼ 2. Red solid curves are calculated for the addition/subtraction scheme,
and blue dashed curves are for the quantum-scissors approach
(see Methods). Square symbols indicate experimental data. c, Measured
variances of the amplitude and phase quadratures of the amplified coherent
state (in shot-noise units) and corresponding (blue solid) curve for the best
deterministic amplifier. Error bars are of a statistical origin and correspond
to one standard deviation. The right panels show contour plots of the
reconstructed Wigner functions for three amplified coherent states of
different amplitudes. The increasing asymmetry with input coherent state
amplitude in the Wigner function contours is caused by the non-Gaussian
nature of the approximate noiseless amplification operation ââ†.
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Figure 2 | Experimental setup. a, Conceptual scheme. Two blocks for
conditional single-photon addition (â†) and subtraction (â) are placed in the
path of a coherent state |al. A coincident click (C) from the two on/off
photodetectors heralds the successful realization of the ââ† operator
sequence and the probabilistic noiseless amplification of the input coherent
state. High-frequency, time-domain, balanced homodyne detection is then
used for a full reconstruction of the involved quantum states. b, Detailed
experimental setup. HT (HR), high transmissivity (high reflectivity)
beamsplitter; LBO, lithium triborate crystal for frequency doubling; SMF,
single-mode fibres; F, narrow spectral filter. All other symbols are defined in
the text and in the Methods.
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Experiment designed to 
demonstrate high-fidelity 
probabilistic amplification with gain 
g = 2.  

Values tested in the experiment:

Experimental fidelities:

4

Theorem 5 (Benchmark for quantum amplifiers [33])
The CFT for the amplification of Gaussian-distributed
coherent states is given by

⇤Fg,⇤ =
1 + ⇤

1 + ⇤+ g2
(8)

both for deterministic and probabilistic protocols. The
above value is achieved by a heterodyne measurement
P (�̂)d

2�̂
⌅ = |�̂ ��̂|d

2�̂
⌅ followed by the conditional prepa-

ration of the coherent state
��� g�̂
1+⇤

⇥
.

Eqs. 6, 7 and 8 represent good news for experimental
demonstrations: they prove that genuine quantum am-
plification can be demonstrated for every finite value of
the expected photon number. As an illustration, consider
the demonstration of probabilistic amplification provided
by Zavatta, Fiuráček and Bellini in Ref. [22]. In this
case, the amplifier is designed to achieve gain g = 2. By
Eq. (7), noiseless amplification requires at least ⇤ ⇤ 3,
which is actually a reasonable value in the experiment
(choosing ⇤ = 3 puts the maximum amplitude tested in
the experiment, |�max|2 ⌅ 1.0, at three standard devi-
ations from the mean photon number �n = 1/3, e�ec-
tively cutting o� the values |�| > 1). For ⇤ = 3, Eqs.
(6) and (7) give F squeez

g=2,⇤=3 = 85% and ⇤Fg=2,⇤=3 = 50%
for the fidelity of the best deterministic amplifier and for
the CFT, respectively [35]. The average of the experi-
mental fidelities Fexp ⌅ 0.99/0.91/0.67, corresponding to
the amplitudes |�| ⌅ 0.4/0.7/1.0, gives a value that is
well above the benchmark for genuine quantum process-
ing, but also very close to the value that can be achieved
by deterministic amplifiers. One should observe, how-
ever, that the small number of values of |�| probed in
the experiment precludes an accurate data analysis, as
the average over few values of � is very sensitive to sta-
tistical fluctuations. Our analysis suggest that, although
the available data show a neat quantum advantage over
measure-and-prepare strategies, further experimental in-
vestigations would be desirable to enable a statistically
significant analysis of the advantage of probabilistic am-
plifiers. To guarantee a fair sampling, the ideal setup
would be to test the amplifier on Gaussian-distributed co-
herent states generated randomly by a heterodyne mea-
surement on one side of a two-mode squeezed state.

The classical limit of quantum amplifiers. For
⇤ ⇥ g� 1, the gap between the quantum fidelity and the
CFT is equal to the gap between entangled and separable
states in the Bell correlation �A⇧  . The gap vanishes in
the limit g ⌃ ⌥, and the fundamental reason is that an
amplifier with infinite gain is classical, like a cloning de-
vice producing infinite clones [37–39]. This point is made
very clear by our results: denoting by Cg,⇤ and by ⇤Cg,⇤ the
optimal quantum amplifier and the optimal measure-and-
prepare amplifier, for ⇤ ⇥ g�1 we have the remarkable re-
lation [33] ⇤Cg,⇤ = A g⇥

g2+(�+1)2
C⌦

g2+(⇤+1)2,⇤
, where A⇥ is

the attenuation channel transforming the coherent state
|� into |⇥� , ⇥ ⇥ 1. In words, the best measure-and-
prepare strategy with gain g is equivalent to the best
quantum strategy with gain g� =

⌅
g2 + (⇤+ 1)2, fol-

lowed by an attenuation of ⇥ = g/
⌅

g2 + (⇤+ 1)2 that
reduces the gain from g� to g. When the desired gain is
large compared to the prior information available (g ⇧ ⇤)
we have g� ⌅ g and ⇥ ⌅ 1, which imply ⇤Cg,⇤ ⌅ Cg,⇤.
In conclusion, we established the ultimate quantum

limits to the deterministic and probabilistic amplification
of Gaussian-distributed coherent states, without making
any assumption on the nature of the amplifier and with-
out making the unrealistic assumption of uniform dis-
tribution over coherent states. For probabilistic ampli-
fiers, we discovered the presence of a critical value of the
expected photon number, below which noiseless amplifi-
cation becomes possible. Furthermore, we provided the
quantum benchmark that has to be surpassed in order to
establish the successful experimental demonstration of a
genuine quantum amplifier. Our results show an intrigu-
ing link between genuine quantum amplification and the
maximization of a suitable Bell-type correlation, and, in
addition, they guarantee that a successful demonstration
is possible for any finite value of the expected photon
number.
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Eqs. 6, 7 and 8 represent good news for experimental
demonstrations: they prove that genuine quantum am-
plification can be demonstrated for every finite value of
the expected photon number. As an illustration, consider
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ing, but also very close to the value that can be achieved
by deterministic amplifiers. One should observe, how-
ever, that the small number of values of |�| probed in
the experiment precludes an accurate data analysis, as
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we have g� ⌅ g and ⇥ ⌅ 1, which imply ⇤Cg,⇤ ⌅ Cg,⇤.
In conclusion, we established the ultimate quantum

limits to the deterministic and probabilistic amplification
of Gaussian-distributed coherent states, without making
any assumption on the nature of the amplifier and with-
out making the unrealistic assumption of uniform dis-
tribution over coherent states. For probabilistic ampli-
fiers, we discovered the presence of a critical value of the
expected photon number, below which noiseless amplifi-
cation becomes possible. Furthermore, we provided the
quantum benchmark that has to be surpassed in order to
establish the successful experimental demonstration of a
genuine quantum amplifier. Our results show an intrigu-
ing link between genuine quantum amplification and the
maximization of a suitable Bell-type correlation, and, in
addition, they guarantee that a successful demonstration
is possible for any finite value of the expected photon
number.

Acknowledgments. This work is supported by the
National Basic Research Program of China (973)
2011CBA00300 (2011CBA00301), by the 1000 Youth Fel-
lowship Program of China, and by the National Natural
Science Foundation of China through Grants 61033001
and 61061130540. We acknowledge the support of
Perimeter Institute for Theoretical Physics, where this
work was started. Research at Perimeter Institute for
Theoretical Physics is supported in part by the Govern-
ment of Canada through NSERC and by the Province of
Ontario through MRI. We thank the anonymous referees
for inspiring a significant strengthening of our results, G
Adesso and M Bellini for their advise on the comparison
with experimental works and S Pirandola for comments
on an earlier version of the manuscript.

� Electronic address: gchiribella@mail.tsinghua.edu.cn
† Electronic address: xiejy09@mails.tsinghua.edu.cn
‡ URL: http://iiis.tsinghua.edu.cn

[1] S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77,
513 (2005).

[2] C. Weedbrook, S. Pirandola, R. Garca-Patrón, N.J. Cerf,
T.C. Ralph, J.H. Shapiro and S. Lloyd, Rev. Mod. Phys.
84, 621 (2012).

[3] N. Bergeal, F. Schackert, M. Metcalfe, R. Vijay, V. E.
Manucharyan, L. Frunzio, D. E. Prober, R. J. Schoelkopf,
S. M. Girvin, and M. H. Devoret, Nature 465, 64 (2010).

[4] D. Kinion and J. Clarke, Appl. Phys. Lett. 98, 202503
(2011).

Reasonable choice of    : � � = 3
gives the quantum benchmark

4

Theorem 5 (Benchmark for quantum amplifiers [33])
The CFT for the amplification of Gaussian-distributed
coherent states is given by

⇤Fg,⇤ =
1 + ⇤

1 + ⇤+ g2
(8)

both for deterministic and probabilistic protocols. The
above value is achieved by a heterodyne measurement
P (�̂)d

2�̂
⌅ = |�̂ ��̂|d

2�̂
⌅ followed by the conditional prepa-

ration of the coherent state
��� g�̂
1+⇤

⇥
.

Eqs. 6, 7 and 8 represent good news for experimental
demonstrations: they prove that genuine quantum am-
plification can be demonstrated for every finite value of
the expected photon number. As an illustration, consider
the demonstration of probabilistic amplification provided
by Zavatta, Fiuráček and Bellini in Ref. [22]. In this
case, the amplifier is designed to achieve gain g = 2. By
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the experiment precludes an accurate data analysis, as
the average over few values of � is very sensitive to sta-
tistical fluctuations. Our analysis suggest that, although
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the limit g ⌃ ⌥, and the fundamental reason is that an
amplifier with infinite gain is classical, like a cloning de-
vice producing infinite clones [37–39]. This point is made
very clear by our results: denoting by Cg,⇤ and by ⇤Cg,⇤ the
optimal quantum amplifier and the optimal measure-and-
prepare amplifier, for ⇤ ⇥ g�1 we have the remarkable re-
lation [33] ⇤Cg,⇤ = A g⇥

g2+(�+1)2
C⌦

g2+(⇤+1)2,⇤
, where A⇥ is

the attenuation channel transforming the coherent state
|� into |⇥� , ⇥ ⇥ 1. In words, the best measure-and-
prepare strategy with gain g is equivalent to the best
quantum strategy with gain g� =

⌅
g2 + (⇤+ 1)2, fol-

lowed by an attenuation of ⇥ = g/
⌅

g2 + (⇤+ 1)2 that
reduces the gain from g� to g. When the desired gain is
large compared to the prior information available (g ⇧ ⇤)
we have g� ⌅ g and ⇥ ⌅ 1, which imply ⇤Cg,⇤ ⌅ Cg,⇤.
In conclusion, we established the ultimate quantum

limits to the deterministic and probabilistic amplification
of Gaussian-distributed coherent states, without making
any assumption on the nature of the amplifier and with-
out making the unrealistic assumption of uniform dis-
tribution over coherent states. For probabilistic ampli-
fiers, we discovered the presence of a critical value of the
expected photon number, below which noiseless amplifi-
cation becomes possible. Furthermore, we provided the
quantum benchmark that has to be surpassed in order to
establish the successful experimental demonstration of a
genuine quantum amplifier. Our results show an intrigu-
ing link between genuine quantum amplification and the
maximization of a suitable Bell-type correlation, and, in
addition, they guarantee that a successful demonstration
is possible for any finite value of the expected photon
number.
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needed…)  



Example 2: storage/transmission/
cloning of qubit states
State transformation game:   
given N copies a qubit state 
produce M copies of the same state.

Probability distribution:

6

the prior p�(✓,') have a Bloch vector ~r✓,' with totally ran-
dom orientation in the xy plane and with z-component dis-
tributed according to the marginal prior distribution p�(z) =
2�(�+1)(�+ 1)(z+ 1)�, for z 2 [�1, 1]. Note that p�(z) becomes
more peaked around z = 1 as � becomes larger, as illustrated
in Fig. 2 where we plot p�(z) for several values of �.

Now, using Eq. (12) it is immediate to evaluate the CFT,
which is given by

F(2)
c (�) =

N + � + 1
M + N + � + 1

, (17)

where the superscript (2) refers to the dimension of the in-
put systems. In Appendix A 2 we extend the validity of this
formula from integer � to arbitrary � > 0, allowing one to in-
terpolate from the completely flat distribution for � = 0 to the
Dirac-delta distribution for �! 1.

Eq. (17) sets the benchmark for the N-to-M processing of
arbitrary qubit states distributed according to the prior (16),
and can be readily applied in general to validate determinis-
tic and probabilistic telecloning implementations with qubit
inputs [28, 29]. The benchmark is plotted in Fig. 3(a)–(b).

The benchmark for probabilistic single-qubit teleportation,
derived by setting the special case N = M = 1 in Eq. (17), is

F(2)tele
c (�) =

� + 2
� + 3

. (18)

Moreover it is worth commenting that Eqs. (17)–(18) repro-
duce known results in the literature [7, 8] in the limit of
uniform prior � ! 0. In this limit, the benchmark for
both deterministic and probabilistic protocols coincide: in-
deed, the ‘magic’ of probabilistic (tele)cloning schemes for
GPCSs fades away in the presence of maximal symmetry; see
e.g. Ref. [30] (specifically the Methods section and the dis-
cussion of the so-called “many-world fairness”). For finite �,
instead, deterministic MP protocols are not guaranteed to sat-
urate the probabilistic benchmark derived here, as discussed
in Sec. VI.

B. Spin coherent states

The result for qubits can be extended in a straightforward
way to spin-coherent states of spin- j quantum systems. From
the mathematical point of view, the extension is trivial, be-
cause a system of spin j can be thought as a composite sys-
tem of 2 j qubits. However, from the physical point of view,
it is worth treating this case separately, since not all physical
systems of spin j are composite systems of qubits (think, for
example, to the orbital angular momentum of a photon).

For spin systems we can consider a device that attempts
at transforming N copies of the coherent state | j, ji✓,' into M
copies of the coherent state |k, ki✓,'. Assuming a prior distri-
bution of the form of Eq. (16), the probabilistic CFT for this
transformation is

F(spin)
c (�) =

2 jN + � + 1
2 jN + 2kM + � + 1

, (19)

(a) (b)

(c) (d)

(e) (f)

FIG. 3. (Color online) Fidelity benchmark for the N ! M trans-
formation of arbitrary pure qudit states with (a)–(b) d = 2, (c)–(d)
d = 3, and (e)–(f) d = 4. The input states are distributed according
to a prior distribution p� dependent on an inverse width parameter �
as explained in the main text. In the first column [panels (a), (c), (e)],
we set � = 0, corresponding to a uniform distribution. In the second
column [panels (b), (d), (f)], we set � = 5, which gives a peaked dis-
tribution depicted in Fig. 2(b) for the qubit case (d = 2). The color
legend for the CFT F(d)

c in the bar charts is: 0 1.

which follows from Eq. (17) by making the substitutions N !
2 jN and M ! 2kM.

For j = k and M = N = 1 Eq. (19) gives the probabilistic
CFT for the teleportation and storage of spin-coherent states.
For k > j and M = N = 1, it gives the CFT for “spin-
stretching”, namely the task of enlarging the angular momen-
tum of quantum systems while preserving its orientation in
space [31, 32].

C. Pure qudit states

We now extend our result for qubits to arbitrary d-
dimensional quantum systems (qudits), with d < 1. We ana-
lyze the task of transforming N copies of a generic pure state

Probabilistic benchmark:



Example 2: d-dimensional states

State transformation game:   
given N copies an unknown state 
produce M copies of the same state.

Probability distribution:

Probabilistic benchmark:



Example 5:  
squeezed vacuum states
State transformation game:   
given N copies an unknown squeezed vacuum state 

produce M copies of the same state.

Probability distribution:

Probabilistic benchmark:



Example 6:  
squeezed one-photon states

State transformation game:   
given N copies an unknown squeezed one-photon state 
produce M copies of the same state.

Probabilistic benchmark:

Probabilistic distribution:  same as before

Application:  teleportation of cat states.



Example 7: 
single-mode Gaussian states
State transformation game:   
given N copies an unknown single-mode Gaussian state 

produce M copies of the same state.

Probability distribution:

Probabilistic benchmark:

9

(a) (b)

FIG. 4. (Color online) Prior probability distribution over the input
ensemble of pure single-mode Gaussian states, Eq. (34), setting the
inverse width parameters to � = 2 and � = 6. Panel (a) depicts
the the marginal prior distribution for displacement ↵ and squeez-
ing degree s after integrating Eq. (34) over the squeezing phase
✓, yielding p�,�(↵, s) = ⇡�1��e��|↵|

2 sinh s(cosh s)���2I0
⇥
�|↵|2 tanh s

⇤
[11], where I0 is a modified Bessel function. Panel (b) depicts cross-
sections of the phase-space Wigner functions for a small sample of
pure single-mode Gaussian states with parameters ↵, s, and ✓ ran-
domly sampled according to the considered prior distribution. The
correspondence between the parameters of a Gaussian state and the
form factor of the corresponding cross-section (which is an ellipse
obtained by cutting the two-dimensional Gaussian Wigner function)
is as follows: the centre of the ellipse has phase-space coordinates
(q, p) ⌘ (

p
2Re↵,

p
2Im↵), the ellipse is rotated by ✓/2 with respect

to the horizontal axis, and the ratio between the lengths of the semi-
axes is e2s; see e.g. [39] for more detail.

This prior, depicted in Fig. 4 depends on two inverse width
parameters, � regulating the distribution of the displace-
ment ↵, and � regulating the distribution of the squeez-
ing degree s, while the squeezing phase ✓ is randomly
distributed. We note that the prior in (34) can be writ-
ten as p�,�(⇠) / |h0|�↵, ⇠i|2|h0|⇠i|2(4+�)⌫(d2↵, d2⇠) where
⌫(d2↵, d2⇠) = d2↵ sinh s(cosh s)3dsd✓ is the invariant measure
under the joint action of displacement and squeezing. In the
case of no squeezing, this prior correctly reproduces the one
in (28) for coherent states, lim�!1

R
d2⇠ p�,�(↵, s, ✓) = p�(↵).

For integer values of �, �, the benchmark for N ! M trans-
formation of arbitrary pure single-mode Gaussian states dis-
tributed according to the prior in (34) is then given by evalu-
ating Eq. (12), which results in the following CFT, where the
su�x “(1cs)” stands for one-mode coherent (i.e. displaced)
squeezed states:

F(1cs)
c (�, �) =

(N + �)(N + �)
(N + M + �)(N + M + �)

. (35)

The benchmark of Eq. (35) is plotted in Fig. 5. For N =
M = 1, this result reproduces the very recent benchmark for
teleportation and storage of pure single-mode Gaussian states,
obtained by some of us in Ref. [11]. For arbitrary N, M,
and in the case of input states with no squeezing (� ! 1),
Eq. (35) reduces to Eq. (29). One can numerically verify that
the benchmark in Eq. (35) holds for generally noninteger val-
ues of � and � as well, by using a laborious but straightforward
operator approach [11].

(a) (b)

FIG. 5. (Color online) Fidelity benchmark for the N ! M trans-
formation of arbitrary pure single-mode Gaussian states, distributed
according to the prior p�,� of Eq. (34), with (a) � = � = 0 (input en-
semble of infinite energy), and (b) � = 2, � = 6 (peaked distribution
as in Fig. 4). The color legend for the CFT F(1cs)

c in the bar charts is:
0 1.

V. BENCHMARKS FOR NON-GAUSSIAN MULTIMODE
SQUEEZED STATES

In the following, we turn our attention from single-mode
Gaussian states to multimode non-Gaussian states. Specifi-
cally, we shall discuss the benchmark for a family of squeezed
states, which were first proposed by Perelomov [23, 26] and
we shall refer to them as Perelomov squeezed states (or
Perelomov- j states in brief, as these states are characterized
by a parameter j). The family of Perelomov squeezed states
includes Gaussian states like the single-mode squeezed vac-
uum states (discussed in Subsec. IV B) and, more intriguingly,
also several non-Gaussian states. For example, the state ob-
tained by squeezing a single-photon Fock state belongs to
this class; such a state is a good approximation of an “odd
Schrödinger cat state” and has applications in hybrid continu-
ous variable quantum information processing [54–58].

In this section, we shall first give a general description of
Perelomov squeezed states, providing the benchmark which
is applicable to all the continuous variable states in Perelo-
mov form. Then we shall discuss some specific Perelomov
squeezed states which are interesting for experimental imple-
mentations.

A. Benchmark for general Perelomov squeezed states

A general Perelomov squeezed state, characterized by a pa-
rameter j, can be written in the form below

|⇠, ji :=
1

(cosh s) j

1X
n=0

s 
n + j � 1

n

!
(ei✓ tanh s)n

���� ( j)
n

E
, (36)

⇠ = sei✓, s 2 [0,1), ✓ 2 [0, 2⇡).

Here
���� ( j)

n
↵ 

n2N is a generic basis of mutually orthogonal and
normalized states. For di↵erent Perelomov states we shall
have di↵erent corresponding basis states

��� ( j)
n

↵
. For instance,

the Perelomov- 1
2 state is the single-mode squeezed vacuum
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FIG. 4. (Color online) Prior probability distribution over the input
ensemble of pure single-mode Gaussian states, Eq. (34), setting the
inverse width parameters to � = 2 and � = 6. Panel (a) depicts
the the marginal prior distribution for displacement ↵ and squeez-
ing degree s after integrating Eq. (34) over the squeezing phase
✓, yielding p�,�(↵, s) = ⇡�1��e��|↵|

2 sinh s(cosh s)���2I0
⇥
�|↵|2 tanh s

⇤
[11], where I0 is a modified Bessel function. Panel (b) depicts cross-
sections of the phase-space Wigner functions for a small sample of
pure single-mode Gaussian states with parameters ↵, s, and ✓ ran-
domly sampled according to the considered prior distribution. The
correspondence between the parameters of a Gaussian state and the
form factor of the corresponding cross-section (which is an ellipse
obtained by cutting the two-dimensional Gaussian Wigner function)
is as follows: the centre of the ellipse has phase-space coordinates
(q, p) ⌘ (

p
2Re↵,

p
2Im↵), the ellipse is rotated by ✓/2 with respect

to the horizontal axis, and the ratio between the lengths of the semi-
axes is e2s; see e.g. [39] for more detail.

This prior, depicted in Fig. 4 depends on two inverse width
parameters, � regulating the distribution of the displace-
ment ↵, and � regulating the distribution of the squeez-
ing degree s, while the squeezing phase ✓ is randomly
distributed. We note that the prior in (34) can be writ-
ten as p�,�(⇠) / |h0|�↵, ⇠i|2|h0|⇠i|2(4+�)⌫(d2↵, d2⇠) where
⌫(d2↵, d2⇠) = d2↵ sinh s(cosh s)3dsd✓ is the invariant measure
under the joint action of displacement and squeezing. In the
case of no squeezing, this prior correctly reproduces the one
in (28) for coherent states, lim�!1

R
d2⇠ p�,�(↵, s, ✓) = p�(↵).

For integer values of �, �, the benchmark for N ! M trans-
formation of arbitrary pure single-mode Gaussian states dis-
tributed according to the prior in (34) is then given by evalu-
ating Eq. (12), which results in the following CFT, where the
su�x “(1cs)” stands for one-mode coherent (i.e. displaced)
squeezed states:

F(1cs)
c (�, �) =

(N + �)(N + �)
(N + M + �)(N + M + �)

. (35)

The benchmark of Eq. (35) is plotted in Fig. 5. For N =
M = 1, this result reproduces the very recent benchmark for
teleportation and storage of pure single-mode Gaussian states,
obtained by some of us in Ref. [11]. For arbitrary N, M,
and in the case of input states with no squeezing (� ! 1),
Eq. (35) reduces to Eq. (29). One can numerically verify that
the benchmark in Eq. (35) holds for generally noninteger val-
ues of � and � as well, by using a laborious but straightforward
operator approach [11].
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formation of arbitrary pure single-mode Gaussian states, distributed
according to the prior p�,� of Eq. (34), with (a) � = � = 0 (input en-
semble of infinite energy), and (b) � = 2, � = 6 (peaked distribution
as in Fig. 4). The color legend for the CFT F(1cs)

c in the bar charts is:
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V. BENCHMARKS FOR NON-GAUSSIAN MULTIMODE
SQUEEZED STATES

In the following, we turn our attention from single-mode
Gaussian states to multimode non-Gaussian states. Specifi-
cally, we shall discuss the benchmark for a family of squeezed
states, which were first proposed by Perelomov [23, 26] and
we shall refer to them as Perelomov squeezed states (or
Perelomov- j states in brief, as these states are characterized
by a parameter j). The family of Perelomov squeezed states
includes Gaussian states like the single-mode squeezed vac-
uum states (discussed in Subsec. IV B) and, more intriguingly,
also several non-Gaussian states. For example, the state ob-
tained by squeezing a single-photon Fock state belongs to
this class; such a state is a good approximation of an “odd
Schrödinger cat state” and has applications in hybrid continu-
ous variable quantum information processing [54–58].

In this section, we shall first give a general description of
Perelomov squeezed states, providing the benchmark which
is applicable to all the continuous variable states in Perelo-
mov form. Then we shall discuss some specific Perelomov
squeezed states which are interesting for experimental imple-
mentations.

A. Benchmark for general Perelomov squeezed states

A general Perelomov squeezed state, characterized by a pa-
rameter j, can be written in the form below

|⇠, ji :=
1

(cosh s) j
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• State transformation games:  
a general framework for many quantum tasks

    GPCS appearing naturally in many of them

• Quantum benchmarks:  
how to certify quantum advantages.  
 
general expressions for GPCS that are coherent to each other 
Benchmarks for teleportation, cloning, storage, and transmission.      

• Open problems: gate simulation games 
different type of “coherent states” playing a role there.  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