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Abstract

Akemann and Weaver (2014) have shown an interesting
generalization of Weaver’s KS2 Conjecture (2004) in the form of
approximate Lyapunov theorem. This was made possible thanks to
the breakthrough solution of the Kadison-Singer problem by
Marcus, Spielman, and Srivastava (2015). In this talk we show a
similar type of Lyapunov theorem for continuous frames. In
contrast with discrete frames, the proof of this result does not rely
on the recent solution of the Kadison-Singer problem.

Marcin Bownik Lyapunov Theorem for continuous frames



Continuous frame

Definition (Ali, Antoine, and Gazeau (1993), Kaiser (1994))

Let H be a separable Hilbert spaces and let (X , µ) be a measure
space. A family of vectors {φt}t∈X is a continuous frame over X
for H if:

(i) for each f ∈ H, the function X 3 t 7→ 〈f , φt〉 ∈ C is
measurable, and

(ii) there are constants 0 < A ≤ B <∞, called frame bounds,
such that

A||f ||2 ≤
∫
X
|〈f , φt〉|2dµ(t) ≤ B||f ||2 for all f ∈ H. (1)

When A = B, the frame is called tight, and when A = B = 1, it is
a continuous Parseval frame. More generally, if only the upper
bound holds in (1), that is A = 0, we say that {φt}t∈X is a
continuous Bessel family with bound B.
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Remark

1 If µ is a purely atomic measure, e.g., a counting measure,
then continuous frame=discrete frame.

2 Since H is separable, by the Pettis measurability theorem, the
weak measurability (i) is equivalent to (Bochner) strong
measurability on σ-finite measure spaces X . That is, t 7→ φt
is a pointwise a.e. limit of simple measurable functions.
Moreover, every measurable function φ : X → H is a.e.
uniform limit of a sequence of countably-valued measurable
functions.
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Proposition

Suppose that {φt}t∈X is a continuous Bessel family, then its
support {t ∈ X : φt 6= 0} is a σ-finite subset of X .

Proof.

Let {ei}i∈I be an orthonormal basis of H, where the index set I is
at most countable. For any n ∈ N and i ∈ I , by Chebyshev’s
inequality the Bessel bound yields

µ({t ∈ X : |〈ei , φt〉|2 > 1/n}) ≤ Bn <∞.

Hence, the set

{t ∈ X : φt 6= 0} =
⋃
i∈I

⋃
n∈N
{t ∈ X : |〈ei , φt〉|2 > 1/n}

is a countable union of sets of finite measure.
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Definition

Suppose that {φt}t∈X is a continuous Bessel family. For any
measurable function τ : X → [0, 1], define a modified frame
operator

S√τφ,X f =

∫
X
τ(t)〈f , φt〉φtdµ(t) f ∈ H.

Remark

A quick calculations shows that {
√
τ(t)φt}t∈X is also a

continuous Bessel family with the same bound as {φt}t∈X . Hence,
a modified frame operator is merely the usual frame operator
associated to {

√
τ(t)φt}t∈X .
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Approximation result for continuous frames

Lemma

Let (X , µ) be a measure space and let H be a separable Hilbert
space. Suppose that {φt}t∈X is a continuous Bessel family in H.
Then for every ε > 0, there exists a continuous Bessel family
{ψt}t∈X , which takes only countably many values, such that for
any measurable function τ : X → [0, 1] we have

||S√τφ,X − S√τψ,X || < ε.

Remark

A continuous Bessel family {ψt}t∈X , which takes only countably
many values, is essentially a discrete Bessel sequence.
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Proof.

By Proposition 1 we can assume that (X , µ) is σ-finite. Define the
sets X0 = {t ∈ X : ||φt || < 1} and

Xn = {t ∈ X : 2n−1 ≤ ||φt || < 2n}, n ≥ 1.

Then, for any ε > 0, we can find a partition {Xn,m}m∈N of each Xn

such that µ(Xn,m) ≤ 1. Then, we can find a countably-valued
measurable function {ψt}t∈X such that

||ψt − φt || ≤
ε

4n2m
for t ∈ Xn,m.

Take any f ∈ H with ||f || = 1. Then, for any t ∈ Xn,m,

||〈f , ψt〉|2 − |〈f , φt〉|2| = |〈f , ψt − φt〉||〈f , ψt + φt〉|
≤ ||ψt − φt ||(||ψt ||+ ||φt ||)

≤ ε

4n2m
(2n + ε+ 2n) ≤ 3ε

2n2m
.
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Proof continued.

Integrating over Xn,m and summing over n ∈ N0 and m ∈ N yields∫
X
||〈f , ψt〉|2 − |〈f , φt〉|2|dµ(t) ≤

∞∑
n=0

∞∑
m=1

3ε

2n2m
µ(Xn,m) ≤ 6ε.

Using the fact that S√τφ,X is self-adjoint, we have

||S√τφ,X − S√τψ,X || = sup
||f ||=1

|〈(S√τφ,X − S√τψ,X )f , f 〉|

= sup
||f ||=1

∣∣∣∣ ∫
X
τ(t)(|〈f , ψt〉|2 − |〈f , φt〉|2)dµ(t)

∣∣∣∣
≤ 6ε.

Since ε > 0 is arbitrary, this completes the proof.
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Problem (Kadison, Singer (1959))

Let H be an infinite-dimensional separable Hilbert space. Let D be
a discrete maximal abelian self-adjoint subalgebra (MASA) of
B(H). Say, H = `2(N) and D is the algebra of diagonal operators.
Does every pure state on D extend to a unique pure state on
B(H)?

This problem was known to be equivalent to:

Anderson Paving Conjecture (1979),

Akemann–Anderson Projection Paving Conjecture (1991),

Bourgain–Tzafriri Restricted Invertibility Conjecture (1991),

Weaver KSr Conjecture (2004),

Feichtinger Conjecture (2005),

Casazza-Tremain Rε Conjecture (2006),

e.t.c ...

Finally, Marcus-Spielman-Srivastava solved the problem in 2013.
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Solution of Kadison-Singer Problem

Theorem (Marcus–Spielman–Srivastava 2015)

If ε > 0 and v1, . . . , vm are independent random vectors in Cd with
finite support. Then,

E

[
m∑
i=1

viv
∗
i

]
= I and E

[
‖vi‖2

]
≤ ε for all i

=⇒ P

(∥∥∥∥∥
m∑
i=1

viv
∗
i

∥∥∥∥∥ ≤ (1 +
√
ε)2

)
> 0.

Corollary (Weaver’s KSr Conjecture holds)

{ui}Mi=1 ⊂ Cd Bessel seq. with bound 1 and ‖ui‖2 ≤ δ for all i
=⇒ ∀r ∈ N ∃ partition I1, . . . , Ir of {1, . . . ,M} such that

each {φi}i∈Ij is a Bessel sequence with bound
(

1√
r

+
√
δ
)2
.
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Theorem (B.-Casazza-Marcus-Speegle 2016+)

If 0 < ε< 1/2 and v1, . . . , vm are independent random vectors in
Cd with support of size 2. Then,

E

[
m∑
i=1

viv
∗
i

]
= I and E

[
‖vi‖2

]
≤ ε for all i

=⇒ P

(∥∥∥∥∥
m∑
i=1

viv
∗
i

∥∥∥∥∥ ≤ 1 + 2
√
ε
√

1− ε

)
> 0.

Corollary (Weaver KS2 Conjecture holds)

{ui}Mi=1 ⊂ Cd Bessel seq. with bound 1 and ‖ui‖2 ≤ δ < 1/4
=⇒ ∃ partition I1, I2 of {1, . . . ,M} such that

each {φi}i∈Ij is a Bessel seq. with bound 1− ε, where ε = ε(δ) > 0.

Improves KS2 constant from 1/(2 +
√

2)2 ≈ 0.085 to 1/4 = 0.25.
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Approximate Lyapunov theorem for discrete frames

For φ ∈ H, let φ⊗ φ denote a rank one operator given by

(φ⊗ φ)(f ) = 〈f , φ〉φ for f ∈ H.

Lemma (Akemann, Weaver (2014))

There exists a universal constant C > 0 such that the following
holds. Suppose {φi}i∈I is a Bessel family in a separable Hilbert
space H, which consists of vectors of norms ‖φi‖2 ≤ ε, where
ε > 0. Let

S =
∑
i∈I

φi ⊗ φi

be its frame operator. Then for any 0 ≤ τ ≤ 1, there exists a
subset I0 ⊂ I such that∥∥∥∥∑

i∈I0

φi ⊗ φi − τS
∥∥∥∥ ≤ C ||S ||ε1/4.
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Theorem (Akemann, Weaver (2014))

Suppose {φi}i∈I is a Bessel family with bound B in a separable
Hilbert space H, which consists of vectors of norms ‖φi‖2 ≤ ε,
where ε > 0. Suppose that 0 ≤ τi ≤ 1 for all i ∈ I . Consider the
modified frame operator

S√τ·φ·,I =
∑
i∈I

τiφi ⊗ φi .

Then, there exists a subset of indices I0 ⊂ I such that∥∥∥∥∑
i∈I0

φi ⊗ φi − S√τiφi ,i∈I

∥∥∥∥ ≤ CBε1/8.

Theorem (Lyapunov (1940))

The range of a vector-valued measures with values in a finite
dimensional space Rn (or Cn) is a compact and convex subset of
Rn (or Cn).
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Lyapunov theorem for continuous frames

Theorem (B. (2016))

Let (X , µ) be a non-atomic σ-finite measure space. Suppose that
{φt}t∈X is a continuous Bessel family in H. For any measurable
function τ : X → [0, 1], consider a modified frame operator

S√τφ,X f =

∫
X
τ(t)〈f , φt〉φtdµ(t) f ∈ H.

Then, for any ε > 0, there exists a measurable set E ⊂ X such that

||Sφ,E − S√τφ,X || < ε. (2)
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Proof.

Let {ψt}t∈X be continuous Bessel family from approximation
lemma. Since {ψt}t∈X takes only countably many values, there
exists a sequence {ψ̃n}n∈N in H and a partition {Xn}n∈N of X
such that

ψt = ψ̃n for all t ∈ Xn, n ∈ N.

Since {ψt}t∈X is Bessel, we have µ(Xn) <∞ for all n such that
ψ̃n 6= 0. Moreover, by subdividing sets Xn if necessary we can
assume that

||ψ̃n||2µ(Xn) ≤ ε2 for all n ∈ N.

This is possible since the measure µ is non-atomic. Then, the
continuous frame {ψt}t∈X is equivalent to a discrete frame

φn =
√
µ(Xn)ψn n ∈ N.
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Proof (continued).

More precisely, for any measurable function τ : X → [0, 1], the
frame operator S√τψ,X of a continuous Bessel family

{
√
τ(t)ψt}t∈X coincides with the frame operator of a discrete

Bessel sequence

{
√
τnφn}n∈N where τn =

∫
Xn

τ(t)dµ(t).

Let En ⊂ Xn be such that µ(En) = τnµ(Xn). Define E =
⋃

n∈I En.
Then,

||Sφ,E − S√τφ,X ||
≤ ||Sφ,E − Sψ,E ||+ ||Sψ,E − S√τψ,X ||+ ||S√τψ,X − S√τφ,X ||
≤ ε+ 0 + ε = 2ε.

Since ε > 0 is arbitrary, this shows (2).
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Main theorem

Previous theorem implies the following variant of Lyapunov
theorem in a spirit of a result of Uhl (1969).

Theorem (B. (2016))

Let (X , µ) be a non-atomic measure space. Suppose that {φt}t∈X
is a continuous Bessel family in H. Let S be the set of all partial
frame operators

S = {Sφ,E : E ⊂ X is measurable},

Sφ,E f =

∫
E
〈f , φt〉φtdµ(t) f ∈ H.

Then, the operator norm closure S ⊂ B(H) is convex.

Remark

Taking closure in the above theorem is necessary.
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Proof.

Note that set

T = {S√τφ,X : τ is any measurable X → [0, 1]}

is a convex subset of B(H). Hence, its operator name closure T is
also closed. Since S ⊂ T , by previous theorem their closures are
the same T = S.
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Lyapunov property

Theorem (Uhl (1969))

Suppose a vector-valued measure µ with values in a Banach space
X is such that:

X is either reflexive or has separable dual,

µ has bounded variation, ||µ|| = sup
∑

n ||F (En)|| <∞.

If µ is non-atomic, then closure of its range is compact and convex.

Remark

1 The positive operator valued measure E 7→ Sφ,E in general
does not have bounded variation. Moreover, the closure of S
might not be compact.

2 Kadets and Shechtman (1992) introduced the Lyapunov
property of a Banach space: “the closure of a range of every
non-atomic vector measure is convex”. They have shown that
c0 and `p spaces for 1 ≤ p <∞, p 6= 2, satisfy the Lyapunov
property. However, `2 fails this property.
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Example

Consider a continuous Bessel family {φt}t∈[0,1] with values in
L2([0, 1]) given by φt = χ[0,t]. We claim that there is no

measurable set E ⊂ [0, 1] such that Sφ,E = 1
2Sφ,[0,1].

Otherwise, we
would have for all f ∈ L2([0, 1])

1

2

∫ 1

0
|〈f , φt〉|2dt =

1

2

∫ 1

0

∣∣∣∣ ∫ t

0
f (s)ds

∣∣∣∣2dt =

∫
E

∣∣∣∣ ∫ t

0
f (s)ds

∣∣∣∣2dt.
For any 0 ≤ a < b ≤ 1, define fn(t) = nχ[a,a+1/n] − nχ[b−1/n,b].

Then, gn(t) =
∫ t
0 fn(s)ds is a piecewise linear function with knots

at (a, 0), (a + 1/n, 1), (b − 1/n, 1), and (b, 0), where
n > 2/(b − a). Applying the above and taking the limit as n→∞
yields

b − a

2
=

1

2
λ([a, b]) = λ(E ∩ [a, b]).

Since [a, b] is an arbitrary subinterval of [0, 1], this contradicts the
Lebesgue Differentiation Theorem.
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Problem

Does the main theorem generalize to positive operator valued
measures (POVM)?
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THE END
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