Lyapunov Theorem for continuous frames

Marcin Bownik

University of Oregon, U.S.A. Institute of Mathematics, Polish Academy of Sciences, Poland

Coherent States and their Applications: A Contemporary Panorama November 14-18, 2016

向下 イヨト イヨト

Akemann and Weaver (2014) have shown an interesting generalization of Weaver's KS_2 Conjecture (2004) in the form of approximate Lyapunov theorem. This was made possible thanks to the breakthrough solution of the Kadison-Singer problem by Marcus, Spielman, and Srivastava (2015). In this talk we show a similar type of Lyapunov theorem for continuous frames. In contrast with discrete frames, the proof of this result does not rely on the recent solution of the Kadison-Singer problem.

回 と く ヨ と く ヨ と

Definition (Ali, Antoine, and Gazeau (1993), Kaiser (1994))

Let \mathcal{H} be a separable Hilbert spaces and let (X, μ) be a measure space. A family of vectors $\{\phi_t\}_{t \in X}$ is a *continuous frame* over X for \mathcal{H} if:

Definition (Ali, Antoine, and Gazeau (1993), Kaiser (1994))

Let \mathcal{H} be a separable Hilbert spaces and let (X, μ) be a measure space. A family of vectors $\{\phi_t\}_{t \in X}$ is a *continuous frame* over X for \mathcal{H} if:

(i) for each $f \in \mathcal{H}$, the function $X \ni t \mapsto \langle f, \phi_t \rangle \in \mathbb{C}$ is measurable, and

Definition (Ali, Antoine, and Gazeau (1993), Kaiser (1994))

Let \mathcal{H} be a separable Hilbert spaces and let (X, μ) be a measure space. A family of vectors $\{\phi_t\}_{t \in X}$ is a *continuous frame* over X for \mathcal{H} if:

- (i) for each $f \in \mathcal{H}$, the function $X \ni t \mapsto \langle f, \phi_t \rangle \in \mathbb{C}$ is measurable, and
- (ii) there are constants $0 < A \leq B < \infty,$ called frame bounds, such that

$$|A||f||^2 \leq \int_X |\langle f, \phi_t \rangle|^2 d\mu(t) \leq B||f||^2 \quad \text{for all } f \in \mathcal{H}.$$
 (1)

Definition (Ali, Antoine, and Gazeau (1993), Kaiser (1994))

Let \mathcal{H} be a separable Hilbert spaces and let (X, μ) be a measure space. A family of vectors $\{\phi_t\}_{t \in X}$ is a *continuous frame* over X for \mathcal{H} if:

- (i) for each $f \in \mathcal{H}$, the function $X \ni t \mapsto \langle f, \phi_t \rangle \in \mathbb{C}$ is measurable, and
- (ii) there are constants $0 < A \leq B < \infty,$ called frame bounds, such that

$$|A||f||^2 \leq \int_X |\langle f, \phi_t \rangle|^2 d\mu(t) \leq B||f||^2 \quad \text{for all } f \in \mathcal{H}.$$
 (1)

When A = B, the frame is called *tight*, and when A = B = 1, it is a *continuous Parseval frame*.

Definition (Ali, Antoine, and Gazeau (1993), Kaiser (1994))

Let \mathcal{H} be a separable Hilbert spaces and let (X, μ) be a measure space. A family of vectors $\{\phi_t\}_{t \in X}$ is a *continuous frame* over X for \mathcal{H} if:

- (i) for each $f \in \mathcal{H}$, the function $X \ni t \mapsto \langle f, \phi_t \rangle \in \mathbb{C}$ is measurable, and
- (ii) there are constants $0 < A \leq B < \infty,$ called frame bounds, such that

$$|A||f||^2 \leq \int_X |\langle f, \phi_t \rangle|^2 d\mu(t) \leq B||f||^2 \quad \text{for all } f \in \mathcal{H}.$$
 (1)

When A = B, the frame is called *tight*, and when A = B = 1, it is a *continuous Parseval frame*. More generally, if only the upper bound holds in (1), that is A = 0, we say that $\{\phi_t\}_{t \in X}$ is a *continuous Bessel family* with bound B.

Remark

 If μ is a purely atomic measure, e.g., a counting measure, then continuous frame=discrete frame.

イロト イヨト イヨト イヨト

æ

Remark

- If μ is a purely atomic measure, e.g., a counting measure, then continuous frame=discrete frame.
- Since H is separable, by the Pettis measurability theorem, the weak measurability (i) is equivalent to (Bochner) strong measurability on σ-finite measure spaces X. That is, t → φ_t is a pointwise a.e. limit of simple measurable functions.

Remark

- If μ is a purely atomic measure, e.g., a counting measure, then continuous frame=discrete frame.
- Since H is separable, by the Pettis measurability theorem, the weak measurability (i) is equivalent to (Bochner) strong measurability on σ-finite measure spaces X. That is, t → φ_t is a pointwise a.e. limit of simple measurable functions. Moreover, every measurable function φ : X → H is a.e. uniform limit of a sequence of countably-valued measurable functions.

Proposition

Suppose that $\{\phi_t\}_{t \in X}$ is a continuous Bessel family, then its support $\{t \in X : \phi_t \neq 0\}$ is a σ -finite subset of X.

(ロ) (同) (E) (E) (E)

Proposition

Suppose that $\{\phi_t\}_{t \in X}$ is a continuous Bessel family, then its support $\{t \in X : \phi_t \neq 0\}$ is a σ -finite subset of X.

Proof.

Let $\{e_i\}_{i \in I}$ be an orthonormal basis of \mathcal{H} , where the index set I is at most countable. For any $n \in \mathbb{N}$ and $i \in I$, by Chebyshev's inequality the Bessel bound yields

$$\mu(\{t \in X : |\langle e_i, \phi_t \rangle|^2 > 1/n\}) \le Bn < \infty.$$

イロト イポト イヨト イヨト

æ

Proposition

Suppose that $\{\phi_t\}_{t \in X}$ is a continuous Bessel family, then its support $\{t \in X : \phi_t \neq 0\}$ is a σ -finite subset of X.

Proof.

Let $\{e_i\}_{i \in I}$ be an orthonormal basis of \mathcal{H} , where the index set I is at most countable. For any $n \in \mathbb{N}$ and $i \in I$, by Chebyshev's inequality the Bessel bound yields

$$\mu(\{t \in X : |\langle e_i, \phi_t \rangle|^2 > 1/n\}) \le Bn < \infty.$$

Hence, the set

$$\{t \in X : \phi_t \neq 0\} = \bigcup_{i \in I} \bigcup_{n \in \mathbb{N}} \{t \in X : |\langle e_i, \phi_t \rangle|^2 > 1/n\}$$

is a countable union of sets of finite measure.

イロト イポト イヨト イヨト

Definition

Suppose that $\{\phi_t\}_{t\in X}$ is a continuous Bessel family. For any measurable function $\tau: X \to [0, 1]$, define a modified frame operator

$$\mathcal{S}_{\sqrt{ au}\phi,X}f=\int_X au(t)\langle f,\phi_t
angle\phi_t d\mu(t) \qquad f\in\mathcal{H}.$$

Definition

Suppose that $\{\phi_t\}_{t\in X}$ is a continuous Bessel family. For any measurable function $\tau: X \to [0, 1]$, define a modified frame operator

$$S_{\sqrt{ au}\phi,X}f=\int_X au(t)\langle f,\phi_t
angle\phi_t d\mu(t) \qquad f\in\mathcal{H}.$$

Remark

A quick calculations shows that $\{\sqrt{\tau(t)}\phi_t\}_{t\in X}$ is also a continuous Bessel family with the same bound as $\{\phi_t\}_{t\in X}$. Hence, a modified frame operator is merely the usual frame operator associated to $\{\sqrt{\tau(t)}\phi_t\}_{t\in X}$.

・ロト ・回ト ・ヨト ・ヨト

Lemma

Let (X, μ) be a measure space and let \mathcal{H} be a separable Hilbert space. Suppose that $\{\phi_t\}_{t\in X}$ is a continuous Bessel family in \mathcal{H} . Then for every $\varepsilon > 0$, there exists a continuous Bessel family $\{\psi_t\}_{t\in X}$, which takes only countably many values, such that for any measurable function $\tau : X \to [0, 1]$ we have

$$||S_{\sqrt{\tau}\phi,X} - S_{\sqrt{\tau}\psi,X}|| < \varepsilon.$$

Lemma

Let (X, μ) be a measure space and let \mathcal{H} be a separable Hilbert space. Suppose that $\{\phi_t\}_{t\in X}$ is a continuous Bessel family in \mathcal{H} . Then for every $\varepsilon > 0$, there exists a continuous Bessel family $\{\psi_t\}_{t\in X}$, which takes only countably many values, such that for any measurable function $\tau : X \to [0, 1]$ we have

$$||S_{\sqrt{\tau}\phi,X} - S_{\sqrt{\tau}\psi,X}|| < \varepsilon.$$

Remark

A continuous Bessel family $\{\psi_t\}_{t \in X}$, which takes only countably many values, is essentially a discrete Bessel sequence.

・ロン ・回と ・ヨン・

By Proposition 1 we can assume that (X, μ) is σ -finite. Define the sets $X_0 = \{t \in X : ||\phi_t|| < 1\}$ and

$$X_n = \{t \in X : 2^{n-1} \le ||\phi_t|| < 2^n\}, \qquad n \ge 1.$$

Then, for any $\varepsilon > 0$, we can find a partition $\{X_{n,m}\}_{m \in \mathbb{N}}$ of each X_n such that $\mu(X_{n,m}) \leq 1$. Then, we can find a countably-valued measurable function $\{\psi_t\}_{t \in X}$ such that

$$||\psi_t - \phi_t|| \leq \frac{\varepsilon}{4^n 2^m}$$
 for $t \in X_{n,m}$.

By Proposition 1 we can assume that (X, μ) is σ -finite. Define the sets $X_0 = \{t \in X : ||\phi_t|| < 1\}$ and

$$X_n = \{t \in X : 2^{n-1} \le ||\phi_t|| < 2^n\}, \qquad n \ge 1.$$

Then, for any $\varepsilon > 0$, we can find a partition $\{X_{n,m}\}_{m \in \mathbb{N}}$ of each X_n such that $\mu(X_{n,m}) \leq 1$. Then, we can find a countably-valued measurable function $\{\psi_t\}_{t \in X}$ such that

$$||\psi_t - \phi_t|| \leq \frac{\varepsilon}{4^n 2^m} \quad \text{for } t \in X_{n,m}.$$

Take any $f \in \mathcal{H}$ with ||f|| = 1. Then, for any $t \in X_{n,m}$,

$$\begin{aligned} ||\langle f, \psi_t \rangle|^2 - |\langle f, \phi_t \rangle|^2| &= |\langle f, \psi_t - \phi_t \rangle ||\langle f, \psi_t + \phi_t \rangle| \\ &\leq ||\psi_t - \phi_t||(||\psi_t|| + ||\phi_t||) \\ &\leq \frac{\varepsilon}{4^{n}2^m} (2^n + \varepsilon + 2^n) \leq \frac{3\varepsilon}{2^{n}2^m}. \end{aligned}$$

Proof continued.

Integrating over $X_{n,m}$ and summing over $n \in \mathbb{N}_0$ and $m \in \mathbb{N}$ yields

$$\int_{X} ||\langle f, \psi_t \rangle|^2 - |\langle f, \phi_t \rangle|^2 |d\mu(t) \leq \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} \frac{3\varepsilon}{2^n 2^m} \mu(X_{n,m}) \leq 6\varepsilon.$$

Using the fact that $S_{\sqrt{ au}\phi,X}$ is self-adjoint, we have

$$\begin{split} ||S_{\sqrt{\tau}\phi,X} - S_{\sqrt{\tau}\psi,X}|| &= \sup_{||f||=1} |\langle (S_{\sqrt{\tau}\phi,X} - S_{\sqrt{\tau}\psi,X})f,f\rangle| \\ &= \sup_{||f||=1} \left| \int_X \tau(t)(|\langle f,\psi_t\rangle|^2 - |\langle f,\phi_t\rangle|^2)d\mu(t) \right| \\ &\leq 6\varepsilon. \end{split}$$

Since $\varepsilon > 0$ is arbitrary, this completes the proof.

Let \mathcal{H} be an infinite-dimensional separable Hilbert space. Let \mathcal{D} be a discrete maximal abelian self-adjoint subalgebra (MASA) of $\mathcal{B}(\mathcal{H})$. Say, $\mathcal{H} = \ell^2(\mathbb{N})$ and \mathcal{D} is the algebra of diagonal operators. Does every pure state on \mathcal{D} extend to a **unique** pure state on $\mathcal{B}(\mathcal{H})$?

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let \mathcal{H} be an infinite-dimensional separable Hilbert space. Let \mathcal{D} be a discrete maximal abelian self-adjoint subalgebra (MASA) of $\mathcal{B}(\mathcal{H})$. Say, $\mathcal{H} = \ell^2(\mathbb{N})$ and \mathcal{D} is the algebra of diagonal operators. Does every pure state on \mathcal{D} extend to a **unique** pure state on $\mathcal{B}(\mathcal{H})$?

This problem was known to be equivalent to:

• Anderson Paving Conjecture (1979),

Let \mathcal{H} be an infinite-dimensional separable Hilbert space. Let \mathcal{D} be a discrete maximal abelian self-adjoint subalgebra (MASA) of $\mathcal{B}(\mathcal{H})$. Say, $\mathcal{H} = \ell^2(\mathbb{N})$ and \mathcal{D} is the algebra of diagonal operators. Does every pure state on \mathcal{D} extend to a **unique** pure state on $\mathcal{B}(\mathcal{H})$?

This problem was known to be equivalent to:

- Anderson Paving Conjecture (1979),
- Akemann-Anderson Projection Paving Conjecture (1991),

Let \mathcal{H} be an infinite-dimensional separable Hilbert space. Let \mathcal{D} be a discrete maximal abelian self-adjoint subalgebra (MASA) of $B(\mathcal{H})$. Say, $\mathcal{H} = \ell^2(\mathbb{N})$ and \mathcal{D} is the algebra of diagonal operators. Does every pure state on \mathcal{D} extend to a **unique** pure state on $B(\mathcal{H})$?

This problem was known to be equivalent to:

- Anderson Paving Conjecture (1979),
- Akemann-Anderson Projection Paving Conjecture (1991),
- Bourgain-Tzafriri Restricted Invertibility Conjecture (1991),

Let \mathcal{H} be an infinite-dimensional separable Hilbert space. Let \mathcal{D} be a discrete maximal abelian self-adjoint subalgebra (MASA) of $B(\mathcal{H})$. Say, $\mathcal{H} = \ell^2(\mathbb{N})$ and \mathcal{D} is the algebra of diagonal operators. Does every pure state on \mathcal{D} extend to a **unique** pure state on $B(\mathcal{H})$?

This problem was known to be equivalent to:

- Anderson Paving Conjecture (1979),
- Akemann-Anderson Projection Paving Conjecture (1991),
- Bourgain-Tzafriri Restricted Invertibility Conjecture (1991),
- Weaver KS_r Conjecture (2004),

Let \mathcal{H} be an infinite-dimensional separable Hilbert space. Let \mathcal{D} be a discrete maximal abelian self-adjoint subalgebra (MASA) of $B(\mathcal{H})$. Say, $\mathcal{H} = \ell^2(\mathbb{N})$ and \mathcal{D} is the algebra of diagonal operators. Does every pure state on \mathcal{D} extend to a **unique** pure state on $B(\mathcal{H})$?

This problem was known to be equivalent to:

- Anderson Paving Conjecture (1979),
- Akemann-Anderson Projection Paving Conjecture (1991),
- Bourgain-Tzafriri Restricted Invertibility Conjecture (1991),
- Weaver KS_r Conjecture (2004),
- Feichtinger Conjecture (2005),

Let \mathcal{H} be an infinite-dimensional separable Hilbert space. Let \mathcal{D} be a discrete maximal abelian self-adjoint subalgebra (MASA) of $B(\mathcal{H})$. Say, $\mathcal{H} = \ell^2(\mathbb{N})$ and \mathcal{D} is the algebra of diagonal operators. Does every pure state on \mathcal{D} extend to a **unique** pure state on $B(\mathcal{H})$?

This problem was known to be equivalent to:

- Anderson Paving Conjecture (1979),
- Akemann-Anderson Projection Paving Conjecture (1991),
- Bourgain-Tzafriri Restricted Invertibility Conjecture (1991),
- Weaver KS_r Conjecture (2004),
- Feichtinger Conjecture (2005),
- Casazza-Tremain R_{ϵ} Conjecture (2006),

Let \mathcal{H} be an infinite-dimensional separable Hilbert space. Let \mathcal{D} be a discrete maximal abelian self-adjoint subalgebra (MASA) of $B(\mathcal{H})$. Say, $\mathcal{H} = \ell^2(\mathbb{N})$ and \mathcal{D} is the algebra of diagonal operators. Does every pure state on \mathcal{D} extend to a **unique** pure state on $B(\mathcal{H})$?

This problem was known to be equivalent to:

- Anderson Paving Conjecture (1979),
- Akemann-Anderson Projection Paving Conjecture (1991),
- Bourgain-Tzafriri Restricted Invertibility Conjecture (1991),
- Weaver KS_r Conjecture (2004),
- Feichtinger Conjecture (2005),
- Casazza-Tremain R_{ϵ} Conjecture (2006),
- e.t.c ...

・ 同 ト ・ ヨ ト ・ ヨ ト

Let \mathcal{H} be an infinite-dimensional separable Hilbert space. Let \mathcal{D} be a discrete maximal abelian self-adjoint subalgebra (MASA) of $\mathcal{B}(\mathcal{H})$. Say, $\mathcal{H} = \ell^2(\mathbb{N})$ and \mathcal{D} is the algebra of diagonal operators. Does every pure state on \mathcal{D} extend to a **unique** pure state on $\mathcal{B}(\mathcal{H})$?

This problem was known to be equivalent to:

- Anderson Paving Conjecture (1979),
- Akemann-Anderson Projection Paving Conjecture (1991),
- Bourgain-Tzafriri Restricted Invertibility Conjecture (1991),
- Weaver KS_r Conjecture (2004),
- Feichtinger Conjecture (2005),
- Casazza-Tremain R_{ϵ} Conjecture (2006),
- e.t.c ...

Finally, Marcus-Spielman-Srivastava solved the problem in 2013.

Theorem (Marcus–Spielman–Srivastava 2015)

If $\epsilon > 0$ and v_1, \ldots, v_m are independent random vectors in \mathbb{C}^d with finite support. Then,

$$\mathbb{E}\left[\sum_{i=1}^{m} v_{i} v_{i}^{*}\right] = \mathbf{I} \quad \text{and} \quad \mathbb{E}\left[\|v_{i}\|^{2}\right] \leq \epsilon \quad \text{for all } i$$

Theorem (Marcus–Spielman–Srivastava 2015)

If $\epsilon > 0$ and v_1, \ldots, v_m are independent random vectors in \mathbb{C}^d with finite support. Then,

$$\mathbb{E}\left[\sum_{i=1}^{m} v_{i} v_{i}^{*}\right] = \mathbf{I} \quad \text{and} \quad \mathbb{E}\left[\|v_{i}\|^{2}\right] \leq \epsilon \quad \text{for all } i$$
$$\implies \quad \mathbb{P}\left(\left\|\sum_{i=1}^{m} v_{i} v_{i}^{*}\right\| \leq (1+\sqrt{\epsilon})^{2}\right) > 0.$$

伺 と く き と く き と

Theorem (Marcus–Spielman–Srivastava 2015)

If $\epsilon > 0$ and v_1, \ldots, v_m are independent random vectors in \mathbb{C}^d with finite support. Then,

$$\mathbb{E}\left[\sum_{i=1}^{m} v_{i} v_{i}^{*}\right] = \mathbf{I} \quad and \quad \mathbb{E}\left[\|v_{i}\|^{2}\right] \leq \epsilon \quad \text{for all } i$$
$$\implies \quad \mathbb{P}\left(\left\|\sum_{i=1}^{m} v_{i} v_{i}^{*}\right\| \leq (1+\sqrt{\epsilon})^{2}\right) > 0.$$

Corollary (Weaver's KS_r Conjecture holds)

 $\{u_i\}_{i=1}^M \subset \mathbb{C}^d$ Bessel seq. with bound 1 and $\|u_i\|^2 \leq \delta$ for all i

Theorem (Marcus–Spielman–Srivastava 2015)

If $\epsilon > 0$ and v_1, \ldots, v_m are independent random vectors in \mathbb{C}^d with finite support. Then,

$$\mathbb{E}\left[\sum_{i=1}^{m} v_{i} v_{i}^{*}\right] = \mathbf{I} \quad \text{and} \quad \mathbb{E}\left[\|v_{i}\|^{2}\right] \leq \epsilon \quad \text{for all } i$$
$$\implies \quad \mathbb{P}\left(\left\|\sum_{i=1}^{m} v_{i} v_{i}^{*}\right\| \leq (1+\sqrt{\epsilon})^{2}\right) > 0.$$

Corollary (Weaver's KS_r Conjecture holds)

 $\{u_i\}_{i=1}^{M} \subset \mathbb{C}^d \text{ Bessel seq. with bound } 1 \text{ and } \|u_i\|^2 \leq \delta \text{ for all } i \\ \implies \forall r \in \mathbb{N} \exists \text{ partition } I_1, \ldots, I_r \text{ of } \{1, \ldots, M\} \text{ such that} \\ \text{each } \{\phi_i\}_{i \in I_j} \text{ is a Bessel sequence with bound } \left(\frac{1}{\sqrt{r}} + \sqrt{\delta}\right)^2.$

If $0 < \epsilon < 1/2$ and v_1, \ldots, v_m are independent random vectors in \mathbb{C}^d with support of size 2. Then,

$$\mathbb{E}\left[\sum_{i=1}^{m} v_{i} v_{i}^{*}\right] = \mathbf{I} \quad \text{and} \quad \mathbb{E}\left[\|v_{i}\|^{2}\right] \leq \epsilon \quad \text{for all } i$$

▲□→ ▲ 国 → ▲ 国 →

3

If $0 < \epsilon < 1/2$ and v_1, \ldots, v_m are independent random vectors in \mathbb{C}^d with support of size 2. Then,

$$\mathbb{E}\left[\sum_{i=1}^{m} v_{i} v_{i}^{*}\right] = \mathbf{I} \quad \text{and} \quad \mathbb{E}\left[\|v_{i}\|^{2}\right] \leq \epsilon \quad \text{for all } i$$
$$\implies \quad \mathbb{P}\left(\left\|\sum_{i=1}^{m} v_{i} v_{i}^{*}\right\| \leq 1 + 2\sqrt{\epsilon}\sqrt{1-\epsilon}\right) > 0.$$

(過) (目) (日)

3

If $0 < \epsilon < 1/2$ and v_1, \ldots, v_m are independent random vectors in \mathbb{C}^d with support of size 2. Then,

$$\mathbb{E}\left[\sum_{i=1}^{m} v_{i} v_{i}^{*}\right] = \mathbf{I} \quad \text{and} \quad \mathbb{E}\left[\|v_{i}\|^{2}\right] \leq \epsilon \quad \text{for all } i$$
$$\implies \quad \mathbb{P}\left(\left\|\sum_{i=1}^{m} v_{i} v_{i}^{*}\right\| \leq 1 + 2\sqrt{\epsilon}\sqrt{1-\epsilon}\right) > 0.$$

Corollary (Weaver KS₂ Conjecture holds)

 $\{u_i\}_{i=1}^M \subset \mathbb{C}^d$ Bessel seq. with bound 1 and $\|u_i\|^2 \leq \delta < 1/4$

・ 同 ト ・ ヨ ト ・ ヨ ト …

If $0 < \epsilon < 1/2$ and v_1, \ldots, v_m are independent random vectors in \mathbb{C}^d with support of size 2. Then,

$$\mathbb{E}\left[\sum_{i=1}^{m} v_{i} v_{i}^{*}\right] = \mathbf{I} \quad \text{and} \quad \mathbb{E}\left[\|v_{i}\|^{2}\right] \leq \epsilon \quad \text{for all } i$$
$$\implies \quad \mathbb{P}\left(\left\|\sum_{i=1}^{m} v_{i} v_{i}^{*}\right\| \leq 1 + 2\sqrt{\epsilon}\sqrt{1-\epsilon}\right) > 0.$$

Corollary (Weaver KS_2 Conjecture holds)

 $\{u_i\}_{i=1}^M \subset \mathbb{C}^d$ Bessel seq. with bound 1 and $||u_i||^2 \le \delta < 1/4$ $\implies \exists$ partition I_1, I_2 of $\{1, \ldots, M\}$ such that each $\{\phi_i\}_{i \in I_j}$ is a Bessel seq. with bound $1 - \epsilon$, where $\epsilon = \epsilon(\delta) > 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

If $0 < \epsilon < 1/2$ and v_1, \ldots, v_m are independent random vectors in \mathbb{C}^d with support of size 2. Then,

$$\mathbb{E}\left[\sum_{i=1}^{m} v_{i} v_{i}^{*}\right] = \mathbf{I} \quad \text{and} \quad \mathbb{E}\left[\|v_{i}\|^{2}\right] \leq \epsilon \quad \text{for all } i$$
$$\implies \quad \mathbb{P}\left(\left\|\sum_{i=1}^{m} v_{i} v_{i}^{*}\right\| \leq 1 + 2\sqrt{\epsilon}\sqrt{1-\epsilon}\right) > 0.$$

Corollary (Weaver KS₂ Conjecture holds)

 $\{u_i\}_{i=1}^M \subset \mathbb{C}^d$ Bessel seq. with bound 1 and $||u_i||^2 \le \delta < 1/4$ $\implies \exists$ partition I_1, I_2 of $\{1, \ldots, M\}$ such that each $\{\phi_i\}_{i \in I_j}$ is a Bessel seq. with bound $1 - \epsilon$, where $\epsilon = \epsilon(\delta) > 0$.

Improves KS_2 constant from $1/(2+\sqrt{2})^2 \approx 0.085$ to 1/4 = 0.25.

Approximate Lyapunov theorem for discrete frames

For $\phi \in \mathcal{H}$, let $\phi \otimes \phi$ denote a rank one operator given by

$$(\phi \otimes \phi)(f) = \langle f, \phi \rangle \phi$$
 for $f \in \mathcal{H}$.

< 注▶ < 注▶ -

Approximate Lyapunov theorem for discrete frames

For $\phi \in \mathcal{H}$, let $\phi \otimes \phi$ denote a rank one operator given by

$$(\phi \otimes \phi)(f) = \langle f, \phi \rangle \phi$$
 for $f \in \mathcal{H}$.

Lemma (Akemann, Weaver (2014))

There exists a universal constant C > 0 such that the following holds. Suppose $\{\phi_i\}_{i \in I}$ is a Bessel family in a separable Hilbert space \mathcal{H} , which consists of vectors of norms $\|\phi_i\|^2 \leq \varepsilon$, where $\varepsilon > 0$. Let

$$S = \sum_{i \in I} \phi_i \otimes \phi_i$$

be its frame operator.

Approximate Lyapunov theorem for discrete frames

For $\phi \in \mathcal{H}$, let $\phi \otimes \phi$ denote a rank one operator given by

$$(\phi \otimes \phi)(f) = \langle f, \phi \rangle \phi$$
 for $f \in \mathcal{H}$.

Lemma (Akemann, Weaver (2014))

There exists a universal constant C > 0 such that the following holds. Suppose $\{\phi_i\}_{i \in I}$ is a Bessel family in a separable Hilbert space \mathcal{H} , which consists of vectors of norms $\|\phi_i\|^2 \leq \varepsilon$, where $\varepsilon > 0$. Let

$$S = \sum_{i \in I} \phi_i \otimes \phi_i$$

be its frame operator. Then for any $0 \le \tau \le 1$, there exists a subset $I_0 \subset I$ such that

$$\left\|\sum_{i\in I_0}\phi_i\otimes\phi_i-\tau S\right\|\leq C||S||\varepsilon^{1/4}.$$

Theorem (Akemann, Weaver (2014))

Suppose $\{\phi_i\}_{i \in I}$ is a Bessel family with bound B in a separable Hilbert space \mathcal{H} , which consists of vectors of norms $\|\phi_i\|^2 \leq \varepsilon$, where $\varepsilon > 0$. Suppose that $0 \leq \tau_i \leq 1$ for all $i \in I$. Consider the modified frame operator

$$S_{\sqrt{\tau}.\phi_i,I} = \sum_{i\in I} \tau_i \phi_i \otimes \phi_i.$$

向下 イヨト イヨト

Theorem (Akemann, Weaver (2014))

Suppose $\{\phi_i\}_{i \in I}$ is a Bessel family with bound B in a separable Hilbert space \mathcal{H} , which consists of vectors of norms $\|\phi_i\|^2 \leq \varepsilon$, where $\varepsilon > 0$. Suppose that $0 \leq \tau_i \leq 1$ for all $i \in I$. Consider the modified frame operator

$$S_{\sqrt{\tau}.\phi_{\cdot},I} = \sum_{i\in I} \tau_i \phi_i \otimes \phi_i.$$

Then, there exists a subset of indices $I_0 \subset I$ such that

$$\left\|\sum_{i\in I_0}\phi_i\otimes\phi_i-\mathcal{S}_{\sqrt{\tau_i}\phi_i,i\in I}\right\|\leq CB\varepsilon^{1/8}.$$

Theorem (Akemann, Weaver (2014))

Suppose $\{\phi_i\}_{i \in I}$ is a Bessel family with bound B in a separable Hilbert space \mathcal{H} , which consists of vectors of norms $\|\phi_i\|^2 \leq \varepsilon$, where $\varepsilon > 0$. Suppose that $0 \leq \tau_i \leq 1$ for all $i \in I$. Consider the modified frame operator

$$S_{\sqrt{\tau}.\phi.,I} = \sum_{i\in I} \tau_i \phi_i \otimes \phi_i.$$

Then, there exists a subset of indices $I_0 \subset I$ such that

$$\left\|\sum_{i\in I_0}\phi_i\otimes\phi_i-S_{\sqrt{\tau_i}\phi_i,i\in I}\right\|\leq CB\varepsilon^{1/8}.$$

Theorem (Lyapunov (1940))

The range of a vector-valued measures with values in a finite dimensional space \mathbb{R}^n (or \mathbb{C}^n) is a compact and convex subset of \mathbb{R}^n (or \mathbb{C}^n).

Theorem (B. (2016))

Let (X, μ) be a non-atomic σ -finite measure space. Suppose that $\{\phi_t\}_{t\in X}$ is a continuous Bessel family in \mathcal{H} . For any measurable function $\tau: X \to [0, 1]$, consider a modified frame operator

$$S_{\sqrt{ au}\phi,X}f=\int_X au(t)\langle f,\phi_t
angle\phi_t d\mu(t) \qquad f\in\mathcal{H}.$$

Theorem (B. (2016))

Let (X, μ) be a non-atomic σ -finite measure space. Suppose that $\{\phi_t\}_{t\in X}$ is a continuous Bessel family in \mathcal{H} . For any measurable function $\tau: X \to [0, 1]$, consider a modified frame operator

$$S_{\sqrt{ au}\phi,X}f=\int_X au(t)\langle f,\phi_t
angle\phi_td\mu(t)\qquad f\in\mathcal{H}.$$

Then, for any $\varepsilon > 0$, there exists a measurable set $E \subset X$ such that

$$||S_{\phi,E} - S_{\sqrt{\tau}\phi,X}|| < \varepsilon.$$
(2)

Let $\{\psi_t\}_{t\in X}$ be continuous Bessel family from approximation lemma. Since $\{\psi_t\}_{t\in X}$ takes only countably many values, there exists a sequence $\{\tilde{\psi}_n\}_{n\in N}$ in \mathcal{H} and a partition $\{X_n\}_{n\in \mathbb{N}}$ of Xsuch that

$$\psi_t = ilde{\psi}_n$$
 for all $t \in X_n, \; n \in \mathbb{N}$.

Let $\{\psi_t\}_{t\in X}$ be continuous Bessel family from approximation lemma. Since $\{\psi_t\}_{t\in X}$ takes only countably many values, there exists a sequence $\{\tilde{\psi}_n\}_{n\in N}$ in \mathcal{H} and a partition $\{X_n\}_{n\in \mathbb{N}}$ of Xsuch that

$$\psi_t = \tilde{\psi}_n$$
 for all $t \in X_n, n \in \mathbb{N}$.

Since $\{\psi_t\}_{t\in X}$ is Bessel, we have $\mu(X_n) < \infty$ for all *n* such that $\tilde{\psi}_n \neq 0$. Moreover, by subdividing sets X_n if necessary we can assume that

$$||\tilde{\psi}_n||^2 \mu(X_n) \le \varepsilon^2$$
 for all $n \in \mathbb{N}$.

This is possible since the measure μ is non-atomic.

Let $\{\psi_t\}_{t\in X}$ be continuous Bessel family from approximation lemma. Since $\{\psi_t\}_{t\in X}$ takes only countably many values, there exists a sequence $\{\tilde{\psi}_n\}_{n\in N}$ in \mathcal{H} and a partition $\{X_n\}_{n\in \mathbb{N}}$ of Xsuch that

$$\psi_t = \tilde{\psi}_n$$
 for all $t \in X_n, n \in \mathbb{N}$.

Since $\{\psi_t\}_{t\in X}$ is Bessel, we have $\mu(X_n) < \infty$ for all *n* such that $\tilde{\psi}_n \neq 0$. Moreover, by subdividing sets X_n if necessary we can assume that

$$||\tilde{\psi}_n||^2 \mu(X_n) \le \varepsilon^2$$
 for all $n \in \mathbb{N}$.

This is possible since the measure μ is non-atomic. Then, the continuous frame $\{\psi_t\}_{t\in X}$ is equivalent to a discrete frame

$$\phi_n = \sqrt{\mu(X_n)}\psi_n \qquad n \in \mathbb{N}.$$

Proof (continued).

More precisely, for any measurable function $\tau: X \to [0, 1]$, the frame operator $S_{\sqrt{\tau}\psi,X}$ of a continuous Bessel family $\{\sqrt{\tau(t)}\psi_t\}_{t\in X}$ coincides with the frame operator of a discrete Bessel sequence

$$\{\sqrt{\tau_n}\phi_n\}_{n\in\mathbb{N}}$$
 where $au_n=\int_{X_n} au(t)d\mu(t).$

・ロト ・回ト ・ヨト ・ヨト

Э

Proof (continued).

More precisely, for any measurable function $\tau: X \to [0, 1]$, the frame operator $S_{\sqrt{\tau}\psi,X}$ of a continuous Bessel family $\{\sqrt{\tau(t)}\psi_t\}_{t\in X}$ coincides with the frame operator of a discrete Bessel sequence

$$\{\sqrt{ au_n}\phi_n\}_{n\in\mathbb{N}}$$
 where $au_n=\int_{X_n} au(t)d\mu(t).$

Let $E_n \subset X_n$ be such that $\mu(E_n) = \tau_n \mu(X_n)$. Define $E = \bigcup_{n \in I} E_n$.

Э

Proof (continued).

More precisely, for any measurable function $\tau: X \to [0, 1]$, the frame operator $S_{\sqrt{\tau}\psi,X}$ of a continuous Bessel family $\{\sqrt{\tau(t)}\psi_t\}_{t\in X}$ coincides with the frame operator of a discrete Bessel sequence

$$\{\sqrt{ au_n}\phi_n\}_{n\in\mathbb{N}}$$
 where $au_n=\int_{X_n} au(t)d\mu(t).$

Let $E_n \subset X_n$ be such that $\mu(E_n) = \tau_n \mu(X_n)$. Define $E = \bigcup_{n \in I} E_n$. Then,

$$\begin{split} ||S_{\phi,E} - S_{\sqrt{\tau}\phi,X}|| \\ &\leq ||S_{\phi,E} - S_{\psi,E}|| + ||S_{\psi,E} - S_{\sqrt{\tau}\psi,X}|| + ||S_{\sqrt{\tau}\psi,X} - S_{\sqrt{\tau}\phi,X}|| \\ &\leq \varepsilon + 0 + \varepsilon = 2\varepsilon. \end{split}$$

Since $\varepsilon > 0$ is arbitrary, this shows (2).

- 4 同 6 4 日 6 4 日 6

白 ト イヨト イヨト

æ

Theorem (B. (2016))

Let (X, μ) be a non-atomic measure space. Suppose that $\{\phi_t\}_{t \in X}$ is a continuous Bessel family in \mathcal{H} . Let S be the set of all partial frame operators

$$\mathcal{S} = \{S_{\phi,E} : E \subset X \text{ is measurable}\},$$

 $S_{\phi,E}f = \int_E \langle f, \phi_t \rangle \phi_t d\mu(t) \qquad f \in \mathcal{H}.$

Theorem (B. (2016))

Let (X, μ) be a non-atomic measure space. Suppose that $\{\phi_t\}_{t \in X}$ is a continuous Bessel family in \mathcal{H} . Let S be the set of all partial frame operators

$$\mathcal{S} = \{S_{\phi,E} : E \subset X ext{ is measurable}\},$$

 $S_{\phi,E}f = \int_E \langle f, \phi_t
angle \phi_t d\mu(t) ext{ } f \in \mathcal{H}.$

Then, the operator norm closure $\overline{S} \subset B(\mathcal{H})$ is convex.

Theorem (B. (2016))

Let (X, μ) be a non-atomic measure space. Suppose that $\{\phi_t\}_{t \in X}$ is a continuous Bessel family in \mathcal{H} . Let S be the set of all partial frame operators

$$\mathcal{S} = \{S_{\phi,E} : E \subset X ext{ is measurable}\},$$

 $S_{\phi,E}f = \int_E \langle f, \phi_t
angle \phi_t d\mu(t) ext{ } f \in \mathcal{H}.$

Then, the operator norm closure $\overline{\mathcal{S}} \subset B(\mathcal{H})$ is convex.

Remark

Taking closure in the above theorem is necessary.

ヘロン 人間と 人間と 人間と

э

Note that set

$$\mathcal{T} = \{ S_{\sqrt{ au}\phi, X} : au ext{ is any measurable } X o [0, 1] \}$$

is a convex subset of $B(\mathcal{H})$. Hence, its operator name closure $\overline{\mathcal{T}}$ is also closed. Since $S \subset \mathcal{T}$, by previous theorem their closures are the same $\overline{\mathcal{T}} = \overline{S}$.

- 4 同 6 4 日 6 4 日 6

Lyapunov property

Theorem (Uhl (1969))

Suppose a vector-valued measure μ with values in a Banach space ${\mathcal X}$ is such that:

- X is either reflexive or has separable dual,
- μ has bounded variation, $||\mu|| = \sup \sum_n ||F(E_n)|| < \infty$.

If μ is non-atomic, then closure of its range is compact and convex.

・回・ ・ヨ・ ・ヨ・

Lyapunov property

Theorem (Uhl (1969))

Suppose a vector-valued measure μ with values in a Banach space ${\cal X}$ is such that:

- X is either reflexive or has separable dual,
- μ has bounded variation, $||\mu|| = \sup \sum_n ||F(E_n)|| < \infty$.

If μ is non-atomic, then closure of its range is compact and convex.

Remark

The positive operator valued measure E → S_{φ,E} in general does not have bounded variation. Moreover, the closure of S might not be compact.

Theorem (Uhl (1969))

Suppose a vector-valued measure μ with values in a Banach space ${\mathcal X}$ is such that:

- \mathcal{X} is either reflexive or has separable dual,
- μ has bounded variation, $||\mu|| = \sup \sum_n ||F(E_n)|| < \infty$.

If μ is non-atomic, then closure of its range is compact and convex.

Remark

- The positive operator valued measure E → S_{φ,E} in general does not have bounded variation. Moreover, the closure of S might not be compact.
- Kadets and Shechtman (1992) introduced the Lyapunov property of a Banach space: "the closure of a range of every non-atomic vector measure is convex". They have shown that c₀ and ℓ^p spaces for 1 ≤ p < ∞, p ≠ 2, satisfy the Lyapunov property. However, ℓ² fails this property.

Consider a continuous Bessel family $\{\phi_t\}_{t\in[0,1]}$ with values in $L^2([0,1])$ given by $\phi_t = \chi_{[0,t]}$. We claim that there is no measurable set $E \subset [0,1]$ such that $S_{\phi,E} = \frac{1}{2}S_{\phi,[0,1]}$.

Consider a continuous Bessel family $\{\phi_t\}_{t\in[0,1]}$ with values in $L^2([0,1])$ given by $\phi_t = \chi_{[0,t]}$. We claim that there is no measurable set $E \subset [0,1]$ such that $S_{\phi,E} = \frac{1}{2}S_{\phi,[0,1]}$. Otherwise, we would have for all $f \in L^2([0,1])$

$$\frac{1}{2}\int_0^1 |\langle f, \phi_t \rangle|^2 dt = \frac{1}{2}\int_0^1 \left| \int_0^t f(s)ds \right|^2 dt = \int_E \left| \int_0^t f(s)ds \right|^2 dt.$$

Consider a continuous Bessel family $\{\phi_t\}_{t\in[0,1]}$ with values in $L^2([0,1])$ given by $\phi_t = \chi_{[0,t]}$. We claim that there is no measurable set $E \subset [0,1]$ such that $S_{\phi,E} = \frac{1}{2}S_{\phi,[0,1]}$. Otherwise, we would have for all $f \in L^2([0,1])$

$$\frac{1}{2}\int_0^1 |\langle f,\phi_t\rangle|^2 dt = \frac{1}{2}\int_0^1 \left|\int_0^t f(s)ds\right|^2 dt = \int_E \left|\int_0^t f(s)ds\right|^2 dt.$$

For any $0 \le a < b \le 1$, define $f_n(t) = n\chi_{[a,a+1/n]} - n\chi_{[b-1/n,b]}$. Then, $g_n(t) = \int_0^t f_n(s) ds$ is a piecewise linear function with knots at (a, 0), (a + 1/n, 1), (b - 1/n, 1), and (b, 0), where n > 2/(b - a). Applying the above and taking the limit as $n \to \infty$ yields

$$\frac{b-a}{2}=\frac{1}{2}\lambda([a,b])=\lambda(E\cap[a,b]).$$

Consider a continuous Bessel family $\{\phi_t\}_{t\in[0,1]}$ with values in $L^2([0,1])$ given by $\phi_t = \chi_{[0,t]}$. We claim that there is no measurable set $E \subset [0,1]$ such that $S_{\phi,E} = \frac{1}{2}S_{\phi,[0,1]}$. Otherwise, we would have for all $f \in L^2([0,1])$

$$\frac{1}{2}\int_0^1 |\langle f,\phi_t\rangle|^2 dt = \frac{1}{2}\int_0^1 \left|\int_0^t f(s)ds\right|^2 dt = \int_E \left|\int_0^t f(s)ds\right|^2 dt.$$

For any $0 \le a < b \le 1$, define $f_n(t) = n\chi_{[a,a+1/n]} - n\chi_{[b-1/n,b]}$. Then, $g_n(t) = \int_0^t f_n(s) ds$ is a piecewise linear function with knots at (a, 0), (a + 1/n, 1), (b - 1/n, 1), and (b, 0), where n > 2/(b - a). Applying the above and taking the limit as $n \to \infty$ yields

$$\frac{b-a}{2}=\frac{1}{2}\lambda([a,b])=\lambda(E\cap[a,b]).$$

Since [a, b] is an arbitrary subinterval of [0, 1], this contradicts the Lebesgue Differentiation Theorem.

Problem

Does the main theorem generalize to positive operator valued measures (POVM)?

- 4 回 2 - 4 回 2 - 4 回 2 - 4

æ

THE END

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @