Square Integrable Reps., an Invaluable Tool

From Coherent States to Quantum Mechanics on Phase Space

Paolo Aniello

Dipartimento di Fisica "E. Pancini", Università di Napoli "Federico II" & INFN – Sezione di Napoli (QUANTUM)

CIRM – Marseille, November 2016

Outline of the talk:

- (Generalized) coherent states and square integrable reps.
- Semidirect products
- Square integrable reps. and quantum mechanics on phase space
- Detour: *classical* states and functions of positive type (PTFs)
- Quantum states and functions of quantum positive type (QPTFs)
- Playing with functions of positive type: *classical-quantum semigroups*
- Introducing quantization into the game: from classical-quantum semigroups to *twirling semigroups* (open quantum systems)

(Generalized) coherent states and sq. integrable reps.

It is well known that the standard coherent states

$$|z\rangle = \mathsf{D}(z)|0\rangle, \quad z = \left(q/\sqrt{2}, p/\sqrt{2}\right),$$
 (1)

are generated by a projective representation (Weyl system)

$$G = \mathbb{R}^n \times \mathbb{R}^n \ni (q, p) \mapsto U(q, p) := \exp(i(p \cdot \hat{q} - q \cdot \hat{p})) = \mathsf{D}(q/\sqrt{2}, p/\sqrt{2}),$$
(2)

$$U(q+\tilde{q},p+\tilde{p}) = e^{\frac{i}{2}(q\cdot\tilde{p}-p\cdot\tilde{q})}U(q,p)U(\tilde{q},\tilde{p}).$$
(3)

U is related to a unitary representation of the *central extension* (Heisenberg-Weyl group) \mathbb{H}_n , i.e., of the Lie group $\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n$, with composition law $(\tau, q, p)(\tilde{\tau}, \tilde{q}, \tilde{p}) = (\tau + \tilde{\tau} + (q \cdot \tilde{p} - p \cdot \tilde{q})/2, q + \tilde{q}, p + \tilde{p}), \quad \tau, \tilde{\tau} \in \mathbb{R}, \ q, \tilde{q} \in \mathbb{R}^n, \ p, \tilde{p} \in \mathbb{R}^n;$ namely,

$$U(q,p) = \mathsf{S}(0,q,p), \tag{4}$$

where the Schrödinger representation S of \mathbb{H}_n is defined by

$$\left(\mathsf{S}(\tau,q,p)f\right)(x) := \mathrm{e}^{-\mathsf{i}(\tau+q\cdot p/2)} \mathrm{e}^{\mathsf{i}p\cdot x} f(x-q), \quad f \in \mathsf{L}^2(\mathbb{R}^n).$$
(5)

One of the salient properties of coherent states, i.e.,

$$\frac{1}{\pi^n} \int \mathrm{d}^{2n} z \, |z\rangle \langle z| = \frac{1}{(2\pi)^n} \int \mathrm{d}^n q \, \mathrm{d}^n p \, U(q,p) \, |0\rangle \langle 0| \, U(q,p)^* = I, \qquad (6)$$

can be regarded as a consequence of the fact that the projective representation U is square integrable; equivalently, that the unitary representation S is square integrable modulo the center of \mathbb{H}_n .

Let U be an irreducible (projective) representation of a *locally compact* group G in a separable complex Hilbert space \mathcal{H} . For every pair $\psi, \phi \in \mathcal{H}$, let us consider the (bounded, continuous) 'coefficient function'

$$c_{\psi\phi} \colon G \ni g \mapsto \langle U(g) \,\psi, \phi \rangle \in \mathbb{C} \tag{7}$$

and the set of 'admissible vectors for U'

$$\mathcal{A}(U) := \left\{ \psi \in \mathcal{H} \mid \exists \phi \in \mathcal{H} : \phi \neq 0, \, c_{\psi\phi} \in \mathsf{L}^2(G, \nu_G; \mathbb{C}) \right\}.$$
(8)

Then, the representation U is said to be square integrable if

$$\mathcal{A}(U) \neq \{0\}. \tag{9}$$

Clearly, every irreducible unitary representation of a *compact* group is square integrable.

Square integrable representations are ruled by the following result (Schur; Weyl; Godement 1947; Duflo-Moore 1976; Grossmann-Morlet-Paul 1985):

Theorem 1 Let $U: G \to \mathcal{U}(\mathcal{H})$ be a square integrable representation. Then, the set $\mathcal{A}(U)$ is a dense linear span in \mathcal{H} , stable under the action of U, and, for any pair of vectors $\phi \in \mathcal{H}$ and $\psi \in \mathcal{A}(U)$, the coefficient $c_{\psi\phi}: G \to \mathbb{C}$ is square integrable w.r.t. the left Haar measure ν_G . Moreover, there exists a unique positive selfadjoint, injective linear opera-

tor D_U in \mathcal{H} — the 'the Duflo-Moore operator' associated with U — such that $A(U) = \text{Dom}(D_U)$ (10)

$$\mathcal{A}(U) = \mathsf{Dom}\big(D_U\big) \tag{10}$$

and the following 'orthogonality relations' hold:

$$\int_{G} \overline{c_{\psi_1\phi_1}(g)} c_{\psi_2\phi_2}(g) \, \mathrm{d}\nu_G(g) = \langle \phi_1, \phi_2 \rangle \, \langle D_U \, \psi_2, D_U \, \psi_1 \rangle, \tag{11}$$

for all $\phi_1, \phi_2 \in \mathcal{H}$ and all $\psi_1, \psi_2 \in \mathcal{A}(U)$.

The operator D_U is bounded if and only if G is unimodular — $\triangle_G \equiv 1$ — and, in such case, it is a multiple of the identity: $D_U = d_U I$, $d_U > 0$.

Hence:

$$0 \neq \psi \in \mathcal{A}(U) \quad \Rightarrow \quad \|D_U \psi\|^{-2} \int_G \mathrm{d}\nu_G(g) |U(g)\psi\rangle \langle U(g)\psi| = I. \quad (12)$$

Semidirect products

Assume that a locally compact group G is the **semidirect product** of an *abelian*, closed normal subgroup \mathbb{A} (normal factor) by a closed subgroup H (homogeneous factor):

$$G = \mathbb{A} \rtimes H. \tag{13}$$

The inner action of G determines an **action** of H on \mathbb{A} :

$$(\cdot)[\cdot]: H \times \mathbb{A} \ni (h, a) \mapsto h[a] = hah^{-1} \in \mathbb{A}.$$
 (14)

The group G may also be thought of as the *cartesian product* of $\mathbb{A} \times H$, endowed with the *composition law* induced by the action of H on \mathbb{A} :

$$(a,h)(a',h') = (a+h[a'],hh'), \quad a,a' \in \mathbb{A}, \ h,h' \in H.$$
 (15)

Let $\widehat{\mathbb{A}}$ be the **Pontryagin dual** of \mathbb{A} (the group of unitary characters) and

$$(\cdot, \cdot): \mathbb{A} \times \widehat{\mathbb{A}} \ni (a, \widehat{\mathbf{x}}) \mapsto (a, \widehat{\mathbf{x}}) = \widehat{\mathbf{x}}(a) \in \mathbb{C}$$
(16)

the *pairing* between A and \widehat{A} . The **dual action** of H on \widehat{A} is defined by:

$$(a, h[\hat{\mathbf{x}}]) := (h^{-1}[a], \hat{\mathbf{x}}), \quad a \in \mathbb{A}, \ h \in H, \ \hat{\mathbf{x}} \in \widehat{\mathbb{A}}.$$
 (17)

A standard way for producing irreducible representations of G is Mackey's 'little group method' or **Mackey machine**. Choose an *orbit* \mathscr{O} of the dual action of H on $\widehat{\mathbb{A}}$ through a certain point $\widehat{\mathbf{x}}_0$,

$$\mathscr{O} = H[\widehat{\mathbf{x}}_0], \quad \widehat{\mathbf{x}}_0 \in \widehat{\mathbb{A}}, \tag{18}$$

and an *irreducible representation* J: $H_0 \to \mathcal{U}(\mathcal{J})$ of the *stability subgroup* H_0 of H at $\hat{\mathbf{x}}_0$; namely: $H_0 = \{h \in H \mid h[\hat{\mathbf{x}}_0] = \hat{\mathbf{x}}_0\}.$ (19)

The representation of G, *induced* by the representation $\hat{\mathbf{x}}_0 \mathbf{J} \colon G_0 \to \mathcal{U}(\mathcal{J})$ of $G_0 := \mathbb{A} \rtimes H_0$ defined by

$$\left(\left(\widehat{\mathbf{x}}_{0}\mathbf{J}\right)\left(a,s\right)\right)v := \langle\!\!\!\langle a,\widehat{\mathbf{x}}_{0}\rangle\!\!\!\rangle \mathbf{J}(s)v, \quad a \in A, \ s \in H_{0}, \ v \in \mathcal{J},$$
(20)

is *irreducible*. The *unitary equivalence classes of representations* of *G* that can be obtained via the Mackey machine are in *one-to-one correspondence* with the pairs $(\mathcal{O}, J), \quad \mathcal{O} \subset \widehat{\mathbb{A}},$ (21)

where \mathscr{O} is a *H*-orbit and J spans a maximal set of mutually inequivalent irreducible representations of the stability subgroup of *H* at a point arbitrarily fixed in \mathscr{O} .

If G is a **regular** semidirect product — i.e., if each orbit of H in $\widehat{\mathbb{A}}$ is *locally* closed — then every irreducible representation of G can be produced via the Mackey machine.

The square-integrability of these induced representations of semidirect products with an abelian normal factor is characterized by the following result (see P. A., G. Cassinelli, E. De Vito, A. Levrero, "Square-integrability of induced representations of semidirect products", *Rev. Math. Phys.* **10** (1998) 301):

Theorem 2 The induced representation $\operatorname{Ind}_{G_0}^G(\widehat{\mathbf{x}}_0 \mathbf{J})$ is square integrable if and only if the following conditions hold:

- the *H*-orbit $\mathscr{O} = H[\hat{\mathbf{x}}_0] \subset \widehat{\mathbb{A}}$ is thick, namely, the Haar measure of \mathscr{O} is not zero: $\nu_{\widehat{\mathbb{A}}}(\mathscr{O}) \neq 0$;
- the representation J: $H_0 \rightarrow \mathcal{U}(\mathcal{J})$ of the stability subgroup H_0 at $\hat{\mathbf{x}}_0$ is square integrable.

In the case where G is a Lie group, if $\widehat{\mathbb{A}}$ is a Lie group on which H acts smoothly and the orbit \mathscr{O} is locally closed, then

 $\nu_{\widehat{\mathbb{A}}}(\mathscr{O}) \neq 0 \iff \text{the orbit } \mathscr{O} \text{ is open in } \widehat{\mathbb{A}} \iff \dim(H) - \dim(H_0) = \dim(\widehat{\mathbb{A}}).$

Semidirect products that admit sq. int. reps. include the *affine group* $\mathbb{R} \rtimes \mathbb{R}^+_*$ or $\mathbb{R} \rtimes \mathbb{R}_*$ (wavelet transform), the *similitude group* $\mathbb{R}^n \rtimes (SO(n) \times \mathbb{R}^+_*)$, the *shearlet group* $\mathbb{R}^{n+1} \rtimes (\mathbb{R}^n \rtimes \mathbb{R}^+_*)$ or $\mathbb{R}^{n+1} \rtimes (\mathbb{R}^n \rtimes \mathbb{R}_*)$ (shearlet transform) and the *reduced Heisenberg group* $\overline{\mathbb{H}}_n = \mathbb{H}_n/2\pi\mathbb{Z}$, whereas, e.g., the *euclidean* $\mathbb{R}^n \rtimes SO(n)$ and the *Poincaré* $\mathbb{R}^4 \rtimes SL(2; \mathbb{C})$ groups do not admit such reps.

Sq. int. reps. and phase-space quantum mechanics

Denoting by $\mathcal{B}_2(\mathcal{H})$ the Hilbert space of **Hilbert-Schmidt operators** in \mathcal{H} , a square integrable (in general, projective) representation $U: G \to \mathcal{U}(\mathcal{H})$ allows one to define a **dequantization map**

$$\mathscr{D}: \mathcal{B}_2(\mathcal{H}) \to \mathsf{L}^2(G) \equiv \mathsf{L}^2(G, \nu_G; \mathbb{C}),$$
(22)

which is an *isometry*. If G is *unimodular* and $\hat{\rho}$ is of *trace class*, $\mathscr{D}\hat{\rho}$ is of the form

$$(\mathscr{D}\widehat{\rho})(g) = d_U^{-1} \operatorname{tr}(U(g)^*\widehat{\rho}), \quad d_U > 0.$$
(23)

The quantization map associated with U is the adjoint of the dequantization map; i.e., it is *the partial isometry* $\boldsymbol{\mathcal{Q}}$ defined by

$$\mathcal{Q} := \mathcal{D}^* \colon \mathsf{L}^2(G) \to \mathcal{B}_2(\mathcal{H}).$$
(24)

Clearly, $\text{Ker}(\mathcal{Q}) = \text{Ran}(\mathcal{D})^{\perp}$. The star product is defined by

For functions in $Ran(\mathcal{D})$ this is the 'dequantized product of operators'. One can provide explicit formulae for the star product (P. A., "Star products: a group-theoretical point of view", J. Phys. A: Math. Theor. **42** (2009) 475210). In the case where G is **unimodular**, we have a simple result:

Theorem 3 Let G be unimodular and $U: G \to \mathcal{U}(\mathcal{H})$ a square integrable projective representation, with multiplier m; i.e., U(gh) = m(g,h)U(g)U(h). Then, for any $f_1, f_2 \in L^2(G)$, we have:

$$(f_1 \star f_2)(g) = d_U^{-1} \int_G d\nu_G(h) f_1(h) (Pf_2) (h^{-1}g) \overline{\mathsf{m}(h, h^{-1}g)} = d_U^{-1} \int_G d\nu_G(h) (Pf_1) (h) (Pf_2) (h^{-1}g) \overline{\mathsf{m}(h, h^{-1}g)},$$
(26)

where P is the orthogonal projection onto $Ran(\mathcal{D})$. Therefore, for any $f_1, f_2 \in Ran(\mathcal{D})$, the following formula holds ('m-twisted convolution'):

$$(f_1 \star f_2)(g) = d_U^{-1} \int_G \mathrm{d}\nu_G(h) f_1(h) f_2(h^{-1}g) \,\overline{\mathsf{m}(h, h^{-1}g)}.$$
 (27)

Let G be the group of translations on phase space $\mathbb{R}^n \times \mathbb{R}^n$. Then, $\mathcal{H} = \mathsf{L}^2(\mathbb{R}^n), U$ is the Weyl system — $U(q, p) = \exp(\mathsf{i}(p \cdot \hat{q} - q \cdot \hat{p}))$ — $\operatorname{Ran}(\mathcal{D}) = \mathsf{L}^2(G) = \mathsf{L}^2(\mathbb{R}^n \times \mathbb{R}^n, (2\pi)^{-n} \mathsf{d}^n q \, \mathsf{d}^n p; \mathbb{C})$ and $d_U = 1$; moreover: $\mathsf{m}(q, p; q', p') = \exp(\mathsf{i}(q \cdot p' - p \cdot q')/2).$ (28)

However, for every state $\hat{\rho}$, the function $(\mathscr{D}\hat{\rho})(q,p) = \operatorname{tr}(U(q,p)^*\hat{\rho})$ is not the Wigner distribution ϱ , but the quantum characteristic function $\tilde{\varrho}$...

Detour: *classical* states and PTFs

Recall that the Banach space $L^1(G)$ of \mathbb{C} -valued functions on G, integrable w.r.t. the left Haar measure ν_G , endowed with the *convolution product*,

$$(\varphi_1 \otimes \varphi_2)(g) := \int_G \varphi_1(h) \varphi_2(h^{-1}g) \, \mathrm{d}\nu_G(h), \tag{29}$$

and the *involution*,

$$: \varphi \mapsto \varphi^*, \quad \varphi^*(g) := \triangle_G(g^{-1}) \,\overline{\varphi(g^{-1})}, \tag{30}$$

with \triangle_G denoting the modular function, is a Banach *-algebra $(L^1(G), \odot, I)$. **Definition 1** A positive bounded linear functional on the Banach *-algebra $(L^1(G), \odot, I)$, realized as a function in the Banach space of ν_G -essentially bounded functions $L^{\infty}(G)$, is called a function of positive type on G. Namely, a function $\chi \in L^{\infty}(G)$ is said to be of positive type if

$$\int_{G} \chi(g) \, (\varphi^* \otimes \varphi)(g) \, \mathrm{d}\nu_G(g) \ge 0, \quad \text{(PTF condition)} \tag{31}$$

for all $\varphi \in L^1(G)$.

A function of positive type $\chi \in L^{\infty}(G)$ agrees ν_G -almost everywhere with a (bounded) continuous function and

$$\|\chi\|_{\infty} := \nu_G \text{-ess sup}_{g \in G} |\chi(g)| = \chi(e).$$
(32)

For a *bounded continuous* function $\chi: G \to \mathbb{C}$ the following facts are *equivalent*:

- P1) χ is of positive type;
- P2) χ satisfies the PTF condition (31), for all $\varphi \in C_c(G)$;
- P3) χ satisfies the condition

$$\int_{G} \int_{G} \chi(g^{-1}h) \overline{\varphi(g)} \varphi(h) \, \mathrm{d}\nu_{G}(g) \mathrm{d}\nu_{G}(h) \ge 0, \tag{33}$$

for all $\varphi \in \mathsf{C}_{\mathsf{c}}(G)$;

P4) χ is a **positive definite function**, i.e.,

$$\sum_{j,k} \chi(g_j^{-1}g_k) \,\overline{c_j} \, c_k \ge 0, \tag{34}$$

for every finite set $\{g_1, \ldots, g_m\} \subset G$ and arbitrary c-numbers c_1, \ldots, c_m .

Let G be **abelian** and let \hat{G} be its **dual** group. By **Bochner's theorem**, denoting by $CM(\hat{G})$ the Banach space of *complex Radon measures* on \hat{G} , we can add another item to the previous list of equivalent facts:

P5) χ is the Fourier transform of a positive measure $\mu \in CM(\widehat{G})$.

Now, setting $G = \mathbb{R}^n \times \mathbb{R}^n$, the *physical relevance* of functions of positive type becomes evident. Indeed, a **classical state** is a normalized positive functional on the *commutative* C*-algebra of classical observables. By **Gelfand theory**, such an algebra is (isomorphic to) the algebra of *continuous functions vanishing at infinity* $C_0(\mathbb{R}^n \times \mathbb{R}^n)$, endowed with the *point-wise product*. The **dual** of $C_0(\mathbb{R}^n \times \mathbb{R}^n)$ is $CM(\mathbb{R}^n \times \mathbb{R}^n)$, the space of **complex Radon measures**, and the associated *states* are the **probability measures** on $\mathbb{R}^n \times \mathbb{R}^n$. The **expectation value** of an **observable** $f \in C_0(\mathbb{R}^n \times \mathbb{R}^n; \mathbb{R})$ in the **state** $\mu \in CM(\mathbb{R}^n \times \mathbb{R}^n)$ is given by the pairing

$$\langle f \rangle_{\mu} = \int_{\mathbb{R}^n \times \mathbb{R}^n} f(q, p) \,\mathrm{d}\mu(q, p).$$
 (35)

It is often useful to replace a state μ with its symplectic Fourier transform,

$$\chi(q,p) \equiv \tilde{\mu}(q,p) := \int_{\mathbb{R}^n \times \mathbb{R}^n} e^{i\omega(q,p;q',p')} d\mu(q',p')$$
(36)

$$\omega(q,p;q',p') := q \cdot p' - p \cdot q'. \tag{37}$$

Note that $\chi \equiv \tilde{\mu}$ is a continuous function of positive type on $\mathbb{R}^n \times \mathbb{R}^n$: $\tilde{\mu} \in \mathsf{P}_n$. The normalization condition $\mu(\hat{G}) = 1$ corresponds to $\chi(0) = \|\chi\|_{\infty} = 1$; i.e., to the normalization of χ as a functional. In probability theory, χ is called the **characteristic function** of μ .

Quantum states and quantum PTFs

In the phase space formulation of QM, a pure state $\hat{\rho}_{\psi} = |\psi\rangle\langle\psi|$ in $L^2(\mathbb{R}^n)$ is replaced with a function (Wigner function):

$$\mathbb{R}^{n} \times \mathbb{R}^{n} \ni (q,p) \mapsto \varrho_{\psi}(q,p) := \frac{1}{(2\pi)^{n}} \int_{\mathbb{R}^{n}} e^{-ip \cdot x} \overline{\psi\left(q - \frac{x}{2}\right)} \psi\left(q + \frac{x}{2}\right) \, \mathrm{d}^{n} x.$$
(38)

This definition extends in a natural way to every trace class operator. One then obtains a separable Banach space of functions $LW_n \subset L^2(\mathbb{R}^n \times \mathbb{R}^n)$, which contains a convex cone W_n , formed by those functions that are associated with positive trace class operators in $L^2(\mathbb{R}^n)$. W_n contains the convex set \overline{W}_n of Wigner functions characterized by the normalization condition

$$\lim_{r \to +\infty} \int_{|q|^2 + |p|^2 \le r^2} \varrho(q, p) \, \mathrm{d}^n q \, \mathrm{d}^n p = \mathrm{tr}(\widehat{\rho}) = 1, \tag{39}$$

where $\rho \in \overline{W}_n$ is the function associated with a certain state $\hat{\rho}$. As in the classical setting, one can replace a Wigner distribution with its symplectic Fourier(-Plancherel) transform

$$\left(\widehat{\mathcal{F}}_{sp}\varrho\right)(q,p) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n \times \mathbb{R}^n} \varrho(q',p') \,\mathrm{e}^{\mathrm{i}(q \cdot p' - p \cdot q')} \,\mathrm{d}^n q' \mathrm{d}^n p'. \tag{40}$$

13

Then, the space LW_n is mapped onto a dense subspace LQ_n of L²($\mathbb{R}^n \times \mathbb{R}^n$),

$$LQ_n := \widehat{\mathcal{F}}_{sp} LW_n, \tag{41}$$

and the convex cone $W_n \subset LW_n$ is mapped onto a convex cone $Q_n \subset LQ_n$. By analogy with the classical case, we may call a function

$$\widetilde{\varrho} := (2\pi)^n \widehat{\mathcal{F}}_{sp} \varrho, \quad \varrho \in \overline{\mathbb{W}}_n,$$
(42)

the quantum characteristic function associated with the quasi-probability distribution ρ . Similarly to the classical case, the **quantum characteristic functions**, are those functions in Q_n satisfying the *normalization condition*

$$\tilde{\varrho}(0) = 1. \tag{43}$$

These functions form a convex subset \bar{Q}_n of LQ_n. Moreover:

$$\tilde{\varrho}(q,p) = \operatorname{tr}(U(q,p)^* \hat{\rho}) = (\mathscr{D}\hat{\rho})(q,p),$$
(44)

where U is the Weyl system, i.e., $U(q,p) = \exp(i(p \cdot \hat{q} - q \cdot \hat{p}))$.

Natural problem: Is it possible to characterize *intrinsically* the convex set of *Wigner functions* \overline{W}_n or the convex set \overline{Q}_n of *quantum characteristic functions*? The analysis of this problem leads to the notion of **function of quantum positive type**.

As in the classical setting, we consider a *-algebra of functions, and then define the functions of positive type as suitable functionals on this algebra. The Hilbert space $L^2(\mathbb{R}^n \times \mathbb{R}^n)$ becomes a *-algebra — more precisely, a H*-algebra — once endowed with the **twisted convolution**

$$\left(\mathcal{A}_1 \circledast \mathcal{A}_2\right)(q,p) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n \times \mathbb{R}^n} \mathcal{A}_1(q',p') \mathcal{A}_2(q-q',p-p') e^{\frac{i}{2}(q\cdot p'-p\cdot q')} d^n q' d^n p',$$

 $\mathcal{A}_1, \mathcal{A}_2 \in L^2(\mathbb{R}^n \times \mathbb{R}^n)$, and with the *involution* J: $\mathcal{A} \mapsto \mathcal{A}^*$,

$$\mathcal{A}^*(q,p) := \overline{\mathcal{A}(-q,-p)}, \quad \mathcal{A} \in \mathsf{L}^2(\mathbb{R}^n \times \mathbb{R}^n).$$
(45)

Notice:

 $L^{2}(\mathbb{R}^{n} \times \mathbb{R}^{n}) \circledast L^{2}(\mathbb{R}^{n} \times \mathbb{R}^{n}) = LQ_{n} \text{ and } JLQ_{n} = LQ_{n}.$ (46)

(The twisted convolution is the star product associated with the Weyl system: it realizes the of operator product in terms of phase-space functions.)

Definition 2 A function of quantum positive type is a positive bounded linear functional on the H*-algebra $(L^2(\mathbb{R}^n \times \mathbb{R}^n), \circledast, \mathsf{J})$. Thus, we say that a function $\mathcal{Q} \in L^2(\mathbb{R}^n \times \mathbb{R}^n)$ is of quantum positive type if

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} \mathcal{Q}(q, p) \left(\mathcal{A}^* \circledast \mathcal{A} \right)(q, p) \, \mathrm{d}^n q \, \mathrm{d}^n p \ge 0, \quad \text{(QPTF condition)}$$
(47)

for all $\mathcal{A} \in L^2(\mathbb{R}^n \times \mathbb{R}^n)$. (P. A., "Playing with functions of positive type ...", *Phys. Scr.* **90** (2015) 074042) If a *continuous* function Q is of quantum positive type, then it is bounded and $\|Q\|_{\infty} = Q(0)$. (compare with (32)) (48)

Moreover, for a *continuous* function $Q : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{C}$ the following facts are **equivalent** $(z \equiv (q, p) \in \mathbb{R}^n \times \mathbb{R}^n, dz \equiv d^n q d^n p, \omega(z, z') \equiv q \cdot p' - p \cdot q')$:

- Q1) Q is of quantum positive type;
- Q2) Q satisfies the QPTF condition (47), for all $A \in C_c(\mathbb{R}^n \times \mathbb{R}^n)$;
- Q3) ${\cal Q}$ satisfies the condition

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} \int_{\mathbb{R}^n \times \mathbb{R}^n} \mathcal{Q}(z - z') \,\overline{\mathcal{A}(z')} \,\mathcal{A}(z) \,\mathrm{e}^{\mathrm{i}\omega(z',z)/2} \,\mathrm{d}z \,\mathrm{d}z' \ge 0, \qquad (49)$$

for all $\mathcal{A} \in \mathsf{C}_{\mathsf{c}}(\mathbb{R}^n imes \mathbb{R}^n)$;

Q4) Q is a quantum positive definite function, i.e.,

$$\sum_{j,k} \mathcal{Q}(z_k - z_j) e^{i\omega(z_j, z_k)/2} \overline{c_j} c_k \ge 0,$$
(50)

for every finite set $\{z_1, \ldots, z_m\} \subset \mathbb{R}^n \times \mathbb{R}^n$ and arbitrary c-numbers c_1, \ldots, c_m ;

Q5) Q is — up to the normalization: Q(0) = 1 — the Fourier-Plancherel transform of a Wigner quasi-probability distribution.

Playing with functions of positive type

The convolution $\mu_1 \otimes \mu_2$ of a pair of probability measures $\mu_1, \mu_2 \in CM(G)$,

$$\int_{G} \varphi(g) \, \mathrm{d}\mu_1 \otimes \mu_2(g) := \int_{G} \int_{G} \varphi(gh) \, \mathrm{d}\mu_1(g) \, \mathrm{d}\mu_2(h), \quad \varphi \in \mathsf{C}_\mathsf{c}(G), \tag{51}$$

is a probability measure too. Endowed with convolution the convex set PM(G) of **probability measures** on *G* becomes a **semigroup**, with *identity* δ_e . If *G* is *abelian*, to the convolution of probability measures corresponds — via the FT — the *point-wise multiplication of characteristic functions*. Hence, the point-wise product $\chi_1\chi_2$ of two continuous functions of positive type on *G* is a continuous function of positive type too. Let us take $G = \mathbb{R}^n \times \mathbb{R}^n$. Endowed with the point-wise product the set $\overline{P}_n \subset P_n$ of **normalized functions of (classical) positive type** on $\mathbb{R}^n \times \mathbb{R}^n$ is a **semigroup**, with the identity $\chi \equiv 1$.

What happens with the point-wise multiplication of a function of *classical* positive type by a continuous function of *quantum* positive type?

Theorem 4 The point-wise product χQ of $\chi \in P_n$ by $Q \in Q_n$ belongs to Q_n ; in particular, to the convex set of quantum characteristic functions \overline{Q}_n if χ and Q are normalized.

Consider then a multiplication semigroup of functions of positive type

 $\{\chi_t \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{C}\}_{t \in \mathbb{R}^+} \subset \overline{P}_n, \quad \chi_t \chi_s = \chi_{t+s}, t, s \ge 0, \quad \chi_0 \equiv 1$ (52) (continuous w.r.t. the the topology of uniform convergence on compact sets on \overline{P}_n). Such semigroups can be classified: the FT of a multiplication semigroup of functions of positive type on $\mathbb{R}^n \times \mathbb{R}^n$ is a *convolution semigroup of probability measures* (characterized by the Lévy-Kintchine formula).

As χ_t is a bounded continuous function, we can define a *bounded operator* $\hat{\mathfrak{C}}_t$ in $L^2(\mathbb{R}^n \times \mathbb{R}^n)$:

$$(\widehat{\mathfrak{C}}_t f)(q,p) := \chi_t(q,p) f(q,p), \quad f \in \mathsf{L}^2(\mathbb{R}^n \times \mathbb{R}^n), \quad t \ge 0.$$
 (53)

The set $\{\widehat{\mathfrak{C}}_t\}_{t\in\mathbb{R}^+}$ is a semigroup of operators:

1.
$$\hat{\mathfrak{C}}_t \hat{\mathfrak{C}}_s = \hat{\mathfrak{C}}_{t+s}, t, s \ge 0;$$

2. $\hat{\mathfrak{C}}_0 = \mathbb{I};$

3. $\lim_{t\downarrow 0} \|\widehat{\mathfrak{C}}_t f - f\| = 0, \forall f \in L^2(\mathbb{R}^n \times \mathbb{R}^n).$

It is natural to consider the *restriction* of the semigroup of operators $\{\hat{\mathfrak{C}}_t\}_{t\in\mathbb{R}^+}$ to a linear subspace of $L^2(\mathbb{R}^n\times\mathbb{R}^n)$. Indeed, by complex linear superpositions one can extend the convex cone Q_n of functions of quantum positive type on $\mathbb{R}^n\times\mathbb{R}^n$ to the dense subspace LQ_n of $L^2(\mathbb{R}^n\times\mathbb{R}^n)$. A semigroup of operators $\{\mathfrak{C}_t\}_{t\in\mathbb{R}^+}$ in LQ_n is then defined as follows. Since, by Theorem 4, the point-wise product of a continuous function of *classical* positive type by a continuous function *quantum* positive type is a function of the latter type, we can set

$$\mathfrak{C}_t \colon \mathsf{LQ}_n \to \mathsf{LQ}_n, \quad (\mathfrak{C}_t \mathcal{Q})(q, p) \coloneqq \chi_t(q, p) \mathcal{Q}(q, p).$$
 (54)

It is clear that we have:

$$\mathfrak{C}_t \mathsf{Q}_n \subset \mathsf{Q}_n, \quad \mathfrak{C}_t \bar{\mathsf{Q}}_n \subset \bar{\mathsf{Q}}_n.$$
 (55)

We will call the semigroups of operators $\{\mathfrak{C}_t\}_{t\in\mathbb{R}^+}$ a **classical-quantum semigroup**. The introduction of this semigroup of operators may be regarded as a mere mathematical *divertissement*, based on the properties of functions of positive type. But it turns out that it has a precise *physical interpretation*.

The relation with open quantum systems

The Weyl system U gives rise to an **isometric representation** of $\mathbb{R}^n \times \mathbb{R}^n$ in $\mathcal{B}_1(\mathcal{H})$: $U \lor U(q, p) : \mathcal{B}_1(\mathcal{H}) \ni \hat{\rho} \mapsto U(q, p) \hat{\rho} U(q, p)^*$, $\mathcal{H} = L^2(\mathbb{R}^n)$. (56) Given a **convolution semigroup** $\{\mu_t\}_{t \in \mathbb{R}^+}$ of measures on $\mathbb{R}^n \times \mathbb{R}^n$, a **semigroup of operators** $\{\mu_t[U]\}_{t \in \mathbb{R}^+}$ in $\mathcal{B}_1(\mathcal{H})$ is defined by setting

$$\mu_t[U]\,\widehat{\rho} := \int_{\mathbb{R}^n \times \mathbb{R}^n} \left(U \lor U(q,p)\,\widehat{\rho} \right) \mathsf{d}\mu_t(q,p). \tag{57}$$

This semigroup of operators — a *twirling semigroup* (classical-noise sem.) is a **quantum dynamical semigroup** (completely positive, trace-preserving). **Theorem 5** Let $\{\chi_t\}_{t\in\mathbb{R}^+}$ be the multiplication semigroup of functions of positive type associated with $\{\mu_t\}_{t\in\mathbb{R}^+}$,

$$\chi_t(q,p) = \int_{\mathbb{R}^n \times \mathbb{R}^n} e^{i(q \cdot p' - p \cdot q')} d\mu_t(q',p'),$$
(58)

and let $\{\mathfrak{C}_t\}_{t\in\mathbb{R}^+}$ be the proper classical-quantum semigroup generated by $\{\chi_t\}_{t\in\mathbb{R}^+}$. The quantization map \mathscr{Q} intertwines $\{\mathfrak{C}_t\}_{t\in\mathbb{R}^+}$ with the quantum dynamical semigroup $\{\mu_t[U]\}_{t\in\mathbb{R}^+}$:

$$\mathscr{Q}(\mathfrak{C}_t \mathcal{Q}) = \mu_t[U](\mathscr{Q}\mathcal{Q}), \quad \mathcal{Q} \in \mathsf{LQ}_n, \quad t \ge 0.$$
(59)

Thank you for your attention and many thanks to the organizers!

References:

P. A., G. Cassinelli, E. De Vito, A. Levrero, "Square-integrability of induced representations of semidirect products", *Rev. Math. Phys.* **10** (1998) 301

P. A., "Square integrable projective representations and square integrable representations modulo a relatively central subgroup", *Int. J. Geom. Meth. Mod. Phys.* **3** (2006) 233

P. A., "Extended wavelet transforms", Int. J. Geom. Meth. Mod. Phys. 3 (2006) 341

P. A., "Star products: a group-theoretical point of view", J. Phys. A: Math. Theor. 42 (2009) 475210

P. A., A. Kossakowski, G. Marmo, F. Ventriglia, "Brownian motion on Lie groups and open quantum systems", *J. Phys. A: Math. Theor.* **43** (2010) 265301

P. A., "On a certain class of semigroups of operators", Open Syst. & Inf. Dynamics 18 (2011) 129

P. A., "Quantum dynamical semigroups, group representations and convolution semigroups", *Phys. Scr.* **T153** (2013) 014003

P. A., "Playing with functions of positive type, classical and quantum", *Phys. Scr.* 90 (2015) 074042
P. A., D. Chruściński, "Characterizing the dynamical semigroups that do not decrease a quantum entropy",

J. Phys. A: Math. Theor. 49 (2016) 345301