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Outline of the talk:

• (Generalized) coherent states and square integrable reps.

• Semidirect products

• Square integrable reps. and quantum mechanics on phase space

• Detour: classical states and functions of positive type (PTFs)

• Quantum states and functions of quantum positive type (QPTFs)

• Playing with functions of positive type: classical-quantum semigroups

• Introducing quantization into the game: from classical-quantum semi-
groups to twirling semigroups (open quantum systems)
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(Generalized) coherent states and sq. integrable reps.

It is well known that the standard coherent states

|z〉 = D(z) |0〉 , z =
(
q/
√

2, p/
√

2
)
, (1)

are generated by a projective representation (Weyl system)

G = Rn×Rn 3 (q, p) 7→ U(q, p) := exp(i(p · q̂ − q · p̂)) = D
(
q/
√

2, p/
√

2
)
, (2)

U(q + q̃, p + p̃) = e
i
2(q·p̃−p·q̃)U(q, p)U(q̃, p̃). (3)

U is related to a unitary representation of the central extension (Heisenberg-
Weyl group) Hn, i.e., of the Lie group R× Rn × Rn, with composition law

(τ, q, p)(τ̃ , q̃, p̃) = (τ+τ̃+(q·p̃−p·q̃)/2, q+q̃, p+p̃), τ, τ̃ ∈ R, q, q̃ ∈ Rn, p, p̃ ∈ Rn;

namely,

U(q, p) = S(0, q, p), (4)

where the Schrödinger representation S of Hn is defined by
(
S(τ, q, p)f

)
(x) := e−i(τ+q·p/2)eip·xf(x− q), f ∈ L2(Rn). (5)

2



One of the salient properties of coherent states, i.e.,

1

πn

∫
d2nz |z〉〈z| = 1

(2π)n

∫
dnqdnp U(q, p) |0〉〈0|U(q, p)∗ = I, (6)

can be regarded as a consequence of the fact that the projective represen-
tation U is square integrable; equivalently, that the unitary representation
S is square integrable modulo the center of Hn.

Let U be an irreducible (projective) representation of a locally compact
group G in a separable complex Hilbert space H. For every pair ψ, φ ∈ H,
let us consider the (bounded, continuous) ‘coefficient function’

cψφ : G 3 g 7→ 〈U(g)ψ, φ〉 ∈ C (7)

and the set of ‘admissible vectors for U ’

A(U) :=
{
ψ ∈ H | ∃φ ∈ H : φ 6= 0, cψφ ∈ L2(G, νG;C)

}
. (8)

Then, the representation U is said to be square integrable if

A(U) 6= {0}. (9)

Clearly, every irreducible unitary representation of a compact group is
square integrable.
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Square integrable representations are ruled by the following result (Schur;
Weyl; Godement 1947; Duflo-Moore 1976; Grossmann-Morlet-Paul 1985):

Theorem 1 Let U : G → U(H) be a square integrable representation.
Then, the set A(U) is a dense linear span in H, stable under the ac-
tion of U , and, for any pair of vectors φ ∈ H and ψ ∈ A(U), the coefficient
cψφ : G → C is square integrable w.r.t. the left Haar measure νG.
Moreover, there exists a unique positive selfadjoint, injective linear opera-
tor DU in H — the ‘the Duflo-Moore operator’ associated with U — such
that A(U) = Dom

(
DU

)
(10)

and the following ‘orthogonality relations’ hold:∫

G
cψ1φ1

(g) cψ2φ2
(g) dνG(g) = 〈φ1, φ2〉 〈DU ψ2, DU ψ1〉, (11)

for all φ1, φ2 ∈ H and all ψ1, ψ2 ∈ A(U).
The operator DU is bounded if and only if G is unimodular — 4G ≡ 1 —
and, in such case, it is a multiple of the identity: DU = dU I, dU > 0.

Hence:
0 6= ψ ∈ A(U) ⇒ ‖DU ψ‖−2

∫

G
dνG(g)|U(g)ψ〉〈U(g)ψ| = I. (12)
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Semidirect products

Assume that a locally compact group G is the semidirect product of an
abelian, closed normal subgroup A (normal factor) by a closed subgroup
H (homogeneous factor):

G = AoH. (13)

The inner action of G determines an action of H on A:

( · )[ · ] : H × A 3 (h, a) 7→ h[a] = hah−1 ∈ A. (14)

The group G may also be thought of as the cartesian product of A ×H,
endowed with the composition law induced by the action of H on A:

(a, h)(a′, h′) = (a + h[a′], hh′), a, a′ ∈ A, h, h′ ∈ H. (15)

Let Â be the Pontryagin dual of A (the group of unitary characters) and

(〈·, ·〉) : A× Â 3 (a, x̂) 7→ (〈a, x̂〉) = x̂(a) ∈ C (16)

the pairing between A and Â. The dual action of H on Â is defined by:

(〈a, h[x̂]〉) := (〈h−1[a], x̂〉), a ∈ A, h ∈ H, x̂ ∈ Â. (17)
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A standard way for producing irreducible representations of G is Mackey’s
‘little group method’ or Mackey machine. Choose an orbit O of the dual
action of H on Â through a certain point x̂0,

O = H [x̂0], x̂0 ∈ Â, (18)

and an irreducible representation J : H0 → U(J ) of the stability subgroup
H0 of H at x̂0; namely: H0 = {h ∈ H | h[x̂0] = x̂0}. (19)

The representation of G, induced by the representation x̂0J : G0 → U(J )
of G0 := AoH0 defined by(

(x̂0J) (a, s)
)
v := (〈a, x̂0〉) J(s) v, a ∈ A, s ∈ H0, v ∈ J , (20)

is irreducible. The unitary equivalence classes of representations of G that
can be obtained via the Mackey machine are in one-to-one correspondence
with the pairs (O, J), O ⊂ Â, (21)

where O is a H-orbit and J spans a maximal set of mutually inequivalent
irreducible representations of the stability subgroup of H at a point arbi-
trarily fixed in O.
If G is a regular semidirect product — i.e., if each orbit of H in Â is locally
closed — then every irreducible representation of G can be produced via
the Mackey machine.
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The square-integrability of these induced representations of semidirect
products with an abelian normal factor is characterized by the following
result (see P. A., G. Cassinelli, E. De Vito, A. Levrero, “Square-integrability of induced

representations of semidirect products”, Rev. Math. Phys. 10 (1998) 301):

Theorem 2 The induced representation IndG
G0

(x̂0J) is square integrable if
and only if the following conditions hold:

• the H-orbit O = H [x̂0] ⊂ Â is thick, namely, the Haar measure of O is
not zero: νÂ(O) 6= 0;

• the representation J : H0 → U(J ) of the stability subgroup H0 at x̂0 is
square integrable.

In the case where G is a Lie group, if Â is a Lie group on which H acts
smoothly and the orbit O is locally closed, then

νÂ(O) 6= 0 ⇐⇒ the orbit O is open in Â ⇐⇒ dim(H)−dim(H0) = dim(Â).

Semidirect products that admit sq. int. reps. include the affine group RoR+∗
or RoR∗ (wavelet transform), the similitude group Rno(SO(n)×R+∗ ), the
shearlet group Rn+1o(RnoR+∗ ) or Rn+1o(RnoR∗) (shearlet transform) and
the reduced Heisenberg group Hn = Hn/2πZ, whereas, e.g., the euclidean
RnoSO(n) and the Poincaré R4oSL(2;C) groups do not admit such reps.
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Sq. int. reps. and phase-space quantum mechanics

Denoting by B2(H) the Hilbert space of Hilbert-Schmidt operators in H,
a square integrable (in general, projective) representation U : G → U(H)
allows one to define a dequantization map

DDD : B2(H) → L2(G) ≡ L2(G, νG;C), (22)

which is an isometry. If G is unimodular and ρ̂ is of trace class, DDD ρ̂ is of
the form

(DDD ρ̂)(g) = d−1
U tr(U(g)∗ρ̂), dU > 0. (23)

The quantization map associated with U is the adjoint of the dequanti-
zation map; i.e., it is the partial isometry QQQ defined by

QQQ := DDD∗ : L2(G) → B2(H). (24)

Clearly, Ker(QQQ) = Ran(DDD)⊥. The star product is defined by

L2(G)× L2(G) 3 (f1, f2) 7→ f1 ? f2 := DDD((QQQf1)(QQQf2)) ∈ L2(G). (25)

For functions in Ran(DDD) this is the ‘dequantized product of operators’.
One can provide explicit formulae for the star product (P. A., “Star products:

a group-theoretical point of view”, J. Phys. A: Math. Theor. 42 (2009) 475210).
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In the case where G is unimodular, we have a simple result:

Theorem 3 Let G be unimodular and U : G → U(H) a square integrable
projective representation, with multiplier m; i.e., U(gh) = m(g, h)U(g)U(h).
Then, for any f1, f2 ∈ L2(G), we have:

(
f1 ? f2

)
(g) = d−1

U

∫

G
dνG(h) f1(h)

(
Pf2

)
(h−1g) m(h, h−1g)

= d−1
U

∫

G
dνG(h)

(
Pf1

)
(h)

(
Pf2

)
(h−1g) m(h, h−1g), (26)

where P is the orthogonal projection onto Ran(DDD). Therefore, for any
f1, f2 ∈ Ran(DDD), the following formula holds (‘m-twisted convolution’):

(
f1 ? f2

)
(g) = d−1

U

∫

G
dνG(h) f1(h)f2(h

−1g) m(h, h−1g). (27)

Let G be the group of translations on phase space Rn × Rn. Then,
H = L2(Rn), U is the Weyl system — U(q, p) = exp(i(p · q̂ − q · p̂)) —
Ran(DDD) = L2(G) = L2(Rn× Rn, (2π)−ndnqdnp;C) and dU = 1; moreover:

m(q, p; q′, p′) = exp(i(q · p′ − p · q′)/2). (28)

However, for every state ρ̂, the function (DDD ρ̂)(q, p) = tr(U(q, p)∗ρ̂) is not
the Wigner distribution %, but the quantum characteristic function %̃ . . .
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Detour: classical states and PTFs

Recall that the Banach space L1(G) of C-valued functions on G, integrable
w.r.t. the left Haar measure νG, endowed with the convolution product,

(ϕ1 } ϕ2)(g) :=
∫

G
ϕ1(h)ϕ2(h

−1g) dνG(h), (29)

and the involution,
I : ϕ 7→ ϕ∗, ϕ∗(g) := 4G(g−1)ϕ(g−1), (30)

with 4G denoting the modular function, is a Banach ∗-algebra
(
L1(G),}, I

)
.

Definition 1 A positive bounded linear functional on the Banach ∗-algebra(
L1(G),}, I

)
, realized as a function in the Banach space of νG-essentially

bounded functions L∞(G), is called a function of positive type on G.
Namely, a function χ ∈ L∞(G) is said to be of positive type if∫

G
χ(g) (ϕ∗} ϕ)(g) dνG(g) ≥ 0, (PTF condition) (31)

for all ϕ ∈ L1(G).

A function of positive type χ ∈ L∞(G) agrees νG-almost everywhere with
a (bounded) continuous function and

‖χ‖∞ := νG-ess supg∈G |χ(g)| = χ(e). (32)
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For a bounded continuous function χ : G → C the following facts are
equivalent:

P1) χ is of positive type;

P2) χ satisfies the PTF condition (31), for all ϕ ∈ Cc(G);

P3) χ satisfies the condition
∫

G

∫

G
χ(g−1h)ϕ(g)ϕ(h) dνG(g)dνG(h) ≥ 0, (33)

for all ϕ ∈ Cc(G);

P4) χ is a positive definite function, i.e.,
∑

j,k

χ(g−1
j gk)cj ck ≥ 0, (34)

for every finite set {g1, . . . , gm} ⊂ G and arbitrary c-numbers c1, . . . , cm.

Let G be abelian and let Ĝ be its dual group. By Bochner’s theorem,
denoting by CM(Ĝ) the Banach space of complex Radon measures on Ĝ,
we can add another item to the previous list of equivalent facts:

P5) χ is the Fourier transform of a positive measure µ ∈ CM(Ĝ).
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Now, setting G = Rn× Rn, the physical relevance of functions of positive
type becomes evident. Indeed, a classical state is a normalized posi-
tive functional on the commutative C∗-algebra of classical observables.
By Gelfand theory, such an algebra is (isomorphic to) the algebra of
continuous functions vanishing at infinity C0(Rn× Rn), endowed with the
point-wise product. The dual of C0(Rn× Rn) is CM(Rn× Rn), the space
of complex Radon measures, and the associated states are the proba-
bility measures on Rn× Rn. The expectation value of an observable
f ∈ C0(Rn× Rn;R) in the state µ ∈ CM(Rn× Rn) is given by the pairing

〈f〉µ =
∫

Rn×Rn
f(q, p) dµ(q, p). (35)

It is often useful to replace a state µ with its symplectic Fourier transform,

χ(q, p) ≡ µ̃(q, p) :=
∫

Rn×Rn
eiω(q,p;q′,p′) dµ(q′, p′) (36)

ω(q, p; q′, p′) := q · p′ − p · q′. (37)

Note that χ ≡ µ̃ is a continuous function of positive type on Rn×Rn: µ̃ ∈ Pn.
The normalization condition µ(Ĝ) = 1 corresponds to χ(0) = ‖χ‖∞ = 1;
i.e., to the normalization of χ as a functional. In probability theory, χ is
called the characteristic function of µ.
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Quantum states and quantum PTFs

In the phase space formulation of QM, a pure state ρ̂ψ = |ψ〉〈ψ| in L2(Rn)
is replaced with a function (Wigner function):

Rn×Rn 3 (q, p) 7→ %ψ(q, p) :=
1

(2π)n

∫

Rn
e−ip·xψ

(
q − x

2

)
ψ

(
q +

x

2

)
dnx. (38)

This definition extends in a natural way to every trace class operator. One
then obtains a separable Banach space of functions LWn ⊂ L2(Rn× Rn),
which contains a convex cone Wn, formed by those functions that are
associated with positive trace class operators in L2(Rn). Wn contains the
convex set W̆n of Wigner functions characterized by the normalization
condition

lim
r→+∞

∫

|q|2 + |p|2 ≤ r2
%(q, p) dnqdnp = tr(ρ̂) = 1, (39)

where % ∈ W̆n is the function associated with a certain state ρ̂. As in the
classical setting, one can replace a Wigner distribution with its symplectic
Fourier(-Plancherel) transform

(
F̂sp%

)
(q, p) =

1

(2π)n

∫

Rn×Rn
%(q′, p′) ei(q·p′−p·q′) dnq′dnp′. (40)
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Then, the space LWn is mapped onto a dense subspace LQn of L2(Rn×Rn),

LQn := F̂sp LWn, (41)

and the convex cone Wn ⊂ LWn is mapped onto a convex cone Qn ⊂ LQn.

By analogy with the classical case, we may call a function

%̃ := (2π)n F̂sp%, % ∈ W̆n, (42)

the quantum characteristic function associated with the quasi-probability
distribution %. Similarly to the classical case, the quantum characteristic
functions, are those functions in Qn satisfying the normalization condition

%̃(0) = 1. (43)

These functions form a convex subset Q̆n of LQn. Moreover:

%̃(q, p) = tr(U(q, p)∗ρ̂) = (DDD ρ̂)(q, p), (44)

where U is the Weyl system, i.e., U(q, p) = exp(i(p · q̂ − q · p̂)).
Natural problem: Is it possible to characterize intrinsically the convex
set of Wigner functions W̆n or the convex set Q̆n of quantum characteristic
functions? The analysis of this problem leads to the notion of function
of quantum positive type.
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As in the classical setting, we consider a ∗-algebra of functions, and then
define the functions of positive type as suitable functionals on this algebra.
The Hilbert space L2(Rn× Rn) becomes a ∗-algebra — more precisely, a
H∗-algebra — once endowed with the twisted convolution
(
A1~A2

)
(q, p) =

1

(2π)n

∫

Rn×Rn
A1(q

′, p′)A2(q− q′, p−p′)e
i
2(q·p′−p·q′) dnq′dnp′,

A1,A2 ∈ L2(Rn× Rn), and with the involution J : A 7→ A∗,
A∗(q, p) := A(−q,−p), A ∈ L2(Rn× Rn). (45)

Notice: L2(Rn× Rn) ~ L2(Rn× Rn) = LQn and J LQn = LQn. (46)

(The twisted convolution is the star product associated with the Weyl sys-
tem: it realizes the of operator product in terms of phase-space functions.)

Definition 2 A function of quantum positive type is a positive bounded
linear functional on the H∗-algebra

(
L2(Rn× Rn),~, J

)
. Thus, we say that

a function Q ∈ L2(Rn× Rn) is of quantum positive type if∫

Rn×Rn
Q(q, p)(A∗~A)(q, p) dnqdnp ≥ 0, (QPTF condition) (47)

for all A ∈ L2(Rn× Rn).
(P. A., “Playing with functions of positive type . . . ”, Phys. Scr. 90 (2015) 074042)
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If a continuous function Q is of quantum positive type, then it is bounded
and ‖Q‖∞ = Q(0). (compare with (32)) (48)

Moreover, for a continuous function Q : Rn× Rn → C the following facts
are equivalent (z ≡ (q, p) ∈ Rn× Rn, dz ≡ dnqdnp, ω(z, z′) ≡ q · p′ − p · q′):
Q1) Q is of quantum positive type;

Q2) Q satisfies the QPTF condition (47), for all A ∈ Cc(Rn× Rn);

Q3) Q satisfies the condition∫

Rn×Rn

∫

Rn×Rn
Q(z − z′)A(z′)A(z)eiω(z′,z)/2 dzdz′ ≥ 0, (49)

for all A ∈ Cc(Rn× Rn);

Q4) Q is a quantum positive definite function, i.e.,
∑

j,k

Q(zk − zj )e
iω(zj ,zk)/2 cj ck ≥ 0, (50)

for every finite set {z1, . . . , zm} ⊂ Rn × Rn and arbitrary c-numbers
c1, . . . , cm;

Q5) Q is — up to the normalization: Q(0) = 1 — the Fourier-Plancherel
transform of a Wigner quasi-probability distribution.
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Playing with functions of positive type

The convolution µ1}µ2 of a pair of probability measures µ1, µ2 ∈ CM(G),
∫

G
ϕ(g) dµ1 } µ2(g) :=

∫

G

∫

G
ϕ(gh) dµ1(g)dµ2(h), ϕ ∈ Cc(G), (51)

is a probability measure too. Endowed with convolution the convex set
PM(G) of probability measures on G becomes a semigroup, with iden-
tity δe. If G is abelian, to the convolution of probability measures cor-
responds — via the FT — the point-wise multiplication of characteristic
functions. Hence, the point-wise product χ1χ2 of two continuous func-
tions of positive type on G is a continuous function of positive type too.

Let us take G = Rn× Rn. Endowed with the point-wise product the set
P̆n ⊂ Pn of normalized functions of (classical) positive type on Rn×Rn

is a semigroup, with the identity χ ≡ 1.

What happens with the point-wise multiplication of a function of classical
positive type by a continuous function of quantum positive type?

Theorem 4 The point-wise product χQ of χ ∈ Pn by Q ∈ Qn belongs to
Qn; in particular, to the convex set of quantum characteristic functions Q̆n

if χ and Q are normalized.
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Consider then a multiplication semigroup of functions of positive type

{χt : Rn× Rn → C}t∈R+ ⊂ P̆n, χtχs = χt+s, t, s ≥ 0, χ0 ≡ 1 (52)

(continuous w.r.t. the the topology of uniform convergence on compact
sets on P̆n). Such semigroups can be classified: the FT of a multiplica-
tion semigroup of functions of positive type on Rn× Rn is a convolution
semigroup of probability measures (characterized by the Lévy-Kintchine
formula).

As χt is a bounded continuous function, we can define a bounded operator
Ĉt in L2(Rn× Rn):

(
Ĉtf

)
(q, p) := χt(q, p)f(q, p), f ∈ L2(Rn× Rn), t ≥ 0. (53)

The set {Ĉt}t∈R+ is a semigroup of operators:

1. Ĉt Ĉs = Ĉt+s, t, s ≥ 0;

2. Ĉ0 = I;

3. limt↓0 ‖Ĉtf − f‖ = 0, ∀f ∈ L2(Rn× Rn).
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It is natural to consider the restriction of the semigroup of operators

{Ĉt}t∈R+ to a linear subspace of L2(Rn× Rn). Indeed, by complex linear

superpositions one can extend the convex cone Qn of functions of quantum

positive type on Rn × Rn to the dense subspace LQn of L2(Rn × Rn). A

semigroup of operators {Ct}t∈R+ in LQn is then defined as follows.

Since, by Theorem 4, the point-wise product of a continuous function of

classical positive type by a continuous function quantum positive type is

a function of the latter type, we can set

Ct : LQn → LQn,
(
CtQ

)
(q, p) := χt(q, p)Q(q, p). (54)

It is clear that we have:

CtQn ⊂ Qn, CtQ̆n ⊂ Q̆n. (55)

We will call the semigroups of operators {Ct}t∈R+ a classical-quantum

semigroup. The introduction of this semigroup of operators may be

regarded as a mere mathematical divertissement, based on the properties

of functions of positive type. But it turns out that it has a precise physical

interpretation.
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The relation with open quantum systems
The Weyl system U gives rise to an isometric representation of Rn×Rn

in B1(H):
U ∨U(q, p): B1(H) 3 ρ̂ 7→ U(q, p) ρ̂ U(q, p)∗, H = L2(Rn). (56)

Given a convolution semigroup {µt}t∈R+ of measures on Rn × Rn, a
semigroup of operators {µt[U ]}t∈R+ in B1(H) is defined by setting

µt[U ] ρ̂ :=
∫

Rn×Rn

(
U ∨U(q, p) ρ̂

)
dµt(q, p). (57)

This semigroup of operators — a twirling semigroup (classical-noise sem.)—
is a quantum dynamical semigroup (completely positive, trace-preserving).

Theorem 5 Let {χt}t∈R+ be the multiplication semigroup of functions of
positive type associated with {µt}t∈R+,

χt(q, p) =
∫

Rn×Rn
ei(q·p′−p·q′) dµt(q

′, p′), (58)

and let {Ct}t∈R+ be the proper classical-quantum semigroup generated by
{χt}t∈R+. The quantization map QQQ intertwines {Ct}t∈R+ with the quantum
dynamical semigroup {µt[U ]}t∈R+:

QQQ (CtQ) = µt[U ] (QQQQ), Q ∈ LQn, t ≥ 0. (59)
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Thank you for your attention

and

many thanks to the organizers!
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