# Application de la complexité en cryptographie

Judicaël Courant

Lycée La Martinière-Monplaisir, Lyon

Conférence Algorithmique et Programmation CIRM Le 6 mai 2016



# Lignes directrices

- I Introduction
  - Qu'est-ce que la cryptographie?
  - Sécurité du chiffrement
  - Conclusion provisoire
- 2 Modéliser la sécurité
  - Première idée : complexité
  - Deuxième idée : probabilités
  - Troisième idée : indistinguabilité
- 3 Sécurité du chiffrement de ElGamal
  - Contexte
  - Protocole de Diffie-Hellman
  - Chiffrement de ElGamal
- 4 Conclusion



# Lignes directrices

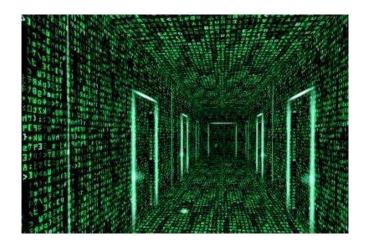
- I Introduction
  - Qu'est-ce que la cryptographie?
  - Sécurité du chiffrement
  - Conclusion provisoire
- 2 Modéliser la sécurité
  - Première idée : complexité
  - Deuxième idée : probabilités
  - Troisième idée : indistinguabilité
- 3 Sécurité du chiffrement de ElGamal
  - Contexte
  - Protocole de Diffie-Hellman
  - Chiffrement de ElGamal
- 4 Conclusion



### Cryptographie : science (art ?) de la confidentialité

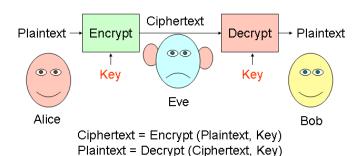


### « Tout est nombre » (Pythagore)



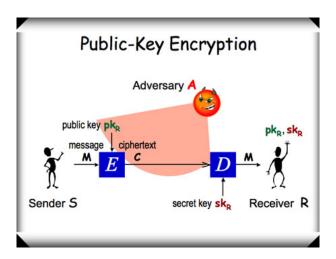
Message (de taille bornée) = Suite de bits (finie) = Entier (borné)

# Chiffrement symétrique



plaintext : message (en clair) to encrypt : chiffrer ciphertext : chiffré to decrypt : déchiffrer.

# Chiffrement asymétrique



# Lignes directrices

- I Introduction
  - Qu'est-ce que la cryptographie?
  - Sécurité du chiffrement
  - Conclusion provisoire
- 2 Modéliser la sécurité
  - Première idée : complexité
  - Deuxième idée : probabilités
  - Troisième idée : indistinguabilité
- 3 Sécurité du chiffrement de ElGamal
  - Contexte
  - Protocole de Diffie-Hellman
  - Chiffrement de ElGamal
- 4 Conclusion



# Exemple: RSA (1978)

Si p,q premiers distincts, et  $ed \equiv 1 \mod (p-1)(q-1)$ , alors

$$\forall x \in \mathbb{Z}_{pq} \quad (x^e)^d = x$$

### Cryptosystème RSA:

- clé publique pk = (pq, e)
- clé secrète sk = (pq, d)
- $Enc((pq, e), m) = m^e$

### Correction

Le déchiffrement d'un chiffré redonne le message en clair :

$$\forall m \in \mathbb{Z}_{pq} \quad \mathsf{Dec}(\mathsf{sk}, \mathsf{Enc}(\mathsf{pk}, m)) = m$$

C'est juste une autre façon d'écrire

$$\forall x \in \mathbb{Z}_{pq} \quad (x^e)^d = x$$

#### Argument rapide:

- Pour casser RSA, on a besoin de calculer e à partir de d.
- Pour cela il faut connaître (p-1)(q-1).
- Pour cela, on a besoin de factoriser *pq*.
- Or c'est difficile quand *p* et *q* sont grands.
- Donc RSA est sûr.

Reprenons lentement:

#### Reprenons lentement:

Si factoriser pq est facile on peut facilement trouver sk à partir de pk.

#### Reprenons lentement:

- Si factoriser *pq* est facile on peut facilement trouver sk à partir de pk.
- Or factoriser n'est pas facile.

#### Reprenons lentement:

- Si factoriser *pq* est facile on peut facilement trouver sk à partir de pk.
- Or factoriser n'est pas facile.
- Donc trouver sk à partir de pk n'est pas facile.

#### Reprenons lentement:

- Si factoriser *pq* est facile on peut facilement trouver sk à partir de pk.
- Or factoriser n'est pas facile.
- Donc trouver sk à partir de pk n'est pas facile.

Syllogisme grec bien connu:

#### Reprenons lentement:

- Si factoriser *pq* est facile on peut facilement trouver sk à partir de pk.
- Or factoriser n'est pas facile.
- Donc trouver sk à partir de pk n'est pas facile.

### Syllogisme grec bien connu:

■ Si un être est humain, alors il est mortel.

#### Reprenons lentement:

- Si factoriser *pq* est facile on peut facilement trouver sk à partir de pk.
- Or factoriser n'est pas facile.
- Donc trouver sk à partir de pk n'est pas facile.

#### Syllogisme grec bien connu:

- Si un être est humain, alors il est mortel.
- Or mon chat n'est pas humain.

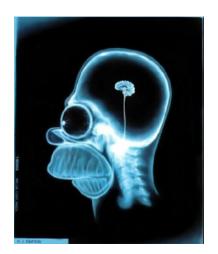
#### Reprenons lentement:

- Si factoriser *pq* est facile on peut facilement trouver sk à partir de pk.
- Or factoriser n'est pas facile.
- Donc trouver sk à partir de pk n'est pas facile.

#### Syllogisme grec bien connu:

- Si un être est humain, alors il est mortel.
- Or mon chat n'est pas humain.
- Donc mon chat n'est pas mortel.

# C'est bien la peine de faire des maths...



### Lignes directrices

- I Introduction
  - Qu'est-ce que la cryptographie?
  - Sécurité du chiffrement
  - Conclusion provisoire
- 2 Modéliser la sécurité
  - Première idée : complexité
  - Deuxième idée : probabilités
  - Troisième idée : indistinguabilité
- 3 Sécurité du chiffrement de ElGamal
  - Contexte
  - Protocole de Diffie-Hellman
  - Chiffrement de ElGamal
- 4 Conclusion



# Conclusion provisoire

- Il y a besoin d'une vraie modélisation du problème
- Utiliser RSA sans comprendre, c'est prendre des risques...

# Lignes directrices

- I Introduction
  - Qu'est-ce que la cryptographie?
  - Sécurité du chiffrement
  - Conclusion provisoire
- 2 Modéliser la sécurité
  - Première idée : complexité
  - Deuxième idée : probabilités
  - Troisième idée : indistinguabilité
- 3 Sécurité du chiffrement de ElGamal
  - Contexte
  - Protocole de Diffie-Hellman
  - Chiffrement de ElGamal
- 4 Conclusion



### Casser le chiffrement

### Faisable en principe:

- intercepter la clé publique (facile)
- 2 intercepter le chiffré c (demander à PRISM ou ECHELON)
- $\Box$  énumérer tous les messages possibles, calculer leurs chiffrés c'
- 3'arrêter quand c' = c.

Infaisable en pratique : trop long  $(2^N$  messages de longueur N)

### Première idée

Idée 1:

Problème de sécurité = Problème de complexité

Un chiffrement sera solide s'il n'existe pas d'algorithme *efficace* pour le casser.

# Modèle de complexité

Paramètre de sécurité Un entier N représentant la taille des clés (nombre de chiffres) et des messages.

Étude asymptotique Efficace = complexité polynomiale.



# Propriétés à étudier

Alice envoie un message m chiffré en c à Bob. Peut-on :

- Trouver *m* à partir de *c* dans le cas général? (notion de fonction à sens unique)
- Trouver *m* si on sait que le message était choisi parmi un ensemble restreint de possibilité, par exemple 0, ..., 9 ? (sécurité sémantique)
- Construire le chiffré de 2m à partir de c sans connaître m?
   (non-malléabilité)

Fonction à sens unique Problème ouvert pour RSA.

Fonction à sens unique Problème ouvert pour RSA.

Malléabilité Oui.

$$\mathsf{Enc}(\mathsf{pk}, m \times m') = \mathsf{Enc}(\mathsf{pk}, m) \times \mathsf{Enc}(\mathsf{pk}, m').$$

Fonction à sens unique Problème ouvert pour RSA.

Malléabilité Oui.

$$\mathsf{Enc}(\mathsf{pk}, m \times m') = \mathsf{Enc}(\mathsf{pk}, m) \times \mathsf{Enc}(\mathsf{pk}, m').$$

Sécurité sémantique Non. Calculer Enc(pk, i) pour i = 0...9.

Fonction à sens unique Problème ouvert pour RSA.

Malléabilité Oui.

 $\mathsf{Enc}(\mathsf{pk}, m \times m') = \mathsf{Enc}(\mathsf{pk}, m) \times \mathsf{Enc}(\mathsf{pk}, m').$ 

Sécurité sémantique Non. Calculer Enc(pk, i) pour i = 0...9.

Et en pratique? GPG utilise RSA mais GPG  $\neq$  RSA.

# Lignes directrices

- I Introduction
  - Qu'est-ce que la cryptographie?
  - Sécurité du chiffrement
  - Conclusion provisoire
- 2 Modéliser la sécurité
  - Première idée : complexité
  - Deuxième idée : probabilités
  - Troisième idée : indistinguabilité
- 3 Sécurité du chiffrement de ElGamal
  - Contexte
  - Protocole de Diffie-Hellman
  - Chiffrement de ElGamal
- 4 Conclusion



# Remarque sur la sécurité sémantique

- RSA n'a pas la propriété de sécurité sémantique car on peut calculer Enc(pk, i) pour i = 0...9
- C'est vrai pour tout algorithme de chiffrement à clé publique
- ...à condition qu'en chiffrant deux fois un même message, on obtienne le même résultat.
- Donc les algorithmes de chiffrement sûrs ne sont pas déterministes.

### Au fait

- Si l'adversaire ne peut pas gagner à tous les coups mais seulement une fois sur 10, c'est gênant?
- Commerce électronique mondial :  $10^{12}$  € par an.

# Cadre probabiliste

#### Idée 2 : Cadre probabiliste

- Algorithme de chiffrement probabiliste.
- L'adversaire peut jouer aux dés.
- On veut que la probabilité de succès de l'adversaire soit une fonction négligeable du paramètre de sécurité N.

### Définition (Négligeable)

Est un  $O_{N\to+\infty}(N^{-k})$  pour tout  $k\in\mathbb{N}$ .

## Lignes directrices

- I Introduction
  - Qu'est-ce que la cryptographie?
  - Sécurité du chiffrement
  - Conclusion provisoire
- 2 Modéliser la sécurité
  - Première idée : complexité
  - Deuxième idée : probabilités
  - Troisième idée : indistinguabilité
- 3 Sécurité du chiffrement de ElGamal
  - Contexte
  - Protocole de Diffie-Hellman
  - Chiffrement de ElGamal
- 4 Conclusion



### Modélisation de l'adversaire

#### Pour cet exposé l'adversaire est :

- un algorithme
- probabiliste
- polynomial
- omniscient sur le réseau (accès aux messages entre Alice à Bob).
- passif (à la différence de la NSA)

Première idée : complexité Deuxième idée : probabilités Troisième idée : indistinguabilité

## Et si on jouait?

On peut modéliser la sécurité comme un jeu à deux joueurs :

- Le challenger (algorithme modélisant Alice et Bob)
- L'adversaire (algorithme modélisant Ève)

Question : quelles chances de succès pour l'adversaire?

# Le jeu de la sécurité sémantique

- On donne à l'adversaire la clé publique utilisée. L'adversaire choisit deux messages  $m_0$  et  $m_1$  et les donne au challenger.
- Le challenger :
  - choisit  $b \leftarrow U(\{0,1\})$
  - calcule le chiffré  $c_b \leftarrow \mathsf{Enc}(\mathsf{pk}, m_b)$
  - donne  $c_b$  à l'adversaire
- L'adversaire calcule une valeur b'.
- Si b' = b, l'adversaire a gagné.

# Quantifier la dangerosité de l'adversaire

- Si Pr[b' = 1|b = 1] = Pr[b' = 1|b = 0], l'adversaire n'a aucun succès.
- Un adversaire est dangereux si  $\Pr[b'=1|b=1]$  et  $\Pr[b'=1|b=0]$  sont *significativement* différents.

# Indistinguabilité

#### Autre présentation du jeu :

- $\mathsf{Enc}(\mathsf{pk}, m_b)$  peut être vu comme une loi de probabilité  $\mathcal{D}_b$ .
- L'adversaire doit tenter de distinguer  $\mathcal{D}_0$  et  $\mathcal{D}_1$ .

#### Définition (Indistinguabilité de distributions de probabilité)

 $\mathcal{D}_0$  et  $\mathcal{D}_1$  indistinguables (noté  $\mathcal{D}_0 \approx \mathcal{D}_1$ ) ssi pour tout algorithme polynomial probabiliste F à valeur dans  $\{0, 1\}$  et tout k fixé

$$\left| \Pr[F(x) = 1 \mid x \leftarrow \mathcal{D}_0] - \Pr[F(x) = 1 \mid x \leftarrow \mathcal{D}_1] \right|$$

est une fonction négligeable du paramètre de sécurité N.

# Relation d'indistinguabilité

#### L'indistinguabilité :

- est une relation d'équivalence
- passe au contexte :  $\mathcal{D}_0 \approx \mathcal{D}_1 \Rightarrow f(\mathcal{D}_0) \approx f(\mathcal{D}_1)$  pour tout algorithme (probabiliste) f polynomial.

### Idée 3

Idée 3:

Sécurité sémantique = indistinguabilité de distributions

#### Définition (Sécurité sémantique)

Le chiffrement possède la propriété de sécurité sémantique ssi pour tous messages  $m_0$  et  $m_1$ 

$$(pk, Enc(pk, m_0)) \approx (pk, Enc(pk, m_1))$$

## Lignes directrices

- I Introduction
  - Qu'est-ce que la cryptographie?
  - Sécurité du chiffrement
  - Conclusion provisoire
- 2 Modéliser la sécurité
  - Première idée : complexité
  - Deuxième idée : probabilités
  - Troisième idée : indistinguabilité
- 3 Sécurité du chiffrement de ElGamal
  - Contexte
  - Protocole de Diffie-Hellman
  - Chiffrement de ElGamal
- 4 Conclusion



#### Premiers sûrs

#### Définition (Premier sûr)

Nombre premier de la forme 2q + 1 avec q premier.

#### Dans la suite :

- p premier sûr
- q = (p-1)/2 (et q premier)
- p possède N chiffres (en binaire)

# Résidus quadratiques

### Définition (Sous-groupe des résidus quadratiques modulo p)

Sous-groupe des carrés de  $\mathbb{Z}_p^{\times}$  :

$$G_p = \{x^2 | x \in \mathbb{Z}_p^{\times}\}$$

# Logarithme discret

#### Remarque

 $G_p$  est d'ordre q = (p-1)/2 (avec q premier).

#### Corollaire

Pour tout  $g \in G_p \setminus \{1\}$  fixé, tout élément de  $G_p$  s'écrit sous la forme  $g^x$ , avec  $x \in \mathbb{Z}$  et x est unique modulo q.

### Définition (Log discret en base g)

$$DL_g(g^x) = x \text{ pour } g \in G_p \setminus \{1\} \text{ et } x \in [0, q[.$$

# Complexité temporelle des calculs dans $G_p$

N: nombre de bits de p (paramètre de sécurité).

Complexité des opérations usuelles dans  $G_p$ :

- Somme : O(N).
- Produit :  $O(N^2)$  (en pratique  $O(N^{1,59})$  et en théorie  $O(N \log N \log \log N)$ ).
- Calculer  $g^x$  avec  $x \in [0, q[: O(N^3)]$  (car  $O(\log x)$  multiplications).
- Calculer  $g^{-1} = g^{q-1} : O(N^3)$ .
- Calculer  $DL_g(x): e^{\sqrt{2\ln 2\cdot N} + o(\sqrt{N})}$  (sous-exponential mais pas polynomial).

## Problème du log discret

#### Définition (Problème du log discret)

Existe-t-il un algorithme (probabiliste) efficace prenant en entrée p,g et x ayant une probabilité non-négligeable de calculer  $DL_g(x)$ ?

### Conjecture (DL)

Non.

# Lignes directrices

- I Introduction
  - Qu'est-ce que la cryptographie?
  - Sécurité du chiffrement
  - Conclusion provisoire
- 2 Modéliser la sécurité
  - Première idée : complexité
  - Deuxième idée : probabilités
  - Troisième idée : indistinguabilité
- 3 Sécurité du chiffrement de ElGamal
  - Contexte
  - Protocole de Diffie-Hellman
  - Chiffrement de ElGamal
- 4 Conclusion



# Le protocole (1976)

Alice et Bob veulent convenir d'un secret mais sont écoutés par Ève.

- **■** Convention publique : p premier fort,  $g \in G_p \setminus \{1\}$ .
- Alice:  $x \leftarrow U(\llbracket 0, q \rrbracket)$ .
- 3 Alice  $\xrightarrow{g^x}$  Bob.
- Bob:  $y \leftarrow U(\llbracket 0, q \rrbracket)$ .
- Bob  $\xrightarrow{g^y}$  Alice.
- 6 Alice calcule  $g^{xy} = (g^y)^x$ .
- Bob calcule  $g^{xy} = (g^x)^y$ .

# Computational Diffie-Hellman Assumption

Ève n'arrivera pas à calculer  $g^{xy}$  à partir de  $p, g, g^x$  et  $g^y$  :

#### Conjecture (CDH)

Tout algorithme efficace prenant en entrée p, g,  $g^x$  et  $g^y$  a une probabilité négligeable de calculer  $g^{xy}$ .

### Decisional Diffie-Hellman Assumption

Ève ne sait même pas faire la différence entre  $g^{xy}$  et un élément de  $G_p$  quelconque :

#### Conjecture (DDH)

Les deux distributions suivantes sont indistinguables:

$$\mathcal{D}\left(\left(g^{x}, g^{y}, g^{xy}\right) \mid x \leftarrow U\left(\llbracket 0, q \rrbracket\right); y \leftarrow U\left(\llbracket 0, q \rrbracket\right)\right)$$

$$\mathcal{D}\left(\left(g^{x}, g^{y}, g'\right) \mid x \leftarrow U\left(\llbracket 0, q \rrbracket\right); y \leftarrow U\left(\llbracket 0, q \rrbracket\right); g' \leftarrow U\left(G_{p}\right)\right)$$

■ Difficultés relatives des conjectures

■ Difficultés relatives des conjectures

$$DDH \Rightarrow CDH$$

Difficultés relatives des conjectures

$$DDH \Rightarrow CDH \Rightarrow DL$$

Difficultés relatives des conjectures

$$DDH \Rightarrow CDH \Rightarrow DL \Rightarrow P \neq NP$$

Difficultés relatives des conjectures

$$DDH \Rightarrow CDH \Rightarrow DL \Rightarrow P \neq NP$$

■ Démonstration de *DDH* probablement non triviale...

Difficultés relatives des conjectures

$$DDH \Rightarrow CDH \Rightarrow DL \Rightarrow P \neq NP$$

- Démonstration de *DDH* probablement non triviale...
- Conjecture *DDH* non réfutée depuis 40 ans.

## Lignes directrices

- I Introduction
  - Qu'est-ce que la cryptographie?
  - Sécurité du chiffrement
  - Conclusion provisoire
- 2 Modéliser la sécurité
  - Première idée : complexité
  - Deuxième idée : probabilités
  - Troisième idée : indistinguabilité
- 3 Sécurité du chiffrement de ElGamal
  - Contexte
  - Protocole de Diffie-Hellman
  - Chiffrement de ElGamal
- 4 Conclusion



### Protocole

- On fixe : p premier sûr de taille  $N, g \in G_p \setminus \{1\}$ .
- Clé privée :  $\mathbf{sk} \leftarrow U(\llbracket 0, q \rrbracket)$ .
- Clé publique  $pk := g^{sk}$ .
- $\blacksquare$  Messages : éléments de  $G_p$ .
- $\mathsf{Enc}(\mathsf{pk}, m) := (g^y, \mathsf{pk}^y \cdot m) \text{ où } y \leftarrow U(\llbracket 0, q \rrbracket).$

#### Correction

$$\mathsf{Dec}(\mathsf{sk}, \mathsf{Enc}(\mathsf{pk}, m)) = \mathsf{Dec}(\mathsf{sk}, (g^{y}, \mathsf{pk}^{y} \cdot m))$$

### Correction

$$\begin{split} \mathsf{Dec}(\mathsf{sk},\mathsf{Enc}(\mathsf{pk},m)) &= \mathsf{Dec}(\mathsf{sk},(g^{\gamma},\mathsf{pk}^{\gamma}\cdot m)) \\ &= (g^{\gamma})^{-\mathsf{sk}} \cdot \mathsf{pk}^{\gamma} \cdot m \end{split}$$

#### Correction

$$\begin{aligned} \mathsf{Dec}(\mathsf{sk}, \mathsf{Enc}(\mathsf{pk}, m)) &= \mathsf{Dec}(\mathsf{sk}, (g^{\mathsf{y}}, \mathsf{pk}^{\mathsf{y}} \cdot m)) \\ &= (g^{\mathsf{y}})^{-\mathsf{sk}} \cdot \mathsf{pk}^{\mathsf{y}} \cdot m \\ &= g^{-\mathsf{sk} \cdot \mathsf{y}} \cdot (g^{\mathsf{sk}})^{\mathsf{y}} \cdot m \end{aligned}$$

### Correction |

$$\begin{aligned} \mathsf{Dec}(\mathsf{sk},\mathsf{Enc}(\mathsf{pk},m)) &= \mathsf{Dec}(\mathsf{sk}, (g^{y}, \mathsf{pk}^{y} \cdot m)) \\ &= (g^{y})^{-\mathsf{sk}} \cdot \mathsf{pk}^{y} \cdot m \\ &= g^{-\mathsf{sk} \cdot y} \cdot (g^{\mathsf{sk}})^{y} \cdot m \\ &= m \end{aligned}$$

Soit  $m_0$ ,  $m_1 \in G_p$ .

• On pose  $\mathcal{D}_i = (\mathsf{pk}, \mathsf{Enc}(\mathsf{pk}, m_i))$  pour i = 0, 1. On veut montrer  $\mathcal{D}_0 \approx \mathcal{D}_1$ .

- On pose  $\mathcal{D}_i = (\mathsf{pk}, \mathsf{Enc}(\mathsf{pk}, m_i))$  pour i = 0, 1. On veut montrer  $\mathcal{D}_0 \approx \mathcal{D}_1$ .

- On pose  $\mathcal{D}_i = (\mathsf{pk}, \mathsf{Enc}(\mathsf{pk}, m_i))$  pour i = 0, 1. On veut montrer  $\mathcal{D}_0 \approx \mathcal{D}_1$ .
- On pose  $\mathcal{D}'_i = [(g^{\text{sk}}, g^y, g' \cdot m_i) \mid \text{sk} \leftarrow U([0,q[); y \leftarrow U([0,q[); g' \leftarrow U(G_p)], \text{pour } i = 0, 1.$

- On pose  $\mathcal{D}_i = (\mathsf{pk}, \mathsf{Enc}(\mathsf{pk}, m_i))$  pour i = 0, 1. On veut montrer  $\mathcal{D}_0 \approx \mathcal{D}_1$ .
- On pose  $\mathcal{D}'_i = [(g^{sk}, g^y, g' \cdot m_i) \mid sk \leftarrow U([0,q]); y \leftarrow U([0,q]); g' \leftarrow U(G_p)],$  pour i = 0, 1.
- Montrons  $\mathcal{D}_0 \approx \mathcal{D}_0' = \mathcal{D}_1' \approx \mathcal{D}_1$ :

- On pose  $\mathcal{D}_i = (\mathsf{pk}, \mathsf{Enc}(\mathsf{pk}, m_i))$  pour i = 0, 1. On veut montrer  $\mathcal{D}_0 \approx \mathcal{D}_1$ .
- On pose  $\mathcal{D}'_i = [(g^{sk}, g^y, g' \cdot m_i) \mid sk \leftarrow U([0,q]); y \leftarrow U([0,q]); g' \leftarrow U(G_p)],$  pour i = 0, 1.
- Montrons  $\mathcal{D}_0 \approx \mathcal{D}_0' = \mathcal{D}_1' \approx \mathcal{D}_1$ :
  - $DDH \Rightarrow \mathcal{D}_i \approx \mathcal{D}'_i$  (par passage au contexte)

- On pose  $\mathcal{D}_i = (\mathsf{pk}, \mathsf{Enc}(\mathsf{pk}, m_i))$  pour i = 0, 1. On veut montrer  $\mathcal{D}_0 \approx \mathcal{D}_1$ .
- $D_i = \left[ \left( g^{\text{sk}}, g^{\text{y}}, \left( g^{\text{sk}} \right)^{\text{y}} \cdot m_i \right) \middle| \text{sk} \leftarrow U([0,q[); y \leftarrow U([0,q[)]) \right]$
- On pose  $\mathcal{D}_i' = [(g^{sk}, g^y, g' \cdot m_i) \mid sk \leftarrow U([0,q[); y \leftarrow U([0,q[); g' \leftarrow U(G_p)], pour i = 0, 1.$
- Montrons  $\mathcal{D}_0 \approx \mathcal{D}_0' = \mathcal{D}_1' \approx \mathcal{D}_1$ :
  - $DDH \Rightarrow \mathcal{D}_i \approx \mathcal{D}'_i$  (par passage au contexte)
  - $\mathcal{D}_0' = \mathcal{D}_1'$ , donc  $\mathcal{D}_0'$  et  $\mathcal{D}_1'$  indistinguables.

- On pose  $\mathcal{D}_i = (\mathsf{pk}, \mathsf{Enc}(\mathsf{pk}, m_i))$  pour i = 0, 1. On veut montrer  $\mathcal{D}_0 \approx \mathcal{D}_1$ .
- $D_i = \left[ \left( g^{\text{sk}}, g^{\text{y}}, \left( g^{\text{sk}} \right)^{\text{y}} \cdot m_i \right) \middle| \text{sk} \leftarrow U([0,q[); y \leftarrow U([0,q[)]) \right]$
- On pose  $\mathcal{D}_i' = [(g^{sk}, g^y, g' \cdot m_i) \mid sk \leftarrow U([0,q[); y \leftarrow U([0,q[); g' \leftarrow U(G_p)], pour i = 0, 1.$
- Montrons  $\mathcal{D}_0 \approx \mathcal{D}_0' = \mathcal{D}_1' \approx \mathcal{D}_1$ :
  - $DDH \Rightarrow \mathcal{D}_i \approx \mathcal{D}'_i$  (par passage au contexte)
  - $\mathcal{D}_0' = \mathcal{D}_1'$ , donc  $\mathcal{D}_0'$  et  $\mathcal{D}_1'$  indistinguables.
- Donc  $DDH \Rightarrow \mathcal{D}_0 \approx \mathcal{D}_1$ .

# Conclusion (provisoire)

Le chiffrement de ElGamal possède la propriété de sécurité sémantique, sous l'hypothèse que DDH est difficile.

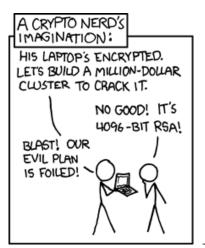
#### Conclusion

- La sécurité des algorithmes de chiffrement peut être modélisée :
  - complexité
  - algorithmes probabilistes
  - notion d'indistinguabilité de distributions de probabilité
- Elle peut être démontrée rigoureusement sous certaines hypothèses (qui impliquent  $P \neq NP$ ).

# Pour aller plus loin

- Il y a d'autres propriétés de sécurité à étudier avant de choisir un algorithme de chiffrement :
  - ElGamal est malléable
  - etc.
- Mettre au point un algorithme de chiffrement sûr est délicat.
- Avoir une porte blindée ne sert à rien si on a des murs en carton.

## Relativisons l'importance de la crypto



### Relativisons l'importance de la crypto



