
Interpolatory and noninterpolatory Hermite subdivision schemes
reproducing polynomials
Byeongseon Jeong bjeongle@gmail.com

Institute of Mathematical Sciences, Ewha W. University, Seoul, 120-750, S. Korea.

Joint work with Jungho Yoon

MAIA 2016, September 18-23, Luminy, France

Abstract
In this study, we present a large family of Hermite subdivision schemes with tension parameters. The pro-

posed schemes are quasi-interpolatory because they reproduce polynomials up to certain degrees. Depending on

the choice of tension parameters, the corresponding schemes become interpolatory. The smoothness analysis has

been performed by using the factorization framework of subdivision operators. Also, the approximation order of the

proposed schemes is discussed. Some numerical examples are presented in order to demonstrate the performance

of the proposed Hermite schemes.

Introduction

Let f0 ∈ ℓd+1(Z) be an initial sequence of vectors attached to the integer grid. A Hermite subdivision

scheme of (order d + 1) computes recursively a new sequence of refined vectors fk ∈ ℓd+1(Z) by the

rule

D
k+1

fk+1(i) =
∑

j∈Z

A(i− 2j)Dk
fk(j),

where D = diag(1, 2−1, . . . , 2−d). The sequence of matrices A := {A(i) : i ∈ Z} ∈ ℓ(d+1)×(d+1)(Z)
is called the subdivision mask, and it is assumed to be finitely supported, i.e., only finitely many

elements are nonzero.

A Hermite subdivision scheme is said to be convergent if for any initial data f0 ∈ ℓd+1(Z), there

exists a uniformly continuous vector-valued function φ = [φ0, . . . , φd]
T ∈ C(R,Rd+1) such that for

any compact set K ∈ R,

lim
k→∞

max
i∈K∩2kZ

‖fk(i)− φ(tki )‖∞ = 0.

and φ 6= 0 for some initial vector data f0. Moreover, the Hermite scheme is said to be CL-convergent

with L ≥ d, if φ0 ∈ CL(R) and

dmφ0
dxm

= φm, m = 0, . . . , d.

We call φ a limit function of the Hermite subdivision scheme.

Subdivision schemes are, in some sense, classified into two main categories: interpolatory and ap-

proximating schemes. It is well-known that interpolating schemes are usually less smooth than the

approximating schemes of the same order. Moreover, interpolation, in spite of being a very desirable

property in curve (and surface) designs, often produces undesirable artifacts such as wiggles or undu-

lations when the initial control points are irregular. From this view point, the aim of this study is to

present a new class of quasi-interpolatory Hermite subdivision schemes.

Objectives

Present a new class of Hermite subdivision schemes of order two, which enable us to (1) repro-

duce polynomials, (2) generalize interpolation schemes, (3) provide good approximation orders and

higher-order smoothness, and (4) give flexibilities in designs to accommodate the various design cir-

cumstances.

Hermite Subdivision Schemes Reproducing Polynomials

The proposed Hermite subdivision scheme H2M+1 reproduces polynomials up to degree 4M−1 such

that it guarantees the approximation order 4M . The subdivision masks of the proposed schemes are

represented in terms of the fundamental Hermite interpolating polynomials Uj and Vj defined by

Uj(x) = ℓj(x)
2(1− 2ℓ′j(j)(x− j)

)

, Vj(x) = ℓj(x)
2(x− j),

where ℓj(x) :=
∏M

m=−M+1, m6=j(x−m)/(j −m). We will use the notations

D := diag(1, 2−1), Mj(x) :=





U
(0)
j (x) V

(0)
j (x)

U
(1)
j (x) V

(1)
j (x)



 .

Construction of odd mask

For r = 1, 2, the rth rows of the matrices A(1 − 2i) in the odd mask {A(1 − 2i) ∈ R
2×2 : i =

−M + 1, . . . ,M} are obtained by solving the linear system

2−(r−1)p
(r−1)
n (12) =

M
∑

j=−M+1

(

Ar1(1− 2j)p
(0)
n (j) +Ar2(1− 2j)p

(1)
n (j)

)

, n = 0, . . . , 4M − 1.

This linear system for each r is uniquely solvable. The solution can be written in the matrix form

A(1− 2j) = DMj(
1
2) j = −M + 1, . . . ,M.

Construction of even mask

For r = 1, 2, the rth rows of the matrices A(2i) in the even mask {A(2i) ∈ R
2×2 : i = −M, . . . ,M}

are defined by solving the system of equations

2−(r−1)p
(r−1)
n (0) =

M
∑

j=−M

(

Ar1(−2j)p
(0)
n (j) +Ar2(−2j)p

(1)
n (j)

)

, n = 0, . . . , 4M − 1. (1)

For each r, this is an underdetermined system of 4M + 2 unknowns in 4M equations so that there are

two degrees of freedom which will be used as tension parameters. We set the tension parameters as

A11(±2M ) = 2−(4M−4)θ and A22(±2M ) = 2−(4M−3)ω.

Theorem. Let S be the matrices defined by

S :=

[

2−(4M−4)θ −2−(4M−4)ηθ

−2−(4M−3)ωζ 2−(4M−3)ω

]

,

with η := (1 + U
(0)
M (−M ))/U

(1)
M (−M ) and ζ := (1 + V

(1)
M (−M ))/V

(0)
M (−M ). Then, the solution

to the system (1) can be written as

A(2M ) = S,

A(−2j) = Dδj,0 − SMj(−M ), j = −M + 1, . . . ,M.

The scheme H3 reproducing cubic polynomials

General form of mask: Setting the tension parameters as A11(±2) = θ and A22(±2) = ω
2 , the

general form of the mask A = {A(i) : i = −2, . . . , 2} is specifically given as

A =

{[

θ −θ
2

−3ω
2

ω
2

]

,

[1
2 −1

8
3
4 −1

8

]

,

[

1− 2θ 0

0 1+4ω
2

]

,

[ 1
2

1
8

−3
4 −1

8

]

,

[

θ θ
2

3ω
2

ω
2

]}

. (2)

Special cases: (i) If the case θ = 0 and ω = 0, the scheme H3 becomes the so-called Merrien

interpolatory Hermite subdivision scheme of order 2 [6], whose mask is given by

A =

{[1
2 −1

8
3
4 −1

8

]

,

[

1 0

0 1
2

]

,

[ 1
2

1
8

−3
4 −1

8

]}

. (3)

(ii) A repeated application of the de Rham transform [2] to the above Merrien scheme generates a

Hermite scheme associated with the mask given by

A =

{[ 1
128 − 1

256
3
32 − 1

32

]

,

[1
2 −1

8
3
4 −1

8

]

,

[63
64 0

0 3
8

]

,

[ 1
2

1
8

−3
4 −1

8

]

,

[ 1
128

1
256

− 3
32 − 1

32

]}

.

This scheme is obtained by setting θ = 1
128 and ω = − 1

16 into the mask of H3 in (2).

Symbol: Let A0(z) be the symbol of the Merrien scheme with the mask (3). Then the symbol A(z)
of H3 is factored into

A(z) =

[

8θz2+(1−16θ)z+8θ
z

4θ(z2−1)
z

6ω(z2−1)
z

2ωz2+(1+8ω)z+2ω
z

]

A0(z).

Approximation Order

For an integer m ≥ 0 and a compact set K in R, we denote by Wm
∞(K) the Sobolev space defined by

Wm
∞(K) =

{

f : R → R : ‖f‖m,K :=
∑m

ℓ=0 ‖f
(ℓ)‖L∞(K) < ∞

}

.

Theorem. Assume that a Cd-convergent Hermite subdivision scheme of order d+ 1 reproduces poly-

nomials of degree up to N ≥ d. Let K be a compact set in R. Then the Hermite scheme has the

approximation order as follows:

‖f (ℓ) − f
(ℓ)
∞ ‖L∞(K) ≤ c‖f‖N+1,K2−k(N+1−ℓ), ℓ = 0, . . . , d

with a positive constant c independent of f and k.

Smoothness & Numerical Examples

Subdivision scheme H3 H5 H7 H9 H11

Maximum smoothness C4 C5 C6 C7 C8

Table 1: Maximum smoothness of the scheme H2M+1 for M = 1, . . . , 5
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Figure 1: Left: Ranges Ωn of θ and ω corresponding to Cn-smoothness of H3 for n = 1, . . . , 4, Right: Limit curves of H3

with (θ, ω) = (−0.02875,−0.18), (0.00125,−0.14), (0.03125,−0.10), (0.06125,−0.06), (0.09125,−0.02)

Figure 2: Limit curves generated from the irregularly spaced initial control points. Left: Merrien scheme, Right: H3 with

θ = 0.078 and ω − 0.3. The arrows indicate the tangent vectors.
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