# Cubature: quadrature in higher dimension $\mathbb{R}[x] = \mathbb{R}[x_1, \dots, x_n]$

$$\Omega: \mathbb{R}[x] \to \mathbb{R}$$

$$f \mapsto \int_{\mathcal{D}} f(x) \, dx$$

A cubature of degree d for  $\Omega$  is a linear form

 $\Lambda: \mathbb{R}[x] \to \mathbb{R}$  $f\mapsto \sum_{j=1}^{\infty}a_j\,f(\xi_j)$ 

such that  $\Omega(f) = \Lambda(f), \forall f \in \mathbb{R}[x] \leq d$ .

with  $a_j>0$  and  $\xi_j\in\mathcal{D}$ 

The coefficients  $a_j$  are the weights. The points  $\xi_j$  are the *nodes* 

#### $r \ge \dim \mathbb{R}[x]_{\le \lfloor \frac{d}{2} \rfloor}$

# Symmetries of the standard domains of integration



#### Gaussian quadrature of degree d=2r-1

Moments:  $\mu_k = \int_{-1}^1 x^k \omega(x) dx$ ,  $k = 0, \ldots, 2r - 1$ Equations for the nodes and weights:

$$\mu_k = \sum_{j=1}^r a_j \xi_j^k, \quad k = 0, \dots, 2r - 1$$

If you know the nodes, you get the weights as

write nodes, you get the weights as: 
$$\begin{pmatrix} 1 & 1 & \cdots & 1 \\ \xi_1 & \xi_2 & \cdots & \xi_r \\ \vdots & \vdots & & \vdots \\ \xi_1 & \xi_2 & \cdots & \xi_{r-1} \end{pmatrix} \begin{pmatrix} \mu_0 \\ \partial_1 & \partial_2 & \cdots & \partial_r \\ \partial_2 & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ \partial_r &$$

To determine the nodes:  $\left(\mu_k
ight)_k$  is a solution to the recurrence equation

$$\mu_{k+r} = \pi_{r-1} \mu_{k+r-1} + \dots + \pi_0 \mu_k$$

Thus:



The eigenvalues of  $M_x = H_1^{-1}H_x$  are the roots of

$$\pi(\xi) = \xi' - \pi_{r-1}\xi^{r-1} - \dots - \pi_1\xi - \pi_0 = \prod_{j=1}^r (\xi - \xi_j)$$

# Symmetry and block diagonalisation for quadrature

$$\Omega(f) = \int_{-1}^1 f(x) dx = \int_0^1 (f(x) + f(-x)) dx \qquad \mu_k = \int_{-1}^1 x^k dx$$
 The matrix  $H_1$  of the scalar product  $(\rho, q) = \int_{-1}^1 \rho(x) q(x) dx$  is

The matrix  $H_1$  of the scalar product  $(\rho, q) =$ 



in the bases:  $\begin{bmatrix} 1, x, \dots, x^{r-1} \end{bmatrix}$ 

 $[1, x^2, ..., x^2(\lceil \frac{r}{2} \rceil - 1); x, x^3, ..., x^2 \lfloor \frac{r}{2} \rfloor - 1]$ 

# A moment matrix approach to computing symmetric cubatures

#### Mathieu Collowald & Evelyne Hubert

[https://hal.inria.fr/hal-01188290]

#### Synopsis: symmetry ⇒ block diagonalisation

Cubature is a generalization of quadrature in higher dimension. 

Constructing a cubature for any polynomials of degree 2r-1 or less by a suitable choice of r nodes and weights existence of the cubature and computing the nodes A quadrature provides an An approach based on moment matrices was proposed in [FP05]. With a basis-free ver The size of the blocks is explicitly related to the orbit types of the nodes. From the atures that respect this symmetry [C97]. Into terms of the Hankel operator  ${\mathcal H}$  associated to a linear form, nodes are recognized as the solutions of a generalized eigenvalue problem. □ Standard tion theory, the symmetry constraint allows to block diagonalize the Hankel o  $a_r \rho(\xi_r)$  from the knowledge of its

## Hankel operator $\widehat{\mathcal{H}}$ and moment matrix $H_1^B$ $\Lambda\colon\mathbb{R}[\mathbf{x}]\to\mathbb{R}$ linear form.

$$\begin{array}{cccc} \widehat{\mathcal{H}} \colon \mathbb{R}[x] \to \mathbb{R}[x]^* & \text{where} & \Lambda_f \colon \mathbb{R}[x] \to & \mathbb{R} \\ f & \mapsto & \Lambda_f, & g & \mapsto & \Lambda(f \ g) \end{array}$$

If  $B=\{b_1,\ b_2,\ldots\}$  is a basis of  $\mathbb{R}[\mathsf{x}]$  then

 $H_1^B = (\Lambda(b_i b_j))$ 

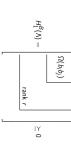
is the matrix of  $\widehat{\mathcal{H}}$  in B and  $B^*$ 

 $\Pi = \ker \widehat{\mathcal{H}}$  is an ideal in  $\mathbb{R}[x]$ 

$$\sum_{j=1}^t a_j \mathbb{I}_{\mathbb{Q}_r} \text{ with } a_j > 0, \, \xi_j \in \mathbb{R}^n \qquad \text{iff} \qquad \text{rank } \widehat{\mathcal{H}} = r \quad \text{and} \quad \widehat{\mathcal{H}} \succeq 0.$$

Then  $\{\xi_1,\ldots,\xi_r\}\subset\mathbb{R}^n$  is the variety of the ideal  $\Pi=\ker\widehat{\mathcal{H}}$ 

### Existence of a cubature of degree d with r nodes



 $\Lambda^{(\delta+\kappa)}:\mathbb{R}[x]_{\leq 2(\delta+\kappa)}\to\mathbb{R} \text{ is a flat extension of } \Lambda^{(\delta)}:\mathbb{R}[x]_{\leq 2\delta}\to\mathbb{R} \text{ if }$ 

 $\bullet \Lambda^{(\delta+\kappa)}(f) = \Lambda^{(\delta)}(f) \quad \forall f \in \mathbb{R}[x] \leq 2\delta$  $\circ$  rank  $\mathcal{H}^{(\delta+\kappa)} = \operatorname{rank} \mathcal{H}^{(\delta)}$ 

If  $\Lambda^{(\delta)}$  is a flat extension of its restriction  $\Lambda^{(\delta-1)}$  then  $\Lambda^{(\delta)}$  admits a unique flat extension  $\Lambda^{(\delta+\kappa)}$  for all  $\kappa \geq 1$ . [Curto Fialkow 96]

Algorithm: A Gauss-Bareiss scheme without pivoting to obtain equations and

 $\operatorname{rank} \widehat{\mathcal{H}} = r < \infty$ Computation of the nodes  $\Pi = \ker \widehat{\mathcal{H}}$  $V(\Pi) = \{\xi_1, ..., \xi_r\}$ 

 $\mathcal{B}=\{b_1,\ldots,b_r\}$  is a basis of  $\mathbb{R}[\mathbf{x}]/\Pi$  iff  $H_1^{\mathcal{B}}=\left(\Lambda(b_ib_j)\right)$  invertible.

The eigenvalues of  $\mathcal{M}_f \colon \mathbb{R}[x]/\Pi \to \mathbb{R}[x]/\Pi$   $g \mapsto f g$ 

#### Symmetry

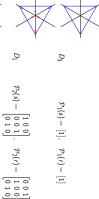
Irreducible representations of  $D_3$ : The group of isometries of the regular m-gon in the plane  $D_m = \left\{ r^k, \ r^k s \ | \ 0 \le k \le m-1 \right\} \ \text{with} \ r^m = 1, \ s^2 = 1, \ sr = r^{m-1} s$ 



#### Orbit types of the dihedral group $D_3$

Permutation representation

Isotropy





$$1 \qquad \mathcal{P}_{3}(s) = \begin{bmatrix} 0 & \mathcal{P}_{2}(s) \\ \mathcal{P}_{2}(s) & 0 \end{bmatrix}, \quad \mathcal{P}_{3}(r) = \begin{bmatrix} \mathcal{P}_{2}(r) & 0 \\ 0 & \mathcal{P}_{2}(r) \end{bmatrix}$$

### Matrix of multiplicities $\Gamma_G$ of a finite group G

 $\mathcal{R}_1,\dots,\mathcal{R}_N$  irreducible inequivalent representations of G  $\mathcal{P}_1,\dots,\mathcal{P}_T$  permutation representation for conjugacy class of subgroups of G

 $\gamma_{i,j} = \text{Multiplicity of } \mathcal{R}_i \text{ in } \mathcal{P}_j = \langle \chi_{\mathcal{P}_j}, \chi_{\mathcal{R}_i} \rangle$ 

 $\Gamma_{G} = (\gamma_{i,j})_{\substack{1 \le i \le N \\ 1 \le j \le T}}$ 

$$\begin{array}{ccc} \mathcal{P}_1 \sim \mathcal{R}_1 & & & & \begin{bmatrix} 1 \ 1 \ 1 \end{bmatrix} \\ \mathcal{P}_2 \sim \mathcal{R}_1 \oplus \mathcal{R}_3 & & & & & & \begin{bmatrix} 1 \ 1 \ 1 \end{bmatrix} \\ \mathcal{P}_3 \sim \mathcal{R}_1 \oplus \mathcal{R}_2 \oplus 2\mathcal{R}_3 & & & & & & \\ \end{bmatrix}$$

#### References

- J. Radon. Zur mechanischen Kubatur, Monatsh. Math. (1948)
   A. H. Stroud. Approximate calculation of multiple integrals (1971)
   R. Cook. Constructing cubature formulae: the science behind the art, Acta Numerica

[Brachat et al 10]

- K. Gatermann. PhD-thesis (1990) Gruppentheoretische Konstruktion von symmetrischen Kubaturformeln
- P. Verlinden, A. Haegemans. The construction of cubature formulae by continuation Computing, Volume 45 Issue 2 (1990)
- Fialkow L., Petrovic S., A moment matrix approach to multivariable cubature, Integr
- equ. oper. theory (2005)
  Abril Bucero M., Bajaj C., Mourrain B., On the construction of general cubature formula by flat extensions, Linear Algebra and its Applications (2016)

The matrix of  $\mathcal{H}\circ\mathcal{M}_f$  is  $H_f^B=\left(\Lambda(fb_fb_f)\right)$ . Hence  $M_f^B=\left(H_1^B\right)^{-1}H_f^B$ 

are  $\{f(\xi_1), ..., f(\xi_r)\}$ 

Invariance  $\Lambda\colon \mathbb{R}[x] \to \mathbb{R} \text{ is $G$-invariant if } \Lambda(g*p) = \Lambda(p).$  For instance  $p\mapsto \int_{\Delta} \rho(x,y)dxdy$  is  $D_3$  invariant.  $\Lambda = \sum_{j=1} a_j \, \mathbf{1}_{\xi_j} \text{ is $G$-invariant} \quad \Rightarrow \quad \{\xi_1, \dots, \xi_r\} \text{ is a union of orbits}.$ 

### Block diagonal structure and ranks of the blocks

 $\Lambda: \mathbb{R}[X] \to \mathbb{R}$  G—invariant. In an orthogonal symmetry adapted basis B of  $\mathbb{R}[X]_S$ [Gatermann Parillo 2006], [Riener et al. 2011], [Collowald, Hubert 15]

$$\overset{B}{1} = \begin{bmatrix} H_1^{B_1} & 0 \\ \vdots & \ddots & \vdots \\ 0 & H_1^{B_N} \end{bmatrix} \quad \text{with} \quad H_1^{B_k} = \begin{bmatrix} H^{(k)} & 0 \\ \vdots & \ddots & \vdots \\ 0 & H^{(k)} \end{bmatrix}.$$

$$n_k \text{ identical blocks } H^{(k)}$$

 $m_\ell$  number of orbits of type  $\mathcal{P}_\ell$  in the set of nodes

[Collowald, Hubert 15]

$$\operatorname{\mathsf{rank}} H^{(k)} = \sum_{\ell=1}^{\mathcal{T}} \gamma_{k\ell} \, m_\ell,$$

In particular rank  $H^{(1)}=m_1+\ldots+m_T$  is the number of orbits

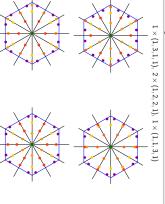
### D<sub>6</sub>-invariant cubature of degree 13

$$\dim\left(\mathbb{R}[X]_{\leq \lfloor\frac{d}{2}\rfloor}\right)^{(k)} \leq n_k \sum_{\ell=1}^T \gamma_{k\ell} m_\ell \leq \dim\left(\mathbb{R}[x]_{\leq \delta-1}\right)^{(k)}.$$

⇒ At least 37 nodes.⇒ At least one orbit of 12 nodes

 $\Rightarrow (m_1, m_2, m_3, m_4) \in \{(1, 3, 1, 1), (1, 2, 2, 1), (1, 1, 3, 1)\}$ 

nodes for the hexagon. There exist exactly 4 minimal  $D_6$ -invariant cubatures of degree 13 with 37 moder  $f_{\rm cub}$  = 1.



# $D_3-invariant$ cubature of degree 7 Only one previously known (Laursen Gellert 78).

For the triangle, there exist exactly two  $D_3$ -invariant cubatures of degree 7 with 1 orbit of 3 nodes and 2 orbits of six nodes.

