Jungho Yoon Ewha W. University, Seoul, Korea

(Joint work with Hyoseon Yang)

MAIA 2016, CIRM, Luminy, Sep. 23, 2016

Outline

Motivations

Linear Scheme: Quasi-Interpolation

Quasi-Interpolation based on B-splines Modifed Quasi-Interpolation based on B-splines

Construction of a Non-Linear Scheme

Troubled-Cell Detector Smoothness Indicators Error Analysis

Experimental Results

Outline

Motivations

Linear Scheme: Quasi-Interpolation

Quasi-Interpolation based on B-splines Modifed Quasi-Interpolation based on B-splines

Construction of a Non-Linear Scheme

Troubled-Cell Detector Smoothness Indicators Error Analysis

Experimental Results

- Motivations

Piecewise Smooth Functions

Approximation to Piecewise Smooth Functions

The issue of approximation to piecewise-smooth functions arises in many scientific areas:

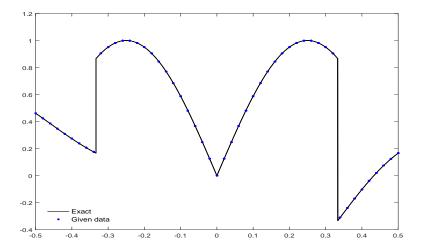
Applications:

- Numerical Solution of Hyperbolic Conservation Laws
- Computer graphics
- (Medical) Image Processing (zooming, registeration, motion correction, deformation)

- Motivations

Piecewise Smooth Functions

An example of piecewise-smooth function



Motivations

Piecewise Smooth Functions

Linear Schemes

Advantages

- Flexibility (e.g., Polynomial/RBF interpolation, Quasi-interpolation, Subdivision, MLS, ...)
- Simplicity and Fast Computation
- High Accuracy to Smooth Data

Limitation

 Introduce artifacts (e.g., Gibbs(-like) Phenomenon near discontinuities and and Staircase/ringing effects in image interpolation)

Motivations

Piecewise Smooth Functions

Linear Schemes

Advantages

- Flexibility (e.g., Polynomial/RBF interpolation, Quasi-interpolation, Subdivision, MLS, ...)
- Simplicity and Fast Computation
- High Accuracy to Smooth Data

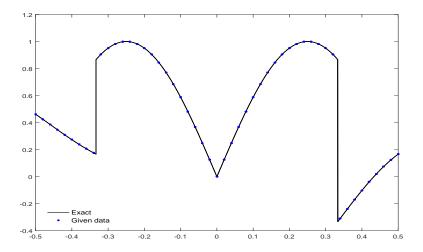
Limitation

 Introduce artifacts (e.g., Gibbs(-like) Phenomenon near discontinuities and and Staircase/ringing effects in image interpolation)

- Motivations

Piecewise Smooth Functions

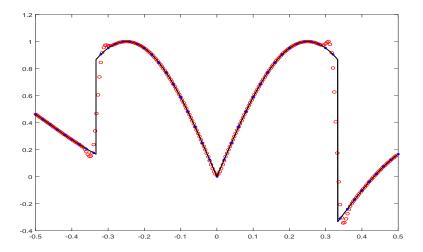
Quasi-interpolation based on cubic B-spline



- Motivations

Piecewise Smooth Functions

Quasi-interpolation based on cubic B-spline



- Motivations

Piecewise Smooth Functions

Previous Works of Non-linear Methods:

- ENO(Essentially Non-Oscillatory)/ENO-SR Schemes
- Weighted ENO (WENO) Schemes
- ► ETC

- Motivations

Piecewise Smooth Functions

Goal:

Construct a WENO-type non-linear scheme capable of

- maintaining high-order accuracy in smooth regions
- capturing steep gradients without creating spurious oscillations.

Outline

Motivations

Linear Scheme: Quasi-Interpolation

Quasi-Interpolation based on B-splines Modifed Quasi-Interpolation based on B-splines

Construction of a Non-Linear Scheme

Troubled-Cell Detector Smoothness Indicators Error Analysis

Experimental Results

Linear Scheme: Quasi-Interpolation

Quasi-Interpolation based on B-splines

Quasi-interpolation

Assume that a function $f : \mathbb{R} \to \mathbb{R}$ is known only at discrete values on the uniform grid $h\mathbb{Z}$. The quasi-interpolations based on the B-spline of degree k is defined by

$$L_h f(x) = \sum_{n \in \mathbb{Z}^d} B_{n,h}(x) Q f(hn)$$

with a suitable operator Q such that L_h reproduces polynomials up to degree k, i.e., $L_h p = p$ for all $p \in \Pi_k$, where

$$B_{n,h}(x) = B_k(x/h - n)$$

and Π_k is the space of polynomials up to degree k.

Linear Scheme: Quasi-Interpolation

Quasi-Interpolation based on B-splines

For the case of cubic B-spline, Qf may be definded as

$$Qf = f - \frac{1}{6}f''$$

Note that

 $Qf(hn)\approx f(x)$

Linear Scheme: Quasi-Interpolation

Quasi-Interpolation based on B-splines

Notation

For a positive odd integer $k=2\bar{k}+1$ with $\bar{k}\in\mathbb{N},$ let

$$\mathbb{Z}_k := \{0, \pm n : n = 1, \dots, \bar{k}\}$$

Define ℓ_n be the Lagrange polynomial on \mathbb{Z}_k such that

$$\ell_n(j) = \delta_{n,j}, \quad j, n \in \mathbb{Z}_k$$

where $\delta_{n,j}$ is the Kronecker delta.

Linear Scheme: Quasi-Interpolation

Modifed Quasi-Interpolation based on B-splines

Modified Quasi-interpolation

Define define an operator $\overline{Q}_{n,h}$ for each $n \in \mathbb{Z}$ by

$$\overline{Q}_{n,h}f(x) := \sum_{j \in \mathbb{Z}_k} \ell_j(h^{-1}x - n)f(h(n+j)), \tag{1}$$

which is in fact the polynomial interpolation on \mathbb{Z}_k . The quasi-interpolations based on the B-spline of degree k is defined by

$$L_h f(x) := \sum_{n \in \mathbb{Z}} B_{n,h}(x) \overline{Q}_{n,h} f(x)$$

Note here that $\overline{Q}_{n,h}f - f(x) = O(h^k)$ if f is C^k around x.

Linear Scheme: Quasi-Interpolation

Modifed Quasi-Interpolation based on B-splines

Modified Quasi-interpolation

Lemma

For a given h > 0, we have $L_h p = p$ for all $p \in \Pi_k$.

Theorem

Suppose that $f \in C^{k+1}$ and $f^{(k+1)}$ is uniformly bounded. For a given h > 0, we have

$$|L_h f(x) - f(x)| \le c ||f^{(k+1)}||_{\infty} h^{k+1}$$
(2)

with a constant c > 0 depending on f, but independent of h > 0

Construction of a Non-Linear Scheme

Outline

Motivations

inear Scheme: Quasi-Interpolation Quasi-Interpolation based on B-splines Modifed Quasi-Interpolation based on B-splines

Construction of a Non-Linear Scheme

Troubled-Cell Detector Smoothness Indicators Error Analysis

Experimental Results

Non-linear scheme

In this talk, we particularly consider the scheme $L_h f$ based on the cubic B-spline. As a non-linear counterpart of $L_h f$, we wish to define a non-linear map as follows:

$$N_h f(x) = \sum_{n \in \mathbb{Z}} K_{n,h}(x) \overline{Q}_{n,h} f(x)$$
(3)

where

$$\overline{Q}_{n,h}f(x) := \sum_{j=-1}^{1} \ell_j (h^{-1}x - n) f(h(n+j)),$$
(4)

Non-linear Scheme

The local solutions $\overline{Q}_{n,h}f(x)$ are determinded by the following stencils:

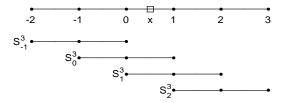


Figure: Stencils corresponding to $\overline{Q}_{n,h}f$ with $n = -1, \ldots, 2$.

Modified Quasi-interpolation

The non-linear kernels $K_{n,h}$ are designed to reflect the local feature of the data around x. They are especially required to satisfy the following properties:

- It prevents spurious oscillations around discontinuities.
- The approximation $N_h f$ mimics the linear quasi-interpolation $L_h f$ in smooth regions

In this talk, we are particularly interested in detecting jump discontinuity in the first derivative and analyzing error bound near discontinuity.

- Construction of a Non-Linear Scheme

Troubled-Cell Detector

Suppose that f is continuous and $f \in C^4(\mathbb{R} \setminus \{s\})$ and $f^{(\alpha)}$, $1 \leq \alpha \leq 4$ is uniformly bounded on $\mathbb{R} \setminus \{s\}$. For convenience, assume that the evaluation point x is in $I_0 := [0, h)$ and a singular point s is near x, that is $s \in (-2h, 3h)$.

Note that $N_h f(x)$ is constructed by envolving the values f(hn), $n = -2, \ldots, 3$.

Key Ingriedients for $N_h f(x)$:

- Troubled Cell Detector
- Smoothness Indicators

Construction of a Non-Linear Scheme

Troubled-Cell Detector

Divided Difference

Let $S := \{-1, 0, 1, 2\}$ be the 4-point stencil. The generalized undivided difference of order ν is defined by the following two steps. First, for each $\nu = 2, 3$, we find the coefficient vector $\boldsymbol{\alpha}^{[\nu]} := (\alpha_i^{[\nu]} : i = -1, 0, 1, 2)^T$ by solving the linear system $\mathbf{V} \cdot \boldsymbol{\alpha}^{[\nu]} = \boldsymbol{\delta}^{[\nu]}$

with

$$\mathbf{V} := ((i - 1/2)^{\ell} / \ell! : i = -1, \dots, 2, \ \ell = 0, \dots, 3),$$
$$\boldsymbol{\delta}^{[\nu]} := (\delta_{\nu, \ell} : \ell = 0, \dots, 3)^T.$$

These coefficients are then utilized in defining the generalized undivided differences of order ν on the stencil S:

$$D_{j}^{\nu}f := \sum_{n=-1}^{2} \alpha_{n}^{[\nu]} f(h(j+n)).$$
(6)

(5)

Construction of a Non-Linear Scheme

Troubled-Cell Detector

Troubled Cell Detector

Define

$$W_n f := |D_n^2 f| + \frac{1}{h} |D_n^3 f|$$

Consider the measurement $\boldsymbol{\theta}$ defined by

$$\theta := \theta(f, s) := \frac{\min(W_{-1}f, W_1f) + h^2}{\max(W_{-2}f, W_2f) + h^2},$$

(7)

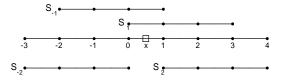


Figure : Stencils for troubled-cell detector

Construction of a Non-Linear Scheme

Troubled-Cell Detector

Properties of θ

- If f is smooth, then θ converges to 1 as $h \to 0$.
- If s is outisde of I_0 , then

$$\theta \le 1 + c_f h$$

for some constant c_f depending on f.

• Let A > 1. Then there exists $c_A > 0$ such that

 $\theta > A$

for $s \in (\delta, h - \delta)$ with $\delta = c_A h^3$.

Notation

$$I_{\delta} := (\delta, h - \delta).$$

Construction of a Non-Linear Scheme

Smoothness Indicators

The case $\theta < A$

In this case, s is not in $I_{\delta}.$ Then the smoothness indicators ${\rm SI}_n$ for $\overline{Q}_{n,h}f$ are defined by

$$SI_{-1} := W_{-1}f,$$

 $SI_n := W_n f \quad (n = 0, 1)$ (8)
 $SI_2 := W_2 f.$

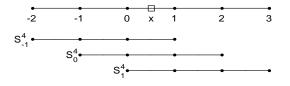


Figure: Stencils for the case $\theta < A$.

Construction of a Non-Linear Scheme

Smoothness Indicators

 $\mathsf{Case} \ \theta < A$

In particular, let

$$\mathrm{SI}_{\mu} = \min\{\mathrm{SI}_n : n = -1, \dots, 2\}.$$

Then, we put

$$\alpha_n := \frac{B_{n,h}(x)}{(\mathrm{SI}_n + \epsilon_h)^2}, \quad \text{if} \quad \frac{\mathrm{SI}_\mu}{\mathrm{SI}_n} \ge (1 - Ch)$$
$$\alpha_n := \frac{B_{n,h}(x)}{\mathrm{SI}_n + \epsilon_h}, \quad \text{otherwise},$$

where $0<\varepsilon_h<1$ is introduced to prevent the denominator becoming zero.

Construction of a Non-Linear Scheme

Smoothness Indicators

 $\mathsf{Case}\ \theta \geq A$

Choose a smooth solution $\overline{Q}_{-1,h}f$ or $\overline{Q}_{2,h}f$ in terms of the evaluation point x, say $\overline{Q}_{\mu,h}f$. Then we put

$$\alpha_{\mu} := \frac{B_{\mu,h}(\frac{h}{2})}{(\mathrm{SI}_{n} + \epsilon_{h})^{2}},$$
$$\alpha_{n} := \frac{B_{n,h}(x)}{\mathrm{SI}_{n} + \epsilon_{h}}, \quad \text{if } n \neq \mu,$$

where $0<\varepsilon<1$ is introduced to prevent the denominator becoming zero.

Construction of a Non-Linear Scheme

Smoothness Indicators

Smoothness Indicators for $\theta \ge A$

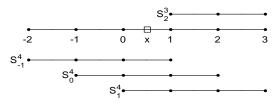
The smoothness indicators on a stencil S (with #S = 3 or 4) is defined by

$$SI_{\mu} := |\Delta_{\mu}^2 f|, \quad \text{if } \#S = 3,$$

$$SI_n := W_n f \quad \text{if } \#S = 4,$$
(9)

where $\Delta_n^2 f$ is the second order difference, that is,

$$\Delta_n^2 f := \Delta_{n,h}^2 f := f(hn) - 2f(h(n+1)) + f(h(n+2))$$



Construction of a Non-Linear Scheme

Smoothness Indicators

Final Approximation

Then, we define nonlinear weights $K_{n,h}(x)$ corresponding to $B_{n,h}(x)$ by

$$K_{n,h}(x) := \frac{\alpha_n(x)}{\sum_{\ell} \alpha_\ell(x)}.$$
(10)

Accordingly, the final non-linear approximation $N_h f$ is given as

$$N_h f(x) = \sum_n K_{n,h}(x) \overline{Q}_{n,h} f(x).$$

Construction of a Non-Linear Scheme

Error Analysis

Error Analysis (in Smooth Region)

Theorem 3.1

Let the non-linear approximation scheme N_h , h > 0, be defined as above. If $f \in C^4(\Omega)$ and x is inside of Ω , then,

$$|f(x) - N_h f(x)| \le c_f h^4$$

with a constant $c_f > 0$ depending on f.

Construction of a Non-Linear Scheme

Error Analysis

Proof is based on the relation:

$$f(x) - N_h f(x) = f(x) - L_h f(x) + L_h f(x) - N_h f(x)$$

= $f(x) - L_h f(x)$
+ $\sum_{n \in \mathbb{Z}} (B_{n,h}(x) - K_{n,h}(x) (f(x) - \overline{Q}_{n,h}(x)))$

Also, it can be shown by a direct calculation that in smooth region

$$|B_{n,h}(x) - K_{n,h}(x)| = O(h^2), \quad h \to 0.$$
(11)

Construction of a Non-Linear Scheme

Error Analysis

Error Analysis (in Non-Smooth Region)

Let $S=\{nh:n=-1,\ldots,2\}$ and assume that $s\in(0,h).$ Note that

$$D^{3}f = \sum_{n \in S} c_{n}f(hn)$$

= $\tau_{1}(s)h[f'](s) + \tau_{2}(s)h^{2}[f''](s) + O(h^{3})$

where $S^+=\{hn\in S:hn>s\}=\{h,2h\}$

$$\tau_1(s) = \sum_{n \in S^+} c_n(n - s/h)$$

$$\tau_2(s) = \sum_{n \in S^+} c_n(n - s/h)^2$$

$$c_2(s) = \sum_{n \in S^+} c_n(n - s/h)$$

Construction of a Non-Linear Scheme

Error Analysis

Error Analysis (in Non-Smooth Region)

Theorem 3.1 Let

$$h_0 := \max\left(\frac{\left|[f'](s)\right|}{2\|f''\|_{\infty}^*}, \ \frac{1}{2\|f'''\|_{\infty}^*} \left|\tau_1(s)\frac{[f'](s)}{h} + \tau_2(s)[f''](s)\right|\right)$$

where

$$||f||_{\infty}^* := ||f||_{L^{\infty}(\mathbb{R}\setminus\{s\})}.$$

If $f \in C^3(\Omega \setminus \{s\})$ and $f^{(\alpha)}$, $0 \le \alpha \le 3$, is uniformly bounded on $\Omega \setminus \{s\}$ for $\alpha \le 3$, then,

$$|f(x) - N_h f(x)| \le c_f h^3, \quad \text{for} \quad h \le h_0$$

with a constant c > 0 depending on f.

Construction of a Non-Linear Scheme

Error Analysis

Error Analysis (in Non-Smooth Region)

Proof is based on the relation:

$$f(x) - N_h f(x) = f(x) - \sum_{n \in \mathbb{Z}} K_{n,h}(x) \overline{Q}_{n,h}(x)$$
$$= \sum_{n \in \mathbb{Z}} K_{n,h}(x) (f(x) - \overline{Q}_{n,h}(x))$$

Outline

Motivations

Linear Scheme: Quasi-Interpolation

Quasi-Interpolation based on B-splines Modifed Quasi-Interpolation based on B-splines

Construction of a Non-Linear Scheme

Troubled-Cell Detector Smoothness Indicators Error Analysis

Experimental Results

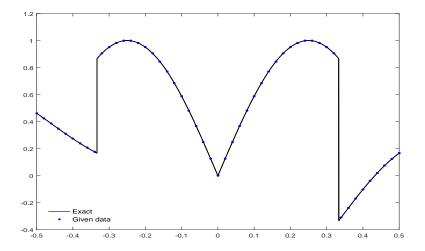
Univariate Non-linear Approximation Scheme for Piecewise Smooth functions $\hfill \begin{tabular}{ll} \be$

Experimental Results

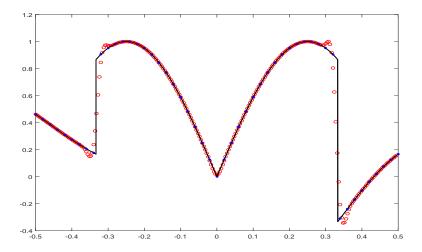
Approximation Performance

$$f_5(x) := \begin{cases} -x \sin\left(\frac{3\pi}{2}x^2\right), & \text{if } -1 \le x \le -\frac{1}{3}, \\ |\sin(2\pi x)|, & \text{if } -\frac{1}{3} < x \le \frac{1}{3}, \\ 2x - 1 - \frac{1}{6}\sin(3\pi x), & \text{if } \frac{1}{3} < x \le 1. \end{cases}$$

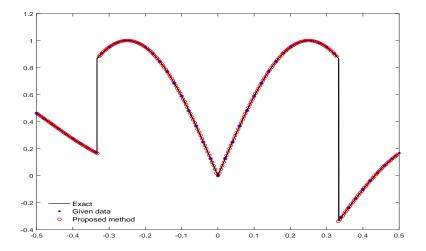
An example of piecewise-smooth function



Approximation by QI based on cubic B-spline



Approximation by the proposed scheme



Experimental Results

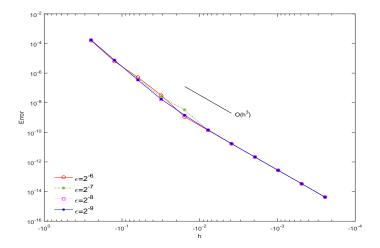
Convergence Order

Consider the following function [ACDD, SINUM 2005]:

$$f_{\epsilon}(x) := \begin{cases} (x - \pi/6)(x - \pi/6 - \epsilon) + \sin(\pi x/8)/8, & \text{if } x \le \pi/6, \\ \sin(\pi x/8)/8, & \text{otherwise,} \end{cases}$$

We generate uniformly spaced $(2^k + 1)$ points on [0, 1] for each k-th step.

Experimental Results



Future Works:

- High Order approximation Scheme
- Jump discontinuities in the high order derivatives.
- n-Dimension (n = 2, 3)
- Noisy data

Experimental Results

Thank you for your attention !!