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Tight wavelet frames

A tight wavelet frame of L?(R9) is a family
X(¢17°°°7¢N) -
{mjk(x) = |det MP/2po(Mix — k) : 1<n<N, j€Z, kecZ}

obtained by dilations by powers of the matrix M € Z9*9 and shifts
by Z? of the functions v, € L?(R9), such that

Hsz—Z Z D K g 1P

n=1 j=—o0 kez4

for all f € L2(RY).
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UEP = Unitary Extension Principle

T ={z€ C?:|z1| = |z4| = 1} is the d-dimensional torus.

Special types of these frames can be constructed by solving the
following matrix-extension (or matrix factorization) problem (Ron,
Shen 1997):

Given a vector
F(z) = (Fi(2),..., Fm(z))T

of trigonometric polynomials F; € C[T4],

Fi(z) = Z caz® z=(z1,...,24) € TY,

0<|a|<r

find a matrix G(z) of trigonometric polynomials such that

Imxm — F(2)F(2)* = G(2)G(z2)*.
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UEP = Unitary Extension Principle

Find a matrix G € (C[T9])™N such that

| mxm — F(2)F(2)" = G(2)G(2)".

Can we have G € (C[T9])™*m?

Yes, but ...
this requires

det(lmxm — F(2)F(2)*) =1 — F(2)*F(z) = | det G(2)?

be a single square modulus of a trigonometric polynomial.

This property is very restrictive for multivariate trignometric
polynomials!
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UEP = Unitary Extension Principle

Observations from Linear Algebra (with Lai 2006) reduce the
matrix extension problem to a scalar problem:

matrix extension

|| - F(2)F(2)" = G(2)G(2)"

H*=(1—F*F,F*G) U G = (I — FF*,FH")

‘ 1— F(2)*F(z) = H(z)*H(z) ‘ scalar extension

Proof: If {F

H} € C™N is a vector of norm 1 in the scalar extension, then

o [T - (o (R

so taking the first m rows of the left-hand side gives a proper matrix G.
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UEP = Unitary Extension Principle

Connection to Algebraic Geometry:

@ Existence of "sum-of-squares” decompositions

m

N
1= [F(2)P =Y |Ha(2)?,  zeT
j=1 n=1

with trigonometric polynomials H; is related to Hilbert's 17th
problem.

@ Even if "sum-of-squares” decompositions exist, there are no
a-priori bounds on the number N and the degree of H;, in
general.

M. Marshall, Positive Polynomials and Sums of Squares, 2010.

M. Charina, M. Putinar, C. Scheiderer, J. S.:
An algebraic perspective on multivariate tight wavelet frames, part | (Constr.
Approx. 2013) and Il (Appl. Comput. Harmon. Anal. 2015).
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Examples where UEP works

Box-splines on R? with direction set = C Z9 \ {0} with d + dy
distinct directions:

@ The scaling-symbol is a product of univariate trigonometric
polynomials

d+dp

Fi(z) kH:l <1 +2sz > &

The vector F(z) has components Fi,. .., Fod, where Fj's

come from putting negative signs to some/all coordinates z
@ The scalar sos-decomposition

1-F Z|H

exists with N = d + dp29 trigonometric polynomials H

The main step of the proof uses the Riesz-Féjer Lemma
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Examples where UEP works

Improvements for box-splines: Semi-Definite Programming (SDP)

@ The number of terms in the sos-decomposition can be
reduced by a standard method for positive polynomials.
@ Take a monomial vector

X(z) =[z%a €A,

where A contains all monomials that appear in Hy, ..., Hy,
and write
1— F(2)"F(z) = X(z)BX(z)".
with a hermitian positive semi-definite matrix B € CIAIXIAl
which is computed from the coefficients of H;'s.
@ Using SDP, find another representation

1—F(2)"F(z) = X(z)CX(2)"
where C is hermitian and positive semi-defnite with smaller

rank. Then find new H;'s from C.

@ For the piecewise linear box-spline in R? we reduce the number of frame

generators from 10 to 6. (with M. Charina, JAT 2010)



Examples where UEP works

Examples of tight frames based on the refinable function of
subdivision schemes:

@ dimension 2: For the butterfly scheme (N. Dyn, J. Gregory, D. Levin,
1990), we find a tight frame with 13 frame generators; an earlier
approach gave 18 generators.

@ dimension 3: For the butterfly scheme (Chang, McDonnell, Qin, 2003),
we find a tight frame with 31 frame generators. Improvements using the
SDP approach were not attempted.

@ Several other examples by Antolin and Zalik, Lai and Nam, since 2006.

@ extension to irregular subdivision with the Loop scheme
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General results from Algebraic Geometry

Motivation came from work of C. Scheiderer, Sums of squares on
real algebraic surfaces, Manuscripta Math. 119 (2006), 395-410:

@ For dimension d = 2, the sos-decomposition always exists.
But there are no bounds on the number N and the degree r of
the trigonometric polynomials H;.

@ For dimension d > 3, there exist non-negative trigonometric
polynomials which are NOT sum-of-squares of trigonometric
polynomials.
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Another Perspective: System Theory

The connection to System Theory is established, when we consider
z as a complex variable in the polydisk

Dd:{(zla---,zd)é(cd:|zk|<1for1§k§d}.

The multivariate theory was developed by Agler and McCarthy,
Bose, Ball and Trent since 1990.
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Another Perspective: System Theory

For dimensions ni,...,ngy € N we define a block diagonal matrix

Z =diag(ziln, ..., zdlny).

Theorem (Agler 1990, Cole, Wermer 1999)

F] :D? — C™ satisfies

Assume that the polynomial vector {H

F(z)*F(z) + H(z)"H(z) =1 forall zeT¢

and is an element of the Schur-Agler class. Then there exist ni,...,nqg € N,
N = ni +---+ ng, and a contraction

_(A B (1) X (1+N)
T = <C D) eC

such that

F(Z) o _ —1 2 d
{H(Z)] = A+BZ(I-DZ)7'C, e D’

This is called a realization of [F, H]" as the transfer function of a linear system.
>
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Another Perspective: System Theory

@ Schur-Agler class: subset of all holomorphic function vectors with
F(z)*F(z) <1, zeT"
which satisfies the von Neumann inequality
IF(Tas o Ta)llop <1

for every d-tupel of commuting contractions on an arbitrary Hilbert space.
@ Similar obstacles as for sum-of-squares:

For dimension d > 3, not all polynomial vectors with F*F <1 on T are
in the Schur-Agler class (Varopoulos 1974)

@ Algorithms for d =1 and d = 2: Kummert (1989), Basu (2000)

Our “benchmark” example of piecewise linear box-spline frame in R?:

Improvement from 6 frame generators (SDP approach) to 5 generators.
This is the minimum!
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More general OEP = Oblique Extension Principle

More tight wavelet frames are obtained by finding the factorization

|K(z) - F(2)L(2)F(2)" = G(2)G(2)*

where K(z) is a given diagonal matrix with trig. polynomials

Kjj(z) > 0, and the trig. polynomial L(z) > 0 is related to Ki1(z)
by some scaling operation.

K is used to increase the number of vanishing moments of wavelet
frames.

MAIA 2016, Luminy Multivariate Tight Wavelet Frames



More general OEP = Oblique Extension Principle

Basic assumption: K has a factorization

| K(z) = R(2)R(2)"

where R is an m X r-matrix of trig. polynomials.

Then the scalar extension

1 * —1 _ *
o F*(2)K(z) " F(z) = H(z)"H(z)
with rational trig. vector H = (Hi, ..., Hy) leads to

| K(z) - F(2)L(2)F(2)" = 6(2)G(2)"

where
G =(R— FLF*(R")*, FLH")

and RT(z) = R(z)*K(z)~! is the Moore-Penrose pseudoinverse of R(z).
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More general OEP = Oblique Extension Principle

Work to be done:

@ Results for OEP with trig. polynomials instead of rational
functions are only known for special examples.

@ The connection to System Theory has not been explored in
full generality.

THANK YOU!
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