Prony's problem and superresolution in several variables: structure and algorithms

Tomas Sauer

Lehrstuhl für Mathematik mit Schwerpunkt Digitale Bildverarbeitung Fakultät für Informatik und Mathematik

FORWISS

Universität Passau

Multivariate Interpolation and Approximation with Applications, Luminy, September 19–23

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 1 / 24

イロト イボト イヨト イヨト 一日

Exponentials

For an exponential polynomial

$$f(x) = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T x}, \qquad \Omega \subset (\mathbb{R} + i\mathbb{T})^s, \qquad f_{\omega} \in \mathbb{C},$$

"learn" Ω and f_{ω} from regular samples of $f: f(\Lambda), \Lambda \subset \mathbb{Z}^{s}$.

Connections

- Sparse polynomials: $f(x) = \sum f_{\alpha} x^{\alpha}$.
- Multisource radar: MUSIC & ESPRIT (1D).
- Superresolution".
- $\Re \omega < 0$: damped partials . . .

Tomas Sauer (Uni Passau)

Prony in several variables

.

Exponentials

For a sparse exponential polynomial

$$f(x) = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T x}, \qquad \Omega \subset (\mathbb{R} + i\mathbb{T})^s, \quad \mathbf{0} \neq f_{\omega} \in \mathbb{C},$$

"learn" Ω and f_{ω} from regular samples of $f: f(\Lambda), \Lambda \subset \mathbb{Z}^{s}$.

Connections

- Sparse polynomials: $f(x) = \sum f_{\alpha} x^{\alpha}$.
- Multisource radar: MUSIC & ESPRIT (1D).
- Superresolution".
- $\Re \omega < 0$: damped partials . . .

Tomas Sauer (Uni Passau)

Prony in several variables

.

Exponentials

For a sparse exponential polynomial

$$f(x) = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T x}, \qquad \Omega \subset (\mathbb{R} + i\mathbb{T})^s, \quad \mathbf{0} \neq f_{\omega} \in \mathbb{C},$$

"learn" Ω and f_{ω} from regular samples of $f: f(\Lambda), \Lambda \subset \mathbb{Z}^{s}$.

Connections

• Sparse polynomials:
$$f(x) = \sum_{\alpha \in A} f_{\alpha} x^{\alpha}$$
.

- 2 Multisource radar: MUSIC & ESPRIT (1D).
- Superresolution".
- $\Re \omega < 0$: damped partials ...

Tomas Sauer (Uni Passau)

Exponentials

For a sparse exponential polynomial

$$f(x) = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T x}, \qquad \Omega \subset (\mathbb{R} + i\mathbb{T})^s, \quad \mathbf{0} \neq f_{\omega} \in \mathbb{C},$$

"learn" Ω and f_{ω} from regular samples of $f: f(\Lambda), \Lambda \subset \mathbb{Z}^{s}$.

Connections

Sparse polynomials:
$$f(x) = \sum_{\alpha \in A} f_{\alpha} x^{\alpha}$$
.

- 2 Multisource radar: MUSIC & ESPRIT (1D).
- Superresolution".
- $\Re \omega < 0$: damped partials ...

Tomas Sauer (Uni Passau)

Exponentials

For a sparse exponential polynomial

$$f(x) = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T x}, \qquad \Omega \subset (\mathbb{R} + i\mathbb{T})^s, \quad \mathbf{0} \neq f_{\omega} \in \mathbb{C},$$

"learn" Ω and f_{ω} from regular samples of $f: f(\Lambda), \Lambda \subset \mathbb{Z}^{s}$.

Connections

- Sparse polynomials: $f(x) = \sum_{\alpha \in A} f_{\alpha} x^{\alpha}$.
- **2** Multisource radar: MUSIC & ESPRIT (1D).
- 3 "Superresolution".
- $\Re \omega < 0$: damped partials ...

Tomas Sauer (Uni Passau)

Exponentials

For a sparse exponential polynomial

$$f(x) = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T x}, \qquad \Omega \subset (\mathbb{R} + i\mathbb{T})^s, \quad \mathbf{0} \neq f_{\omega} \in \mathbb{C},$$

"learn" Ω and f_{ω} from regular samples of $f: f(\Lambda), \Lambda \subset \mathbb{Z}^{s}$.

Connections

- Sparse polynomials: $f(x) = \sum_{\alpha \in A} f_{\alpha} x^{\alpha}$.
- 2 Multisource radar: MUSIC & ESPRIT (1D).
- Superresolution".
- **1** $\Re \omega < 0$: damped partials ...

Tomas Sauer (Uni Passau)

Exponentials

For a sparse exponential polynomial

$$f(x) = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T x}, \qquad \Omega \subset (\mathbb{R} + i\mathbb{T})^s, \quad \mathbf{0} \neq f_{\omega} \in \mathbb{C},$$

"learn" Ω and f_{ω} from regular samples of $f: f(\Lambda), \Lambda \subset \mathbb{Z}^{s}$.

Connections

Sparse polynomials:
$$f(x) = \sum_{\alpha \in A} f_{\alpha} x^{\alpha}$$
.

- Multisource radar: MUSIC & ESPRIT (1D).
- Superresolution".
- $\Re \omega < 0$: damped partials ...

Exponentials

For a sparse exponential polynomial

$$f(x) = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T x}, \qquad \Omega \subset (\mathbb{R} + i\mathbb{T})^s, \quad \mathbf{0} \neq f_{\omega} \in \mathbb{C},$$

"learn" Ω and f_{ω} from regular samples of $f: f(\Lambda), \Lambda \subset \mathbb{Z}^{s}$.

Connections

Sparse polynomials:
$$f(x) = \sum_{\alpha \in A} f_{\alpha} x^{\alpha}$$
.

- Multisource radar: MUSIC & ESPRIT (1D).
- Superresolution".
- $\Re \omega < 0$: damped partials, "piano learning" ...

The imaging model [Candes & Fernandez–Granda]

- Few localized sources.
- Image acquisition: *low pass*.
- Point spread function.
- Localization deteriorates.
- S Remedy: *deconvolution*.
- I For example by minimization.

Mathematical model

$$x = \sum_{\omega \in \Omega} f_{\omega} \, \delta_{\omega}$$

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 3 / 24

イロト イポト イヨト イヨト

The imaging model [Candes & Fernandez–Granda]

Few localized sources.

- Image acquisition: *low pass*.
- Point spread function.
- Iccalization deteriorates.
- S Remedy: *deconvolution*.

For example by minimization.

Mathematical model

$$x = \sum_{\omega \in \Omega} f_{\omega} \, \delta_{\omega}$$

Tomas Sauer (Uni Passau)

Prony in several variables

イロト イロト イヨト イヨト

The imaging model [Candes & Fernandez–Granda]

- Few localized sources.
- **2** Image acquisition: *low pass*.
- Point spread function.
- Iccalization deteriorates.
- S Remedy: *deconvolution*.

Is For example by minimization.

Mathematical model

$$x = \sum_{\omega \in \Omega} f_{\omega} \, \delta_{\omega}$$

Tomas Sauer (Uni Passau)

Prony in several variables

イロト イロト イヨト イヨト

The imaging model [Candes & Fernandez–Granda]

- Few localized sources.
- **2** Image acquisition: *low pass*.
- Openation Point spread function.
- Localization deteriorates.
- Semedy: deconvolution.

For example by minimization.

Mathematical model

$$x = \sum_{\omega \in \Omega} f_{\omega} \, \delta_{\omega}$$

Tomas Sauer (Uni Passau)

Prony in several variables

The imaging model [Candes & Fernandez–Granda]

- Few localized sources.
- 2 Image acquisition: *low pass*.
- Openation Point spread function.
- Localization deteriorates.
- S Remedy: deconvolution.

For example by minimization.

Mathematical model

$$x = \sum_{\omega \in \Omega} f_{\omega} \, \delta_{\omega}$$

Tomas Sauer (Uni Passau)

Prony in several variables

イロト イタト イヨト イヨト

The imaging model [Candes & Fernandez–Granda]

- Few localized sources.
- 2 Image acquisition: *low pass*.
- Oint spread function.
- Localization deteriorates.
- Semedy: *deconvolution*.

For example by minimization.

Mathematical model

$$x = \sum_{\omega \in \Omega} f_{\omega} \, \delta_{\omega}$$

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 3 / 24

・ロト ・ 同ト ・ ヨト ・ ヨト

The imaging model [Candes & Fernandez–Granda]

- Few localized sources.
- Image acquisition: *low pass*.
- Oint spread function.
- Localization deteriorates.
- Semedy: *deconvolution*.
- For example by minimization.

Mathematical model

$$x = \sum_{\omega \in \Omega} f_{\omega} \, \delta_{\omega}$$

Prony in several variables

The imaging model [Candes & Fernandez–Granda]

- Few localized sources.
- Image acquisition: *low pass*.
- Oint spread function.
- Localization deteriorates.
- Semedy: *deconvolution*.
- For example by minimization.

Mathematical model

$$x = \sum_{\omega \in \Omega} f_{\omega} \, \delta_{\omega}$$

Tomas Sauer (Uni Passau)

Prony in several variables

イロト イロト イヨト イヨト

The imaging model [Candes & Fernandez–Granda]

- Few localized sources.
- Image acquisition: *low pass*.
- Oint spread function.
- Localization deteriorates.
- Semedy: *deconvolution*.
- For example by minimization.

Mathematical model

$$x = \sum_{\omega \in \Omega} f_{\omega} \, \delta_{\omega} \qquad \mapsto \qquad \hat{x}(\alpha) =$$

Tomas Sauer (Uni Passau)

Prony in several variables

イロト イロト イヨト イヨト

The imaging model [Candes & Fernandez–Granda]

- Few localized sources.
- 2 Image acquisition: *low pass*.
- Openation Point spread function.
- Localization deteriorates.
- Semedy: *deconvolution*.
- For example by minimization.

Mathematical model

$$x = \sum_{\omega \in \Omega} f_{\omega} \, \delta_{\omega} \qquad \mapsto \qquad \hat{x}(\alpha) = (2\pi)^{-s} \int_{\mathbb{T}^s} x(t) \, e^{-i\alpha^T t} \, dt$$

The imaging model [Candes & Fernandez–Granda]

- Few localized sources.
- Image acquisition: *low pass*.
- Oint spread function.
- Localization deteriorates.
- Semedy: *deconvolution*.
- For example by minimization.

Mathematical model

$$x = \sum_{\omega \in \Omega} f_{\omega} \, \delta_{\omega} \qquad \mapsto \qquad \hat{x}(\alpha) = \sum_{\omega \in \Omega} f_{\omega} \, e^{-i\alpha^T \omega}$$

Prony in several variables

Luminy, September 19, 2016 3 / 24

イロト イロト イヨト イヨト

The imaging model [Candes & Fernandez–Granda]

- Few localized sources.
- Image acquisition: *low pass*.
- Openation Point spread function.
- Localization deteriorates.
- Semedy: *deconvolution*.
- For example by minimization.

Mathematical model

$$x = \sum_{\omega \in \Omega} f_{\omega} \, \delta_{\omega} \qquad \mapsto \qquad \widehat{x}(\alpha) = \sum_{\omega \in \Omega} f_{\omega} \, e^{-i \alpha^T \omega}, \qquad \alpha \in \Lambda.$$

Prony in several variables

イロト イロト イヨト イヨト

Points & moments

- Point set $X_{\Omega} = e^{\Omega} = \{x_{\omega} := e^{\omega} : \omega \in \Omega\}.$
- 2 Discrete measure $\mu = \sum_{\omega} f_{\omega} \, \delta_{x_{\omega}}$.

Moments

$$\mu(\alpha) = \int x^{\alpha} d\mu(x)$$

Prony as moment problem

- Square positive functionals.
- If $Iat extensions \rightarrow B$. Mourrain.

Tomas Sauer (Uni Passau)

Prony in several variables

Points & moments

• Point set $X_{\Omega} = e^{\Omega} = \{x_{\omega} := e^{\omega} : \omega \in \Omega\}.$

2 Discrete measure $\mu = \sum_{\omega} f_{\omega} \, \delta_{x_{\omega}}$.

Moments

$$\mu(\alpha) = \int x^{\alpha} d\mu(x)$$

Prony as moment problem

- Square positive functionals.
- If $Iat extensions \rightarrow B$. Mourrain.

Tomas Sauer (Uni Passau)

Prony in several variables

Points & moments

• Point set $X_{\Omega} = e^{\Omega} = \{x_{\omega} := e^{\omega} : \omega \in \Omega\}.$ $e^{\omega} = e^{\omega_1} \cdots e^{\omega_s}.$

3 Discrete measure
$$\mu = \sum_{\omega} f_{\omega} \, \delta_{x_{\omega}}$$
.

Moments

$$\mu(\alpha) = \int x^{\alpha} d\mu(x)$$

Prony as moment problem

- Square positive functionals.
- If $Iat extensions \rightarrow B$. Mourrain.

Tomas Sauer (Uni Passau)

Prony in several variables

Points & moments

- Point set $X_{\Omega} = e^{\Omega} = \{x_{\omega} := e^{\omega} : \omega \in \Omega\}.$ $e^{\omega} = e^{\omega_1} \cdots e^{\omega_s}.$
- **2** Discrete measure $\mu = \sum_{\omega} f_{\omega} \delta_{x_{\omega}}$.

Moments

$$\mu(\alpha) = \int x^{\alpha} d\mu(x)$$

Prony as moment problem

- Square positive functionals.
- If $Iat extensions \rightarrow B$. Mourrain.

Tomas Sauer (Uni Passau)

Prony in several variables

Points & moments

- Point set $X_{\Omega} = e^{\Omega} = \{x_{\omega} := e^{\omega} : \omega \in \Omega\}.$ $e^{\omega} = e^{\omega_1} \cdots e^{\omega_s}.$
- **2** Discrete measure $\mu = \sum_{\omega} f_{\omega} \delta_{x_{\omega}}$.
- Moments

$$\mu(\alpha) = \int x^{\alpha} d\mu(x)$$

Prony as moment problem

- Square positive functionals.
- In Flat extensions → B. Mourrain.

Tomas Sauer (Uni Passau)

Prony in several variables

Points & moments

- Point set $X_{\Omega} = e^{\Omega} = \{x_{\omega} := e^{\omega} : \omega \in \Omega\}.$ $e^{\omega} = e^{\omega_1} \cdots e^{\omega_s}.$
- **2** Discrete measure $\mu = \sum_{\omega} f_{\omega} \delta_{x_{\omega}}$.
- Moments

$$\mu(\alpha) = \int x^{\alpha} d\mu(x) = \sum_{\omega \in \Omega} f_{\omega} x_{\omega}^{\alpha}$$

Prony as moment problem

- Square positive functionals.
- If $Iat extensions \rightarrow B$. Mourrain.

Tomas Sauer (Uni Passau)

Prony in several variables

Points & moments

- Point set $X_{\Omega} = e^{\Omega} = \{x_{\omega} := e^{\omega} : \omega \in \Omega\}.$ $e^{\omega} = e^{\omega_1} \cdots e^{\omega_s}.$
- 2 Discrete measure $\mu = \sum_{\omega} f_{\omega} \delta_{x_{\omega}}$.
- Moments

$$\mu(\alpha) = \int x^{\alpha} d\mu(x) = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^{T} \alpha}.$$

Prony as moment problem

- Square positive functionals.
- If $Iat extensions \rightarrow B$. Mourrain.

Tomas Sauer (Uni Passau)

Prony in several variables

Points & moments

- Point set $X_{\Omega} = e^{\Omega} = \{x_{\omega} := e^{\omega} : \omega \in \Omega\}.$ $e^{\omega} = e^{\omega_1} \cdots e^{\omega_s}.$
- 2 Discrete measure $\mu = \sum_{\omega} f_{\omega} \delta_{x_{\omega}}$.
- Moments

$$\mu(\alpha) = \int x^{\alpha} d\mu(x) = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^{T} \alpha}.$$

Prony as moment problem

- Square positive functionals.
- 2 Flat extensions \rightarrow B. Mourrain.

Tomas Sauer (Uni Passau)

Prony in several variables

Points & moments

- Point set $X_{\Omega} = e^{\Omega} = \{x_{\omega} := e^{\omega} : \omega \in \Omega\}.$ $e^{\omega} = e^{\omega_1} \cdots e^{\omega_s}.$
- **2** Discrete measure $\mu = \sum_{\omega} f_{\omega} \delta_{x_{\omega}}$.
- Moments

$$\mu(\alpha) = \int x^{\alpha} d\mu(x) = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^{T} \alpha}.$$

Prony as moment problem

• Square positive functionals.

2) Flat extensions \rightarrow B. Mourrain.

Tomas Sauer (Uni Passau)

Prony in several variables

Points & moments

- Point set $X_{\Omega} = e^{\Omega} = \{x_{\omega} := e^{\omega} : \omega \in \Omega\}.$ $e^{\omega} = e^{\omega_1} \cdots e^{\omega_s}.$
- Solution Discrete measure $\mu = \sum_{\omega} f_{\omega} \, \delta_{x_{\omega}}$.
- Moments

$$\mu(\alpha) = \int x^{\alpha} d\mu(x) = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^{T} \alpha}.$$

Prony as moment problem

- Square positive functionals.
- **2** Flat extensions \rightarrow B. Mourrain.

Tomas Sauer (Uni Passau)

Prony in several variables

Introduction

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 5 / 24

イロト イボト イヨト イヨト 一日

The History

Introduction

1795: My name is R. Prony and I have a problem with alcohol.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 5 / 24

3

イロト イポト イヨト イヨト

The History

Introduction

1795: My name is R. Prony and I have a problem with alcohol.

XPERIMENT E. r les lois de la Dilatabilité des fluides élastiques et de la Force, expansive de la vapeur de l'eau et de la vapeu de l'alkool, à différentes températures. Par RON

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 5 / 24

Remarks on Prony's Problem

Assumptions

- **1** Problem is *sparse*: $#\Omega$ small.
- ② A priori information: some number $N \ge #\Omega$.

$$f(x) = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T x}.$$

Problem structure (Prony)

- Frequencies: *nonlinear* problem.
- Coefficients: *linear* problem.
- Evaluation points: subgrid Λ of \mathbb{Z}^s
- Shift of Λ irrelevant: $\Lambda \subset \mathbb{N}_0^s$.

Tomas Sauer (Uni Passau)

Prony in several variables

- 3

イロト イポト イヨト イヨト

Remarks on Prony's Problem

Assumptions

- **1** Problem is *sparse*: $#\Omega$ small.
- ② A priori information: some number $N \ge \#\Omega$.

$$f(x) = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T x}.$$

Problem structure (Prony)

- Frequencies: nonlinear problem.
- Coefficients: *linear* problem.
- Evaluation points: subgrid Λ of \mathbb{Z}^s
- Shift of Λ irrelevant: $\Lambda \subset \mathbb{N}_0^s$.

Tomas Sauer (Uni Passau)

Prony in several variables

イロン イロン イヨン イヨン

Assumptions

- **1** Problem is *sparse*: $#\Omega$ small.
- **2** A priori information: some number $N \ge #\Omega$.

$$f(x) = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T x}.$$

Problem structure (Prony)

- Frequencies: nonlinear problem.
- Coefficients: *linear* problem.
- Evaluation points: subgrid Λ of \mathbb{Z}^s
- Shift of Λ irrelevant: $\Lambda \subset \mathbb{N}_0^s$.

Tomas Sauer (Uni Passau)

Prony in several variables

Assumptions

- **1** Problem is *sparse*: $#\Omega$ small.
- **2** A priori information: some number $N \ge \#\Omega$.

$$f(x) = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T x}.$$

Problem structure (Prony)

- **Frequencies**: *nonlinear* problem.
- Ocefficients: linear problem.
- Evaluation points: subgrid Λ of \mathbb{Z}^{s}
- () Shift of Λ irrelevant: $\Lambda \subset \mathbb{N}_0^s$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 6 / 24

Э

Assumptions

- **1** Problem is *sparse*: $#\Omega$ small.
- **2** A priori information: some number $N \ge \#\Omega$.

$$f(x) = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T x}.$$

Problem structure (Prony)

- Frequencies: *nonlinear* problem.
- Ocefficients: linear problem
- Evaluation points: subgrid Λ of \mathbb{Z}^{s}
- Shift of Λ irrelevant: $\Lambda \subset \mathbb{N}_0^s$.

Tomas Sauer (Uni Passau)

Prony in several variables

Э

Assumptions

- **1** Problem is *sparse*: $#\Omega$ small.
- **2** A priori information: some number $N \ge #\Omega$.

$$f(x) = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T x}.$$

Problem structure (Prony)

- Frequencies: *nonlinear* problem.
- Ocertificients: linear problem.
- Evaluation points: subgrid Λ of \mathbb{Z}^{s}
- Shift of Λ irrelevant: $\Lambda \subset \mathbb{N}_0^s$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 6 / 24

Э

Assumptions

- **1** Problem is *sparse*: $#\Omega$ small.
- **2** A priori information: some number $N \ge #\Omega$.

$$f(x) = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T x}.$$

Problem structure (Prony)

- Frequencies: *nonlinear* problem.
- Ocertificients: linear problem.
- **(a)** Evaluation points: subgrid Λ of \mathbb{Z}^s

• Shift of Λ irrelevant: $\Lambda \subset \mathbb{N}_0^s$.

Tomas Sauer (Uni Passau)

Prony in several variables

Э

Assumptions

- **1** Problem is *sparse*: $#\Omega$ small.
- **2** A priori information: some number $N \ge \#\Omega$.

$$f(x) = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T x}.$$

Problem structure (Prony)

- Frequencies: *nonlinear* problem.
- Ocertificients: linear problem.
- **(a)** Evaluation points: subgrid Λ of \mathbb{Z}^s or $\Xi \mathbb{Z}^s$, $\Xi \in \mathbb{R}^{s \times s}$ nonsingular.

1 Shift of Λ irrelevant: $\Lambda \subset \mathbb{N}_0^s$

Tomas Sauer (Uni Passau)

Prony in several variables

Assumptions

- **1** Problem is *sparse*: $#\Omega$ small.
- **2** A priori information: some number $N \ge \#\Omega$.

$$f(x) = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T x}.$$

Problem structure (Prony)

- Frequencies: *nonlinear* problem.
- Ocertificients: linear problem.
- **③** Evaluation points: subgrid Λ of \mathbb{Z}^s or $\Xi \mathbb{Z}^s$, $\Xi \in \mathbb{R}^{s \times s}$ nonsingular.
- **④** Shift of Λ irrelevant: $\Lambda \subset \mathbb{N}_0^s$.

Tomas Sauer (Uni Passau)

Polynomials

• $\Pi = \mathbb{C}[x] = \mathbb{C}[x_1, \dots, x_s].$ • $\Pi_n = \left\{ p(x) = \sum_{|\alpha| \le n} p_{\alpha} x^{\alpha} : p_{\alpha} \in \mathbb{C} \right\} \text{ of total degree} \le n.$

- **⑤** For *A* ⊂ \mathbb{N}_0^s define $\Pi_A := \text{span}\{(\cdot)^\alpha : \alpha \in A\}$, i.e.,

$$\Pi_A \ni p = \sum_{\alpha \in A} p_{\alpha} (\cdot)^{\alpha}.$$

Coefficient vectors

$$p \simeq p = [p_{\alpha} : \alpha \in \ldots] \in \mathbb{C}^{\Gamma_n} \text{ or } \mathbb{C}^A$$

Tomas Sauer (Uni Passau)

Polynomials

$\square \Pi = \mathbb{C}[x] = \mathbb{C}[x_1, \ldots, x_s].$

$$\ \, \square_n = \left\{ p(x) = \sum_{|\alpha| \le n} p_{\alpha} \, x^{\alpha} : p_{\alpha} \in \mathbb{C} \right\} \text{ of total degree} \le n.$$

- Total degree: deg $p = \max\{|\alpha| : p_{\alpha} \neq 0\}$.
- **⑤** For *A* ⊂ \mathbb{N}_0^s define $\Pi_A := \text{span}\{(\cdot)^\alpha : \alpha \in A\}$, i.e.,

$$\Pi_A \ni p = \sum_{\alpha \in A} p_\alpha \left(\cdot \right)^\alpha.$$

Coefficient vectors

$$p \simeq p = [p_{\alpha} : \alpha \in \ldots] \in \mathbb{C}^{\Gamma_n} \text{ or } \mathbb{C}^A$$

Tomas Sauer (Uni Passau)

Polynomials

•
$$\Pi = \mathbb{C}[x] = \mathbb{C}[x_1, \dots, x_s].$$

•
$$\Pi_n = \left\{ p(x) = \sum_{|\alpha| \le n} p_{\alpha} x^{\alpha} : p_{\alpha} \in \mathbb{C} \right\} \text{ of total degree} \le n.$$

• Total degree: deg $p = \max\{|\alpha| : p_{\alpha} \neq 0\}$.

- **5** For $A \subset \mathbb{N}_0^s$ define $\Pi_A := \operatorname{span} \{ (\cdot)^{\alpha} : \alpha \in A \}$, i.e.,

$$\Pi_A \ni p = \sum_{\alpha \in A} p_{\alpha} (\cdot)^{\alpha}.$$

Coefficient vectors

$$p \simeq p = [p_{\alpha} : \alpha \in \ldots] \in \mathbb{C}^{\Gamma_n} \text{ or } \mathbb{C}^A$$

Tomas Sauer (Uni Passau)

Polynomials

•
$$\Pi = \mathbb{C}[x] = \mathbb{C}[x_1, \dots, x_s].$$

• $\Pi_n = \left\{ p(x) = \sum_{|\alpha| \le n} p_{\alpha} x^{\alpha} : p_{\alpha} \in \mathbb{C} \right\}$ of total degree $\le n$.

- Total degree: deg $p = \max\{|\alpha| : p_{\alpha} \neq 0\}$.
- **5** For $A \subset \mathbb{N}_0^s$ define $\Pi_A := \operatorname{span} \{ (\cdot)^{\alpha} : \alpha \in A \}$, i.e.,

$$\Pi_A \ni p = \sum_{\alpha \in A} p_{\alpha} (\cdot)^{\alpha}.$$

Coefficient vectors

$$p \simeq \boldsymbol{p} = [p_{\alpha} : \alpha \in \ldots] \in \mathbb{C}^{\Gamma_n} \text{ or } \mathbb{C}^A.$$

Tomas Sauer (Uni Passau)

Polynomials

•
$$\Pi = \mathbb{C}[x] = \mathbb{C}[x_1, \dots, x_s].$$

• $\Pi_n = \left\{ p(x) = \sum_{|\alpha| \le n} p_{\alpha} x^{\alpha} : p_{\alpha} \in \mathbb{C} \right\}$ of total degree $\le n$.

• Total degree: deg
$$p = \max\{|\alpha| : p_{\alpha} \neq 0\}$$
.

6 For $A \subset \mathbb{N}_0^s$ define $\Pi_A := \operatorname{span}\{(\cdot)^{\alpha} : \alpha \in A\}$, i.e.,

$$\Pi_A \ni p = \sum_{\alpha \in A} p_{\alpha} (\cdot)^{\alpha}.$$

Coefficient vectors

$$p \simeq p = [p_{\alpha} : \alpha \in \ldots] \in \mathbb{C}^{1_n} \text{ or } \mathbb{C}^A.$$

Tomas Sauer (Uni Passau)

Polynomials

•
$$\Pi = \mathbb{C}[x] = \mathbb{C}[x_1, \dots, x_s].$$

• $\Pi_n = \left\{ p(x) = \sum_{|\alpha| \le n} p_{\alpha} x^{\alpha} : p_{\alpha} \in \mathbb{C} \right\}$ of total degree $\le n$.

Solution Total degree: deg
$$p = \max\{|\alpha| : p_{\alpha} \neq 0\}$$
.

So For $A \subset \mathbb{N}_0^s$ define $\Pi_A := \operatorname{span}\{(\cdot)^{\alpha} : \alpha \in A\}$, i.e.,

$$\Pi_A \ni p = \sum_{\alpha \in A} p_{\alpha} \, (\cdot)^{\alpha}.$$

Coefficient vectors

$$p \simeq p = [p_{\alpha} : \alpha \in \ldots] \in \mathbb{C}^{1_n} \text{ or } \mathbb{C}^A.$$

Tomas Sauer (Uni Passau)

Polynomials

•
$$\Pi = \mathbb{C}[x] = \mathbb{C}[x_1, \dots, x_s].$$

• $\Pi_n = \left\{ p(x) = \sum_{|\alpha| \le n} p_{\alpha} x^{\alpha} : p_{\alpha} \in \mathbb{C} \right\}$ of total degree $\le n$.

3 *Total degree*: deg
$$p = \max\{|\alpha| : p_{\alpha} \neq 0\}$$
.

So For $A \subset \mathbb{N}_0^s$ define $\Pi_A := \operatorname{span}\{(\cdot)^{\alpha} : \alpha \in A\}$, i.e.,

$$\Pi_A \ni p = \sum_{\alpha \in A} p_\alpha \left(\cdot \right)^\alpha.$$

Coefficient vectors

$$p \simeq \boldsymbol{p} = [p_{\alpha} : \alpha \in \dots] \in \mathbb{C}^{\Gamma_n} \text{ or } \mathbb{C}^A.$$

Tomas Sauer (Uni Passau)

A Hankel matrix

$$\boldsymbol{F}_n := \begin{bmatrix} f(\boldsymbol{\alpha} + \boldsymbol{\beta}) : & \boldsymbol{\alpha} \in A \\ \boldsymbol{\beta} \in B \end{bmatrix} \in \mathbb{R}^{A \times B}$$

A computation . .

For $p \in \Pi_B$ and $\alpha \in A$:

Consequence

• $p(X_{\Omega}) = 0$ implies $F_n p = 0$.

Converse

Tomas Sauer (Uni Passau)

Prony in several variables

A Hankel matrix

$$\boldsymbol{F}_n := \begin{bmatrix} f(\boldsymbol{\alpha} + \boldsymbol{\beta}) : & \boldsymbol{\alpha} \in A \\ \boldsymbol{\beta} \in B \end{bmatrix} \in \mathbb{R}^{A \times B}$$

A computation ...

For $p \in \Pi_B$ and $\alpha \in A$:

Consequence

• $p(X_{\Omega}) = 0$ implies $F_n p = 0$.

Converse

Tomas Sauer (Uni Passau)

Prony in several variables

A Hankel matrix

$$\boldsymbol{F}_n := \begin{bmatrix} f(\boldsymbol{\alpha} + \boldsymbol{\beta}) : & \boldsymbol{\alpha} \in A \\ \boldsymbol{\beta} \in B \end{bmatrix} \in \mathbb{R}^{A \times B}$$

A computation ...

For $p \in \Pi_B$ and $\alpha \in A$:

 $(\boldsymbol{F}_n \boldsymbol{p})_{\alpha} =$

Consequence

•
$$p(X_{\Omega}) = 0$$
 implies $F_n p = 0$.

Converse

Tomas Sauer (Uni Passau)

Prony in several variables

A Hankel matrix

$$\boldsymbol{F}_n := \begin{bmatrix} f(\boldsymbol{\alpha} + \boldsymbol{\beta}) : & \boldsymbol{\alpha} \in A \\ \boldsymbol{\beta} \in B \end{bmatrix} \in \mathbb{R}^{A \times B}$$

A computation ...

For $p \in \Pi_B$ and $\alpha \in A$:

$$(\boldsymbol{F}_n \boldsymbol{p})_{\alpha} = \sum_{\beta \in B} f(\alpha + \beta) p_{\beta}$$

Consequence

•
$$p(X_{\Omega}) = 0$$
 implies $F_n p = 0$.

Converse

Tomas Sauer (Uni Passau)

Prony in several variables

A Hankel matrix

$$\boldsymbol{F}_n := \begin{bmatrix} f(\boldsymbol{\alpha} + \boldsymbol{\beta}) : & \boldsymbol{\alpha} \in A \\ \boldsymbol{\beta} \in B \end{bmatrix} \in \mathbb{R}^{A \times B}$$

A computation ...

For $p \in \Pi_B$ and $\alpha \in A$:

$$(\boldsymbol{F}_n\boldsymbol{p})_{\alpha} = \sum_{\beta \in B} \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T (\alpha + \beta)} p_{\beta}$$

Consequence

•
$$p(X_{\Omega}) = 0$$
 implies $F_n p = 0$.

Converse

Tomas Sauer (Uni Passau)

Prony in several variables

A Hankel matrix

$$\boldsymbol{F}_n := \begin{bmatrix} f(\boldsymbol{\alpha} + \boldsymbol{\beta}) : & \boldsymbol{\alpha} \in A \\ \boldsymbol{\beta} \in B \end{bmatrix} \in \mathbb{R}^{A \times B}$$

A computation ...

For $p \in \Pi_B$ and $\alpha \in A$:

$$(\boldsymbol{F}_n\boldsymbol{p})_{\alpha} = \sum_{\beta \in B} \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T \alpha} e^{\omega^T \beta} p_{\beta}$$

Consequence

•
$$p(X_{\Omega}) = 0$$
 implies $F_n p = 0$.

Converse

Tomas Sauer (Uni Passau)

Prony in several variables

A Hankel matrix

$$\boldsymbol{F}_n := \begin{bmatrix} f(\boldsymbol{\alpha} + \boldsymbol{\beta}) : & \boldsymbol{\alpha} \in A \\ \boldsymbol{\beta} \in B \end{bmatrix} \in \mathbb{R}^{A \times B}$$

A computation ...

For $p \in \Pi_B$ and $\alpha \in A$:

$$(\boldsymbol{F}_n\boldsymbol{p})_{\alpha} = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T \alpha} \sum_{\beta \in B} e^{\omega^T \beta} p_{\beta}$$

Consequence

•
$$p(X_{\Omega}) = 0$$
 implies $F_n p = 0$.

Converse

Tomas Sauer (Uni Passau)

Prony in several variables

A Hankel matrix

$$\boldsymbol{F}_n := \begin{bmatrix} f(\boldsymbol{\alpha} + \boldsymbol{\beta}) : & \boldsymbol{\alpha} \in A \\ \boldsymbol{\beta} \in B \end{bmatrix} \in \mathbb{R}^{A \times B}$$

A computation ...

For $p \in \Pi_B$ and $\alpha \in A$:

$$(\boldsymbol{F}_n\boldsymbol{p})_{\alpha} = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T \alpha} p(e^{\omega}),$$

Consequence

•
$$p(X_{\Omega}) = 0$$
 implies $F_n p = 0$.

Converse

Tomas Sauer (Uni Passau)

Prony in several variables

A Hankel matrix

$$\boldsymbol{F}_n := \begin{bmatrix} f(\boldsymbol{\alpha} + \boldsymbol{\beta}) : & \boldsymbol{\alpha} \in A \\ \boldsymbol{\beta} \in B \end{bmatrix} \in \mathbb{R}^{A \times B}$$

A computation ...

For $p \in \Pi_B$ and $\alpha \in A$:

$$(\boldsymbol{F}_n \boldsymbol{p})_{\alpha} = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T \alpha} p(x_{\omega}).$$

Consequence

•
$$p(X_{\Omega}) = 0$$
 implies $F_n p = 0$.

Converse

Tomas Sauer (Uni Passau)

Prony in several variables

A Hankel matrix

$$\boldsymbol{F}_n := \begin{bmatrix} f(\boldsymbol{\alpha} + \boldsymbol{\beta}) : & \boldsymbol{\alpha} \in A \\ \boldsymbol{\beta} \in B \end{bmatrix} \in \mathbb{R}^{A \times B}$$

A computation ...

For $p \in \Pi_B$ and $\alpha \in A$:

$$(\boldsymbol{F}_n \boldsymbol{p})_{\alpha} = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T \alpha} p(x_{\omega}).$$

Consequence

Tomas Sauer (Uni Passau)

Prony in several variables

A Hankel matrix

$$\boldsymbol{F}_n := \begin{bmatrix} f(\boldsymbol{\alpha} + \boldsymbol{\beta}) : & \boldsymbol{\alpha} \in A \\ \boldsymbol{\beta} \in B \end{bmatrix} \in \mathbb{R}^{A \times B}$$

A computation ...

For $p \in \Pi_B$ and $\alpha \in A$:

$$(\boldsymbol{F}_n \boldsymbol{p})_{\alpha} = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T \alpha} p(x_{\omega}).$$

Consequence

•
$$p(X_{\Omega}) = 0$$
 implies $F_n p = 0$.

Converse

A Hankel matrix

$$\boldsymbol{F}_n := \begin{bmatrix} f(\boldsymbol{\alpha} + \boldsymbol{\beta}) : & \boldsymbol{\alpha} \in A \\ \boldsymbol{\beta} \in B \end{bmatrix} \in \mathbb{R}^{A \times B}$$

A computation ...

For $p \in \Pi_B$ and $\alpha \in A$:

$$(\boldsymbol{F}_n \boldsymbol{p})_{\alpha} = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T \alpha} p(x_{\omega}).$$

Consequence

$$p(X_{\Omega}) = 0 \text{ implies } F_n p = 0.$$

2 Converse?

A Hankel matrix

$$\boldsymbol{F}_n := \begin{bmatrix} f(\boldsymbol{\alpha} + \boldsymbol{\beta}) : & \boldsymbol{\alpha} \in A \\ \boldsymbol{\beta} \in B \end{bmatrix} \in \mathbb{R}^{A \times B}$$

A computation ...

For $p \in \Pi_B$ and $\alpha \in A$:

$$(\boldsymbol{F}_n \boldsymbol{p})_{\alpha} = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T \alpha} p(x_{\omega}).$$

Consequence

•
$$p(X_{\Omega}) = 0$$
 implies $F_n p = 0$.

2 Converse for s > 1?

A Hankel matrix

$$\boldsymbol{F}_n := \begin{bmatrix} f(\boldsymbol{\alpha} + \boldsymbol{\beta}) : & \boldsymbol{\alpha} \in A \\ \boldsymbol{\beta} \in B \end{bmatrix} \in \mathbb{R}^{A \times B}$$

A computation ...

For $p \in \Pi_B$ and $\alpha \in A$:

$$(\boldsymbol{F}_n \boldsymbol{p})_{\alpha} = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T \alpha} p(x_{\omega}).$$

Consequence

•
$$p(X_{\Omega}) = 0$$
 implies $F_n p = 0$.

2 Converse for
$$s > 1$$
? No!

A Hankel matrix

$$\boldsymbol{F}_n := \begin{bmatrix} f(\boldsymbol{\alpha} + \boldsymbol{\beta}) : & \boldsymbol{\alpha} \in A \\ \boldsymbol{\beta} \in B \end{bmatrix} \in \mathbb{R}^{A \times B}$$

A computation ...

For $p \in \Pi_B$ and $\alpha \in A$:

$$(\boldsymbol{F}_n \boldsymbol{p})_{\alpha} = \sum_{\omega \in \Omega} f_{\omega} e^{\omega^T \alpha} p(x_{\omega}).$$

Consequence

•
$$p(X_{\Omega}) = 0$$
 implies $F_n p = 0$.

2 Converse for s > 1? Depends! Let's see ...

Tomas Sauer (Uni Passau)

Definition

Vandermonde matrix for $X \subset \mathbb{C}^s$ and $A \subset \Gamma$:

$$\mathbf{V}(X,A) := \begin{bmatrix} x^{\alpha} : & x \in X \\ \alpha \in A \end{bmatrix} \in \mathbb{C}^{X \times A}.$$

Factorizations (known from ESPRIT)

Sampling matrix (Hankel) for $A, B \subset \Gamma$:

$$F_{A,B} := \begin{bmatrix} f(\alpha + \beta) : & \alpha \in A \\ \beta \in B \end{bmatrix}$$

• $F_{A,B} = V(X_{\Omega}, A)^T F_{\Omega} V(X_{\Omega}, B).$ • $F_{A,B}p = V(X_{\Omega}, A)^T F_{\Omega} p(X_{\Omega}), \qquad p \in \Pi_B.$

Tomas Sauer (Uni Passau)

Prony in several variables

Definition

Vandermonde matrix for $X \subset \mathbb{C}^s$ and $A \subset \Gamma$:

$$\mathbf{V}(X,A) := \begin{bmatrix} x^{\alpha} : & x \in X \\ \alpha \in A \end{bmatrix} \in \mathbb{C}^{X \times A}.$$

Factorizations (known from ESPRIT)

Sampling matrix (Hankel) for $A, B \subset \Gamma$:

$$\boldsymbol{F}_{A,B} := \begin{bmatrix} f(\boldsymbol{\alpha} + \boldsymbol{\beta}) : & \boldsymbol{\alpha} \in A \\ \boldsymbol{\beta} \in B \end{bmatrix}$$

•
$$F_{A,B} = V(X_{\Omega}, A)^T F_{\Omega} V(X_{\Omega}, B).$$

• $F_{A,B} p = V(X_{\Omega}, A)^T F_{\Omega} p(X_{\Omega}), p$

Tomas Sauer (Uni Passau)

Prony in several variables

Definition

Vandermonde matrix for $X \subset \mathbb{C}^s$ and $A \subset \Gamma$:

$$\mathbf{V}(X,A) := \begin{bmatrix} x^{\alpha} : & x \in X \\ \alpha \in A \end{bmatrix} \in \mathbb{C}^{X \times A}.$$

Factorizations (known from ESPRIT)

Sampling matrix (Hankel) for $A, B \subset \Gamma$:

$$F_{A,B} := \begin{bmatrix} f(\alpha + \beta) : & \alpha \in A \\ \beta \in B \end{bmatrix}$$

•
$$F_{A,B} = V(X_{\Omega}, A)^T F_{\Omega} V(X_{\Omega}, B).$$

Tomas Sauer (Uni Passau)

Prony in several variables

Definition

Vandermonde matrix for $X \subset \mathbb{C}^s$ and $A \subset \Gamma$:

$$\mathbf{V}(X,A) := \begin{bmatrix} x^{\alpha} : & x \in X \\ \alpha \in A \end{bmatrix} \in \mathbb{C}^{X \times A}.$$

Factorizations (known from ESPRIT)

Sampling matrix (Hankel) for $A, B \subset \Gamma$:

$$F_{A,B} := \begin{bmatrix} f(\alpha + \beta) : & \alpha \in A \\ \beta \in B \end{bmatrix}, \quad F_{\Omega} = \operatorname{diag} [f_{\omega} : \omega \in \Omega],$$

Tomas Sauer (Uni Passau)

Prony in several variables

Definition

Vandermonde matrix for $X \subset \mathbb{C}^s$ and $A \subset \Gamma$:

$$\mathbf{V}(X,A) := \begin{bmatrix} x^{\alpha} : & x \in X \\ \alpha \in A \end{bmatrix} \in \mathbb{C}^{X \times A}.$$

Factorizations (known from ESPRIT)

Sampling matrix (Hankel) for $A, B \subset \Gamma$:

$$F_{A,B} := \begin{bmatrix} f(\alpha + \beta) : & \alpha \in A \\ \beta \in B \end{bmatrix}, \quad F_{\Omega} = \operatorname{diag} [f_{\omega} : \omega \in \Omega],$$

•
$$F_{A,B} = V(X_{\Omega}, A)^T F_{\Omega} V(X_{\Omega}, B).$$

• $F_{A,B} p = V(X_{\Omega}, A)^T F_{\Omega} p(X_{\Omega}), \qquad p \in \Pi_B.$

Tomas Sauer (Uni Passau)

Interpolation Spaces

Definition

- 𝒫 ⊂ Π *interpolation space* for X ⊂ C^s: for any q ∈ Π there is p ∈ 𝒫 such that p(X) = q(X).
- ⓐ *Degree reducing* interpolation space: $\deg p \leq \deg q$.
- ③ $A \subset \mathbb{N}_0^s$ interpolation set: Π_A is interpolation space.
- Degree reducing interpolation set:

Interpolation folklore

- *A* is interpolation set for *X* iff rank V(X, A) = #X.
- #X = #A: interpolation iff V(X, A) nonsingular.
- For fixed A, generic case: nonsingular $V(\cdot, A)$ open & dense.
- Degree reducing: ideal interpolation, Gröber-/H-bases ...

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 10 / 24

イロト 人間 とくほ とくほ とう

Interpolation Spaces

Definition

- 𝒫 ⊂ Π *interpolation space* for X ⊂ C^s: for any q ∈ Π there is p ∈ 𝒫 such that p(X) = q(X).
- ② Degree reducing interpolation space: deg $p \leq \deg q$.
- ③ $A \subset \mathbb{N}_0^s$ interpolation set: Π_A is interpolation space.
- Degree reducing interpolation set:

Interpolation folklore

- *A* is interpolation set for *X* iff rank V(X, A) = #X.
- #X = #A: interpolation iff V(X, A) nonsingular.
- Solution For fixed A, generic case: nonsingular $V(\cdot, A)$ open & dense.
- Degree reducing: ideal interpolation, Gröber-/H-bases ...

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 10 / 24

Definition

- *P* ⊂ Π *interpolation space* for X ⊂ C^s: for any q ∈ Π there is p ∈ *P* such that p(X) = q(X).
- **2** *Degree reducing* interpolation space: deg $p \le \deg q$.
- ⓐ $A \subset \mathbb{N}_0^s$ *interpolation set*: Π_A is interpolation space.
- Degree reducing interpolation set:

Interpolation folklore

- *A* is interpolation set for *X* iff rank V(X, A) = #X.
- #X = #A: interpolation iff V(X, A) nonsingular.
- For fixed A, generic case: nonsingular $V(\cdot, A)$ open & dense.
- Degree reducing: ideal interpolation, Gröber-/H-bases ...

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 10 / 24

Definition

- *P* ⊂ Π *interpolation space* for X ⊂ C^s: for any q ∈ Π there is p ∈ *P* such that p(X) = q(X).
- 2 *Degree reducing* interpolation space: deg $p \le \deg q$.
- $A \subset \mathbb{N}_0^s$ interpolation set: Π_A is interpolation space.

Degree reducing interpolation set:

Interpolation folklore

- *A* is interpolation set for *X* iff rank V(X, A) = #X.
- #X = #A: interpolation iff V(X, A) nonsingular.
- Solution For fixed A, generic case: nonsingular $V(\cdot, A)$ open & dense.

Degree reducing: ideal interpolation, Gröber-/H-bases ...

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 10 / 24

Definition

- *P* ⊂ Π *interpolation space* for X ⊂ C^s: for any q ∈ Π there is p ∈ *P* such that p(X) = q(X).
- 2 *Degree reducing* interpolation space: deg $p \le \deg q$.
- $A \subset \mathbb{N}_0^s$ interpolation set: Π_A is interpolation space.
- Degree reducing interpolation set:

Interpolation folklore

- *A* is interpolation set for *X* iff rank V(X, A) = #X.
- #X = #A: interpolation iff V(X, A) nonsingular.
- For fixed A, generic case: nonsingular $V(\cdot, A)$ open & dense.

Degree reducing: ideal interpolation, Gröber-/H-bases ...

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 10 / 24

Definition

- 𝒫 ⊂ Π *interpolation space* for X ⊂ C^s: for any q ∈ Π there is p ∈ 𝒫 such that p(X) = q(X).
- 2 *Degree reducing* interpolation space: deg $p \le \deg q$.
- $A \subset \mathbb{N}_0^s$ interpolation set: Π_A is interpolation space.
- Degree reducing interpolation set: Exercise

Interpolation folklore

- *A* is interpolation set for *X* iff rank V(X, A) = #X.
- #X = #A: interpolation iff V(X, A) nonsingular.
- Solution For fixed A, generic case: nonsingular $V(\cdot, A)$ open & dense.
- Degree reducing: ideal interpolation, Gröber-/H-bases ...

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 10 / 24

Definition

- *P* ⊂ Π *interpolation space* for X ⊂ C^s: for any q ∈ Π there is p ∈ *P* such that p(X) = q(X).
- 2 *Degree reducing* interpolation space: deg $p \le \deg q$.
- $A \subset \mathbb{N}_0^s$ interpolation set: Π_A is interpolation space.
- Degree reducing interpolation set: Exercise

Interpolation folklore

- *A* is interpolation set for *X* iff rank V(X, A) = #X.
- 3 #X = #A: interpolation iff V(X, A) nonsingular.
- If $V(\cdot, A)$ open & dense.
- Degree reducing: ideal interpolation, Gröber-/H–bases ...

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 10 / 24

Definition

- 𝒫 ⊂ Π *interpolation space* for X ⊂ C^s: for any q ∈ Π there is p ∈ 𝒫 such that p(X) = q(X).
- 2 *Degree reducing* interpolation space: deg $p \le \deg q$.
- $A \subset \mathbb{N}_0^s$ interpolation set: Π_A is interpolation space.
- Degree reducing interpolation set: Exercise

Interpolation folklore

- *A* is interpolation set for *X* iff rank V(X, A) = #X.
- **2** #X = #A: interpolation iff V(X, A) nonsingular.
- If For fixed A, generic case: nonsingular $V(\cdot, A)$ open & dense.
- Degree reducing: ideal interpolation, Gröber-/H-bases ...

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 10 / 24

Definition

- *P* ⊂ Π *interpolation space* for X ⊂ C^s: for any q ∈ Π there is p ∈ *P* such that p(X) = q(X).
- 2 *Degree reducing* interpolation space: deg $p \le \deg q$.
- $A \subset \mathbb{N}_0^s$ interpolation set: Π_A is interpolation space.
- Degree reducing interpolation set: Exercise

Interpolation folklore

- *A* is interpolation set for *X* iff rank V(X, A) = #X.
- **2** #X = #A: interpolation iff V(X, A) nonsingular.
- If $V(\cdot, A)$ open & dense.
- Degree reducing: ideal interpolation, Gröber-/H–bases ...

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 10 / 24

Definition

- *P* ⊂ Π *interpolation space* for X ⊂ C^s: for any q ∈ Π there is p ∈ *P* such that p(X) = q(X).
- 2 *Degree reducing* interpolation space: deg $p \le \deg q$.
- $A \subset \mathbb{N}_0^s$ interpolation set: Π_A is interpolation space.
- Degree reducing interpolation set: Exercise

Interpolation folklore

- *A* is interpolation set for *X* iff rank V(X, A) = #X.
- **2** #X = #A: *unique* interpolation iff V(X, A) nonsingular.
- If $O(\cdot, A)$ open & dense.
- Degree reducing: ideal interpolation, Gröber-/H–bases ...

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 10 / 24

Definition

- *P* ⊂ Π *interpolation space* for X ⊂ C^s: for any q ∈ Π there is p ∈ *P* such that p(X) = q(X).
- 2 *Degree reducing* interpolation space: deg $p \le \deg q$.
- $A \subset \mathbb{N}_0^s$ interpolation set: Π_A is interpolation space.
- Degree reducing interpolation set: Exercise

Interpolation folklore

- *A* is interpolation set for *X* iff rank V(X, A) = #X.
- **2** #X = #A: *unique* interpolation iff V(X, A) nonsingular.
- So For fixed *A*, generic case: nonsingular $V(\cdot, A)$ open & dense.

Degree reducing: ideal interpolation, Gröber-/H-bases ...

Tomas Sauer (Uni Passau)

Prony in several variables

Definition

- *P* ⊂ Π *interpolation space* for X ⊂ C^s: for any q ∈ Π there is p ∈ *P* such that p(X) = q(X).
- 2 *Degree reducing* interpolation space: deg $p \le \deg q$.
- $A \subset \mathbb{N}_0^s$ interpolation set: Π_A is interpolation space.
- Degree reducing interpolation set: Exercise

Not so much Interpolation folklore

- *A* is interpolation set for *X* iff rank V(X, A) = #X.
- **2** #X = #A: *unique* interpolation iff V(X, A) nonsingular.
- So For fixed *A*, generic case: nonsingular $V(\cdot, A)$ open & dense.
- Degree reducing: ideal interpolation, Gröber-/H-bases ...

The Prony ideal

- $I_{\Omega} := \{ p \in \Pi : p(X_{\Omega}) = 0 \}.$
- Replacement of univariate Prony polynomial.

$$\begin{aligned} \mathbf{F}_{A,B} &= \mathbf{V}(\mathbf{X}_{\Omega}, A)^T \mathbf{F}_{\Omega} \mathbf{V}(\mathbf{X}_{\Omega}, B), \\ \mathbf{F}_{A,B} \mathbf{p} &= \mathbf{V}(\mathbf{X}_{\Omega}, A)^T \mathbf{F}_{\Omega} \mathbf{p}(\mathbf{X}_{\Omega}), \qquad p \in \Pi_B. \end{aligned}$$

Theorem

• Reconstruct F_{Ω} from $F_{A,B}$ iff A, B are interpolation sets for X_{Ω} . • If A is interpolation set for X_{Ω} then

- $\ker F_{AB} \simeq I_{\Omega} \cap \Pi_{B}$
 - $\circ : n \mapsto \operatorname{rank} \mathbb{F}_{A \cap i}$ is the affine Hilbert function of I_{Q} .

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 11 / 24

The Prony ideal

•
$$I_{\Omega} := \{ p \in \Pi : p(X_{\Omega}) = 0 \}.$$

Breplacement of univariate *Prony polynomial*.

$$F_{A,B} = V(X_{\Omega}, A)^T F_{\Omega} V(X_{\Omega}, B),$$

$$F_{A,B} p = V(X_{\Omega}, A)^T F_{\Omega} p(X_{\Omega}), \quad p \in \Pi_B.$$

Theorem

• Reconstruct F_{Ω} from $F_{A,B}$ iff A, B are interpolation sets for X_{Ω} .

- $\ker F_{AB} \simeq f_{\Omega} \cap \Pi_{B}$
 - $\circ : n \mapsto \operatorname{rank} \mathbb{F}_{A \cap i}$ is the affine Hilbert function of I_{Q} .

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 11 / 24

The Prony ideal

- $I_{\Omega} := \{ p \in \Pi : p(X_{\Omega}) = 0 \}.$
- Seplacement of univariate Prony polynomial.

$$F_{A,B} = V(X_{\Omega}, A)^T F_{\Omega} V(X_{\Omega}, B),$$

$$F_{A,B} p = V(X_{\Omega}, A)^T F_{\Omega} p(X_{\Omega}), \quad p \in \Pi_B.$$

Theorem

• Reconstruct F_{Ω} from $F_{A,B}$ iff A, B are interpolation sets for X_{Ω} .

- a ker Franciska O Ha
 - $\circ : n \mapsto \operatorname{rank} \mathbb{E}_{A \cap v}$ is the affine Hilbert function of I_{O} .

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 11 / 24

The Prony ideal

- $I_{\Omega} := \{ p \in \Pi : p(X_{\Omega}) = 0 \}$. Zero dimensional & radical.
- **2** Replacement of univariate *Prony polynomial*.

$$\begin{aligned} F_{A,B} &= V(X_{\Omega}, A)^T F_{\Omega} V(X_{\Omega}, B), \\ F_{A,B} p &= V(X_{\Omega}, A)^T F_{\Omega} p(X_{\Omega}), \qquad p \in \Pi_B. \end{aligned}$$

Theorem

• Reconstruct F_{Ω} from $F_{A,B}$ iff A, B are interpolation sets for X_{Ω} .

- If A is interpolation set for A_{Ω} if
 - $\ker F_{A,B} \simeq I_{\Omega} \cap \Pi_B$.
 - $a \mapsto \operatorname{rank} \mathbb{F}_{A, \Gamma_{a}}$ is the affine Hilbert function of $I_{\Omega^{-1}}$

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 11 / 24

The Prony ideal

- $I_{\Omega} := \{ p \in \Pi : p(X_{\Omega}) = 0 \}$. Zero dimensional & radical.
- **2** Replacement of univariate *Prony polynomial*.

$$\begin{aligned} \mathbf{F}_{A,B} &= \mathbf{V}(X_{\Omega}, A)^T \mathbf{F}_{\Omega} \mathbf{V}(X_{\Omega}, B), \\ \mathbf{F}_{A,B} \mathbf{p} &= \mathbf{V}(X_{\Omega}, A)^T \mathbf{F}_{\Omega} \mathbf{p}(X_{\Omega}), \qquad p \in \Pi_B. \end{aligned}$$

Theorem

- Reconstruct F_{Ω} from $F_{A,B}$ iff A, B are interpolation sets for X_{Ω} .
- If A is interpolation set for X_{Ω} then
 - $\ker F_{A,B} \simeq I_{\Omega} \cap \Pi_{B}$.
 - $\circ n \mapsto \operatorname{rank} \mathbb{F}_{A \cap a}$ is the affine Hilbert function of $\mathbb{I}_{Q \cap a}$

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 11 / 24

The Prony ideal

- $I_{\Omega} := \{ p \in \Pi : p(X_{\Omega}) = 0 \}$. Zero dimensional & radical.
- **2** Replacement of univariate *Prony polynomial*.

$$\begin{aligned} \mathbf{F}_{A,B} &= \mathbf{V}(X_{\Omega}, A)^T \mathbf{F}_{\Omega} \mathbf{V}(X_{\Omega}, B), \\ \mathbf{F}_{A,B} \mathbf{p} &= \mathbf{V}(X_{\Omega}, A)^T \mathbf{F}_{\Omega} \mathbf{p}(X_{\Omega}), \qquad p \in \Pi_B. \end{aligned}$$

Theorem

- **O** Reconstruct F_{Ω} from $F_{A,B}$ iff A, B are interpolation sets for X_{Ω} .
- ② If A is interpolation set for X_{Ω} then
 - ker $F_{A,B} \simeq I_{\Omega} \cap \Pi_B$.
 - $n \mapsto \operatorname{rank} F_{A,\Gamma_n}$ is the affine Hilbert function of I_{Ω}

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 11 / 24

The Prony ideal

• $I_{\Omega} := \{ p \in \Pi : p(X_{\Omega}) = 0 \}$. Zero dimensional & radical.

2 Replacement of univariate *Prony polynomial*.

$$\begin{aligned} \mathbf{F}_{A,B} &= \mathbf{V}(X_{\Omega}, A)^T \mathbf{F}_{\Omega} \mathbf{V}(X_{\Omega}, B), \\ \mathbf{F}_{A,B} \mathbf{p} &= \mathbf{V}(X_{\Omega}, A)^T \mathbf{F}_{\Omega} p(X_{\Omega}), \qquad p \in \Pi_B. \end{aligned}$$

Theorem

• Reconstruct F_{Ω} from $F_{A,B}$ iff A, B are interpolation sets for X_{Ω} .

If A is interpolation set for X_{Ω} then

- ker $F_{A,B} \simeq I_{\Omega} \cap \Pi_B$.
- $n \mapsto \operatorname{rank} F_{A,\Gamma_n}$ is the affine Hilbert function of I_{Ω}

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 11 / 24

The Prony ideal

• $I_{\Omega} := \{ p \in \Pi : p(X_{\Omega}) = 0 \}$. Zero dimensional & radical.

2 Replacement of univariate *Prony polynomial*.

$$\begin{aligned} \mathbf{F}_{A,B} &= \mathbf{V}(X_{\Omega}, A)^T \mathbf{F}_{\Omega} \mathbf{V}(X_{\Omega}, B), \\ \mathbf{F}_{A,B} \mathbf{p} &= \mathbf{V}(X_{\Omega}, A)^T \mathbf{F}_{\Omega} \mathbf{p}(X_{\Omega}), \qquad p \in \Pi_B. \end{aligned}$$

Theorem

- Reconstruct *F*_Ω from *F*_{A,B} iff *A*, *B* are interpolation sets for *X*_Ω.
 If *A* is interpolation set for *X*_Ω then
 - ker $F_{A,B} \simeq I_{\Omega} \cap \Pi_B$.
 - $n \mapsto \operatorname{rank} F_{A,\Gamma_n}$ is the *affine Hilbert function* of I_{Ω} .

Tomas Sauer (Uni Passau)

Prony in several variables

The Prony ideal

- $I_{\Omega} := \{ p \in \Pi : p(X_{\Omega}) = 0 \}$. Zero dimensional & radical.
- **2** Replacement of univariate *Prony polynomial*.

$$\begin{aligned} \mathbf{F}_{A,B} &= \mathbf{V}(X_{\Omega}, A)^T \mathbf{F}_{\Omega} \mathbf{V}(X_{\Omega}, B), \\ \mathbf{F}_{A,B} \mathbf{p} &= \mathbf{V}(X_{\Omega}, A)^T \mathbf{F}_{\Omega} \mathbf{p}(X_{\Omega}), \qquad p \in \Pi_B. \end{aligned}$$

Theorem

- Reconstruct F_{Ω} from $F_{A,B}$ iff A, B are interpolation sets for X_{Ω} .
- **2** If A is interpolation set for X_{Ω} then
 - ker $F_{A,B} \simeq I_{\Omega} \cap \Pi_B$.
 - $n \mapsto \operatorname{rank} F_{A,\Gamma_n}$ is the *affine Hilbert function* of I_{Ω} .

Tomas Sauer (Uni Passau)

Prony in several variables

Needed for solution

- Find interpolation set *A* for X_{Ω} .
- **2 But:** X_{Ω} is unknown.

The generic case

Generic interpolation space

$$\Pi_n \qquad ext{where} \qquad egin{pmatrix} n-1+s \ s \end{pmatrix} < \#\Omega \leq egin{pmatrix} n+s \ s \end{pmatrix}$$

- ker $F_{\Gamma_n,\Gamma_{n+1}}$: nonlinear homogeneous equations
- $\leq 2^{s} # \Omega$ samples, 2^{s} best constant.
- **Linear** in $\#\Omega$, not like $(\#\Omega)^s$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 12 / 24

Needed for solution

• Find interpolation set A for X_{Ω} .

But: X_{Ω} is unknown

The generic case

Generic interpolation space

$$I_n$$
 where $\binom{n-1+s}{s} < \#\Omega \le \binom{n+s}{s}$

• ker $F_{\Gamma_n,\Gamma_{n+1}}$: nonlinear homogeneous equations

• $\leq 2^s \# \Omega$ samples, 2^s best constant.

• Linear in $\#\Omega$, not like $(\#\Omega)^s$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 12 / 24

イロト 人間 とくほ とくほう

Needed for solution

- Find interpolation set A for X_{Ω} .
- **2 But:** X_{Ω} is unknown.

The generic case

Generic interpolation space

$$I_n$$
 where $\binom{n-1+s}{s} < \#\Omega \le \binom{n+s}{s}$

- ker $F_{\Gamma_n,\Gamma_{n+1}}$: nonlinear homogeneous equations
- $\leq 2^s \# \Omega$ samples, 2^s best constant.
- **Linear** in $\#\Omega$, not like $(\#\Omega)^s$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 12 / 24

イロト 人間 とくほ とくほう

Needed for solution

- Find interpolation set A for X_{Ω} .
- **2 But:** X_{Ω} is unknown.

The generic case

Generic interpolation space

$$\Pi_n \quad \text{where} \quad \binom{n-1+s}{s} < \#\Omega \le \binom{n+s}{s}$$

- ② ker $F_{\Gamma_n,\Gamma_{n+1}}$: nonlinear homogeneous equations.
- $\leq 2^{s} \# \Omega$ samples, 2^{s} best constant.
- **Use 1.1** Linear in $#\Omega$, not like $(#\Omega)^s$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 12 / 24

э

Needed for solution

- Find interpolation set A for X_{Ω} .
- **2 But:** X_{Ω} is unknown.

The generic case

Generic interpolation space

$$\Pi_n$$
 where $\binom{n-1+s}{s} < \#\Omega \le \binom{n+s}{s}$.

- Solution ker $F_{\Gamma_n,\Gamma_{n+1}}$: nonlinear homogeneous equations.
- $\leq 2^{s} \# \Omega$ samples, 2^{s} best constant.
- **Use 1.1.1** Linear in $#\Omega$, not like $(#\Omega)^s$.

Tomas Sauer (Uni Passau)

Prony in several variables

Needed for solution

- Find interpolation set A for X_{Ω} .
- **2 But:** X_{Ω} is unknown.

The generic case

Generic interpolation space

$$\Pi_n$$
 where $\binom{n-1+s}{s} < \#\Omega \le \binom{n+s}{s}$.

- **2** ker $F_{\Gamma_n,\Gamma_{n+1}}$: nonlinear homogeneous equations.
- $\leq 2^{s} \# \Omega$ samples, 2^{s} best constant.
- **Use 1.1.1** Linear in $#\Omega$, not like $(#\Omega)^s$.

Tomas Sauer (Uni Passau)

Prony in several variables

Needed for solution

- Find interpolation set A for X_{Ω} .
- **2 But:** X_{Ω} is unknown.

The generic case

Generic interpolation space

$$\Pi_n$$
 where $\binom{n-1+s}{s} < \#\Omega \le \binom{n+s}{s}$.

- **2** ker $F_{\Gamma_n,\Gamma_{n+1}}$: nonlinear homogeneous equations.
- $\leq 2^{s} # \Omega$ samples, 2^{s} best constant.

Use 1 Linear in $\#\Omega$, not like $(\#\Omega)^s$.

Tomas Sauer (Uni Passau)

Prony in several variables

Needed for solution

- Find interpolation set A for X_{Ω} .
- **2 But:** X_{Ω} is unknown.

The generic case

Generic interpolation space

$$\Pi_n$$
 where $\binom{n-1+s}{s} < \#\Omega \le \binom{n+s}{s}$.

- **2** ker $F_{\Gamma_n,\Gamma_{n+1}}$: nonlinear homogeneous equations.
- $\leq 2^{s} # \Omega$ samples, 2^{s} best constant.
- **Linear** in $\#\Omega$, not like $(\#\Omega)^s$.

Tomas Sauer (Uni Passau)

Needed for solution

- Find interpolation set A for X_{Ω} .
- **2 But:** X_{Ω} is unknown and life is not generic.

The generic case is of little value

Generic interpolation space

$$\Pi_n$$
 where $\binom{n-1+s}{s} < \#\Omega \le \binom{n+s}{s}$.

- **2** ker $F_{\Gamma_n,\Gamma_{n+1}}$: nonlinear homogeneous equations.
- $\leq 2^{s} # \Omega$ samples, 2^{s} best constant.
- **Itinear** in $\#\Omega$, not like $(\#\Omega)^s$.

Tomas Sauer (Uni Passau)

Prony in several variables

Two things needed

- Interpolation space for *all* sets *X* with $\#X \leq N$.
- 2 Efficient polynomial solver.

Choices for the set *A*

- Interpolation guaranteed for $A = \Gamma_{N-1}$.
- Minimal for s = 1.
- dim $\Pi_{N-1} = \binom{N-1+s}{s} \simeq N^s/s!$.
- F_{Γ_N,Γ_N} too large: e.g. s = 13, N = 200 yields $10^{20} \times 10^{20}$.

Notabene: naive algorithm

Build $F_n := F_{\Gamma_n,\Gamma_n}$, $n = 0, 1, 2, \dots$, until rank $F_n = \operatorname{rank} F_{n+1}$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 13 / 24

Two things needed

• Interpolation space for *all* sets *X* with $\#X \leq N$.

② Efficient polynomial solver.

Choices for the set *A*

- Interpolation guaranteed for $A = \Gamma_{N-1}$.
- Minimal for s = 1.
- F_{Γ_N,Γ_N} too large: e.g. s = 13, N = 200 yields $10^{20} \times 10^{20}$.

Notabene: naive algorithm

Build $F_n := F_{\Gamma_n,\Gamma_n}$, $n = 0, 1, 2, \dots$, until rank $F_n = \operatorname{rank} F_{n+1}$.

Tomas Sauer (Uni Passau)

Two things needed

- Interpolation space for *all* sets *X* with $\#X \leq N$.
- 2 Efficient polynomial solver.

Choices for the set A

- Interpolation guaranteed for $A = \Gamma_{N-1}$.
- Minimal for s = 1.
- F_{Γ_N,Γ_N} too large: e.g. s = 13, N = 200 yields $10^{20} \times 10^{20}$.

Notabene: naive algorithm

Build $F_n := F_{\Gamma_n,\Gamma_n}$, $n = 0, 1, 2, \dots$, until rank $F_n = \operatorname{rank} F_{n+1}$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 13 / 24

Two things needed

- Interpolation space for *all* sets *X* with $\#X \leq N$.
- 2 Efficient polynomial solver.

Choices for the set A

- 1 Interpolation guaranteed for $A = \Gamma_{N-1}$.
- 2 Minimal for s = 1.

$$Im \Pi_{N-1} = \binom{N-1+s}{s} \simeq N^s/s!.$$

• F_{Γ_N,Γ_N} too large: e.g. s = 13, N = 200 yields $10^{20} \times 10^{20}$.

Notabene: naive algorithm

Build $F_n := F_{\Gamma_n,\Gamma_n}$, $n = 0, 1, 2, \dots$, until rank $F_n = \operatorname{rank} F_{n+1}$.

Tomas Sauer (Uni Passau)

Two things needed

- Interpolation space for *all* sets *X* with $\#X \leq N$.
- 2 Efficient polynomial solver.

Choices for the set A

- Interpolation guaranteed for $A = \Gamma_{N-1}$.
- ② Minimal for s = 1.
- $Im \Pi_{N-1} = \binom{N-1+s}{s} \simeq N^s/s!.$
- F_{Γ_N,Γ_N} too large: e.g. s = 13, N = 200 yields $10^{20} \times 10^{20}$.

Notabene: naive algorithm

Build $F_n := F_{\Gamma_n,\Gamma_n}$, $n = 0, 1, 2, \dots$, until rank $F_n = \operatorname{rank} F_{n+1}$.

Tomas Sauer (Uni Passau)

Two things needed

- Interpolation space for *all* sets *X* with $\#X \leq N$.
- efficient polynomial solver.

Choices for the set A

- Interpolation guaranteed for $A = \Gamma_{N-1}$.
- 2 Minimal for s = 1.
- $Im \Pi_{N-1} = \binom{N-1+s}{s} \simeq N^s/s!.$
- F_{Γ_N,Γ_N} too large: e.g. s = 13, N = 200 yields $10^{20} \times 10^{20}$.

Notabene: naive algorithm

Build $F_n := F_{\Gamma_n,\Gamma_n}$, $n = 0, 1, 2, \ldots$, until rank $F_n = \operatorname{rank} F_{n+1}$.

Tomas Sauer (Uni Passau)

Two things needed

- Interpolation space for *all* sets *X* with $\#X \leq N$.
- 2 Efficient polynomial solver.

Choices for the set A

- Interpolation guaranteed for $A = \Gamma_{N-1}$.
- 2 Minimal for s = 1.

$$online Interpretation Interpretatio Interpretation Interpretation Interpretation Interpretati$$

• F_{Γ_N,Γ_N} too large: e.g. s = 13, N = 200 yields $10^{20} \times 10^{20}$.

Notabene: naive algorithm

Build $F_n := F_{\Gamma_n,\Gamma_n}$, $n = 0, 1, 2, \dots$, until rank $F_n = \operatorname{rank} F_{n+1}$.

Tomas Sauer (Uni Passau)

Two things needed

- Interpolation space for *all* sets *X* with $\#X \leq N$.
- 2 Efficient polynomial solver.

Choices for the set A

- Interpolation guaranteed for $A = \Gamma_{N-1}$.
- 2 Minimal for s = 1.

$$im \Pi_{N-1} = \binom{N-1+s}{s} \simeq N^s/s!.$$

• F_{Γ_N,Γ_N} too large: e.g. s = 13, N = 200 yields $10^{20} \times 10^{20}$.

Notabene: naive algorithm

Build $F_n := F_{\Gamma_n,\Gamma_n}$, $n = 0, 1, 2, \dots$, until rank $F_n = \operatorname{rank} F_{n+1}$.

Tomas Sauer (Uni Passau)

Two things needed

- Interpolation space for *all* sets *X* with $\#X \leq N$.
- 2 Efficient polynomial solver.

Choices for the set A

- Interpolation guaranteed for $A = \Gamma_{N-1}$.
- 2 Minimal for s = 1.

$$im \Pi_{N-1} = \binom{N-1+s}{s} \simeq N^s/s!.$$

• F_{Γ_N,Γ_N} too large: e.g. s = 13, N = 200 yields $10^{20} \times 10^{20}$.

Notabene: naive algorithm

Build
$$F_n := F_{\Gamma_n,\Gamma_n}$$
, $n = 0, 1, 2, \dots$, until rank $F_n = \operatorname{rank} F_{n+1}$.

Tomas Sauer (Uni Passau)

Two things needed

- Interpolation space for *all* sets *X* with $\#X \leq N$.
- efficient polynomial solver.

Choices for the set A

- Interpolation guaranteed for $A = \Gamma_{N-1}$.
- 2 Minimal for s = 1.

$$online \Pi_{N-1} = \binom{N-1+s}{s} \simeq N^s/s!.$$

• F_{Γ_N,Γ_N} too large: e.g. s = 13, N = 200 yields $10^{20} \times 10^{20}$.

Notabene: naive algorithm does not work

Build $F_n := F_{\Gamma_n,\Gamma_n}$, n = 0, 1, 2, ..., until rank $F_n = \operatorname{rank} F_{n+1}$. Example: $\Omega = \{\omega, \omega'\}, f_{\omega} = -f_{\omega'}$

Tomas Sauer (Uni Passau)

Two things needed

- Interpolation space for *all* sets *X* with $\#X \leq N$.
- 2 Efficient polynomial solver.

Choices for the set A

- Interpolation guaranteed for $A = \Gamma_{N-1}$.
- 2 Minimal for s = 1.

$$online \Pi_{N-1} = \binom{N-1+s}{s} \simeq N^s/s!.$$

• F_{Γ_N,Γ_N} too large: e.g. s = 13, N = 200 yields $10^{20} \times 10^{20}$.

Notabene: naive algorithm does not work

Build
$$F_n := F_{\Gamma_n,\Gamma_n}$$
, $n = 0, 1, 2, ...$, until rank $F_n = \operatorname{rank} F_{n+1}$.
Example: $\Omega = \{\omega, \omega'\}, f_{\omega} = -f_{\omega'} \Rightarrow F_0 = f_{\omega} e^{\omega^{T_0}} + f_{\omega'} e^{\omega'^{T_0}}$

Tomas Sauer (Uni Passau)

Two things needed

- Interpolation space for *all* sets *X* with $\#X \leq N$.
- 2 Efficient polynomial solver.

Choices for the set A

- Interpolation guaranteed for $A = \Gamma_{N-1}$.
- 2 Minimal for s = 1.

$$online \Pi_{N-1} = \binom{N-1+s}{s} \simeq N^s/s!.$$

• F_{Γ_N,Γ_N} too large: e.g. s = 13, N = 200 yields $10^{20} \times 10^{20}$.

Notabene: naive algorithm does not work

Build $F_n := F_{\Gamma_n,\Gamma_n}$, n = 0, 1, 2, ..., until rank $F_n = \operatorname{rank} F_{n+1}$. Example: $\Omega = \{\omega, \omega'\}, f_\omega = -f_{\omega'} \Rightarrow F_0 = f_\omega + f_{\omega'}$

Tomas Sauer (Uni Passau)

Two things needed

- Interpolation space for *all* sets *X* with $\#X \leq N$.
- 2 Efficient polynomial solver.

Choices for the set A

- Interpolation guaranteed for $A = \Gamma_{N-1}$.
- 2 Minimal for s = 1.

$$online \Pi_{N-1} = \binom{N-1+s}{s} \simeq N^s/s!.$$

• F_{Γ_N,Γ_N} too large: e.g. s = 13, N = 200 yields $10^{20} \times 10^{20}$.

Notabene: naive algorithm does not work

Build $F_n := F_{\Gamma_n,\Gamma_n}$, n = 0, 1, 2, ..., until rank $F_n = \operatorname{rank} F_{n+1}$. Example: $\Omega = \{\omega, \omega'\}, f_\omega = -f_{\omega'} \Rightarrow F_0 = 0$.

Tomas Sauer (Uni Passau)

Definition

 $\mathscr{P} \subset \Pi$ *universal* of order *N* if \mathscr{P} is interpolation space space for any $X \subset \mathbb{C}^s$ with $\# \leq N$.

Classical problem: minimal universal space

Given N, what is the least dimensional subspace of Π that allows for interpolation at any $X \subset \mathbb{C}^s$ with $\#X \leq N$?

Prony version, monomial

Given *N*, what is the smallest set $\Upsilon_N \subset \Gamma$ with:

- for any $X \subset \mathbb{C}^s$, $\#X \leq N$,
- there exists $A \subset \Upsilon_N$, #A = #X,
- such that A is a degree reducing interpolation set for X.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 14 / 24

ヘロア 人間 アメヨアメヨア

Definition (poor man's Haar space)

$\mathscr{P} \subset \Pi$ *universal* of order *N* if \mathscr{P} is interpolation space space for any $X \subset \mathbb{C}^s$ with $\# \leq N$.

Classical problem: minimal universal space

Given *N*, what is the least dimensional subspace of Π that allows for interpolation at any $X \subset \mathbb{C}^s$ with $\#X \leq N$?

Prony version, monomial

Given *N*, what is the smallest set $\Upsilon_N \subset \Gamma$ with:

- for any $X \subset \mathbb{C}^s$, $\#X \leq N$,
- there exists $A \subset \Upsilon_N$, #A = #X,
- such that A is a degree reducing interpolation set for X.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 14 / 24

ヘロア 人間 アメヨアメヨア

Definition (poor man's Haar space)

 $\mathscr{P} \subset \Pi$ *universal* of order *N* if \mathscr{P} is interpolation space space for any $X \subset \mathbb{C}^s$ with $\# \leq N$.

Classical problem: minimal universal space

Given *N*, what is the least dimensional subspace of Π that allows for interpolation at any $X \subset \mathbb{C}^s$ with $\#X \leq N$?

Prony version, monomial

Given *N*, what is the smallest set $\Upsilon_N \subset \Gamma$ with:

- for any $X \subset \mathbb{C}^s$, $\#X \leq N$,
- there exists $A \subset \Upsilon_N$, #A = #X,
- such that A is a degree reducing interpolation set for X.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 14 / 24

ヘロア 人間 アメヨアメヨア

Definition (poor man's Haar space)

 $\mathscr{P} \subset \Pi$ *universal* of order *N* if \mathscr{P} is interpolation space space for any $X \subset \mathbb{C}^s$ with $\# \leq N$.

Classical problem: minimal universal space

Given *N*, what is the least dimensional subspace of Π that allows for interpolation at any $X \subset \mathbb{C}^s$ with $\#X \leq N$?

Prony version, monomial

Given *N*, what is the smallest set $\Upsilon_N \subset \Gamma$ with:

- for any $X \subset \mathbb{C}^s$, $\#X \leq N$,
- there exists $A \subset \Upsilon_N$, #A = #X,
- such that *A* is a *degree reducing interpolation set* for *X*.

Tomas Sauer (Uni Passau)

Prony in several variables

A 1

Definition (poor man's Haar space)

 $\mathscr{P} \subset \Pi$ *universal* of order *N* if \mathscr{P} is interpolation space space for any $X \subset \mathbb{C}^s$ with $\# \leq N$.

Classical problem: minimal universal space

Given *N*, what is the least dimensional subspace of Π that allows for interpolation at any $X \subset \mathbb{C}^s$ with $\#X \leq N$?

Prony version, monomial

Given *N*, what is the smallest set $\Upsilon_N \subset \Gamma$ with:

- for any $X \subset \mathbb{C}^s$, $\#X \leq N$,
- there exists $A \subset \Upsilon_N$, #A = #X,
- such that *A* is a *degree reducing interpolation set* for *X*.

Tomas Sauer (Uni Passau)

Prony in several variables

Definition (poor man's Haar space)

 $\mathscr{P} \subset \Pi$ *universal* of order *N* if \mathscr{P} is interpolation space space for any $X \subset \mathbb{C}^s$ with $\# \leq N$.

Classical problem: minimal universal space

Given *N*, what is the least dimensional subspace of Π that allows for interpolation at any $X \subset \mathbb{C}^s$ with $\#X \leq N$?

Prony version, monomial

Given *N*, what is the smallest set $\Upsilon_N \subset \Gamma$ with:

- for any $X \subset \mathbb{C}^s$, $\#X \leq N$,
- there exists $A \subset \Upsilon_N$, #A = #X,

• such that *A* is a *degree reducing interpolation set* for *X*.

Tomas Sauer (Uni Passau)

Definition (poor man's Haar space)

 $\mathscr{P} \subset \Pi$ *universal* of order *N* if \mathscr{P} is interpolation space space for any $X \subset \mathbb{C}^s$ with $\# \leq N$.

Classical problem: minimal universal space

Given *N*, what is the least dimensional subspace of Π that allows for interpolation at any $X \subset \mathbb{C}^s$ with $\#X \leq N$?

Prony version, monomial

Given *N*, what is the smallest set $\Upsilon_N \subset \Gamma$ with:

- for any $X \subset \mathbb{C}^s$, $\#X \leq N$,
- there exists $A \subset \Upsilon_N$, #A = #X,
- such that *A* is a *degree reducing interpolation set* for *X*.

Definition

1 $A \subset \Gamma$ is called *lower set* if $\alpha \in A \Rightarrow \{\beta : \beta \leq \alpha\} \subseteq A$.

② $\mathcal{L}_j :=$ all lower sets of cardinality *j*.

Theorem

• If Π_{Θ} is degree reducing monomially universal then

The set on the right hand side of (1) is universal ... $\alpha \in \Upsilon$ iff $\prod_{j=1}^{s} (1 + \alpha_j) \leq N$.

Tomas Sauer (Uni Passau)

Prony in several variables

Definition

② $\mathcal{L}_j :=$ all lower sets of cardinality *j*.

Theorem

• If Π_{Θ} is degree reducing monomially universal then

$\Theta \supseteq \bigcup_{j=1}^N \bigcup_{A \in \mathscr{L}_j} B$

The set on the right hand side of (1) is universal ... $\alpha \in \Upsilon$ iff $\prod_{j=1}^{s} (1 + \alpha_j) \leq N.$

Tomas Sauer (Uni Passau)

Prony in several variables

Definition

- 2 $\mathscr{L}_j :=$ all lower sets of cardinality *j*.

Theorem

• If Π_{Θ} is degree reducing monomially universal then

$\Theta \supseteq \bigcup_{j=1}^N \bigcup_{A \in \mathscr{L}_j} B$

The set on the right hand side of (1) is universal ... $\alpha \in \Upsilon$ iff $\prod_{i=1}^{s} (1 + \alpha_i) \leq N$.

Tomas Sauer (Uni Passau)

Prony in several variables

Definition

- 2 $\mathscr{L}_j :=$ all lower sets of cardinality *j*.

Theorem

1 If Π_{Θ} is degree reducing monomially universal then

$$\Theta \supseteq \bigcup_{j=1}^N \bigcup_{A \in \mathscr{L}_j} B.$$

The set on the right hand side of (1) is universal ...
 α ∈ Υ iff ∏ (1 + α_i) ≤ N.

Tomas Sauer (Uni Passau)

Prony in several variables

(1)

Definition

- **2** $\mathscr{L}_j :=$ all lower sets of cardinality *j*.

Theorem (Tools: H-bases and ideals of tensor product grids)

 ${\color{black} 0}$ If Π_{Θ} is degree reducing monomially universal then

$$\Theta \supseteq \bigcup_{j=1}^N \bigcup_{A \in \mathscr{L}_j} B.$$

One set on the right hand side of (1) is universal ...
 One are γ iff ^s (1 + α_i) ≤ N.

Tomas Sauer (Uni Passau)

(1)

Definition

- **2** $\mathscr{L}_j :=$ all lower sets of cardinality *j*.

Theorem (Tools: H-bases and ideals of tensor product grids)

 ${\color{black} 0}$ If Π_{Θ} is degree reducing monomially universal then

$$\Theta \supseteq \bigcup_{j=1}^N \bigcup_{A \in \mathscr{L}_j} B.$$

Interset on the right hand side of (1) is universal ...

 $a \in \Upsilon \text{ iff } \prod (1 + \alpha_j) \leq N.$

Tomas Sauer (Uni Passau)

Definition

- **2** $\mathscr{L}_j :=$ all lower sets of cardinality *j*.

Theorem (Tools: H-bases and ideals of tensor product grids)

 ${\color{black} 0}$ If Π_{Θ} is degree reducing monomially universal then

$$\Theta \supseteq \bigcup_{j=1}^N \bigcup_{A \in \mathscr{L}_j} B \eqqcolon \Upsilon$$

(1)

Interset on the right hand side of (1) is universal ...

 $a \in \Upsilon \text{ iff } \prod (1 + \alpha_j) \leq N.$

Tomas Sauer (Uni Passau)

Prony in several variables

Definition

- 2 $\mathscr{L}_j :=$ all lower sets of cardinality *j*.

Theorem (Tools: H-bases and ideals of tensor product grids)

 ${\color{black} 0}$ If Π_{Θ} is degree reducing monomially universal then

$$\Theta \supseteq \bigcup_{j=1}^{N} \bigcup_{A \in \mathscr{L}_{j}} B \eqqcolon \Upsilon.$$
(1)

2 The set Υ is universal ...

 $\ \, \mathbf{\alpha} \in \Upsilon \text{ iff } \prod (1+\alpha_j) \leq N.$

Tomas Sauer (Uni Passau)

Prony in several variables

(1)

Definition

- **2** $\mathscr{L}_j :=$ all lower sets of cardinality *j*.

Theorem (Tools: H-bases and ideals of tensor product grids)

 ${\color{black} 0}$ If Π_{Θ} is degree reducing monomially universal then

$$\Theta \supseteq \bigcup_{j=1}^N \bigcup_{A \in \mathscr{L}_j} B =: \Upsilon$$

2 The set Υ is minimally universal ...

3
$$\alpha \in \Upsilon$$
 iff $\prod (1 + \alpha_j) \leq N$.

Tomas Sauer (Uni Passau)

(1)

Definition

- **2** $\mathscr{L}_j :=$ all lower sets of cardinality *j*.

Theorem (Tools: H-bases and ideals of tensor product grids)

1 If Π_{Θ} is degree reducing monomially universal then

$$\Theta \supseteq \bigcup_{j=1}^N \bigcup_{A \in \mathscr{L}_j} B \eqqcolon \Upsilon.$$

The set Υ is minimally universal ...
α ∈ Υ iff ∏_{i=1}^s (1 + α_j) ≤ N.

Tomas Sauer (Uni Passau)

Prony in several variables

(1)

Definition

- **2** $\mathscr{L}_j :=$ all lower sets of cardinality *j*.

Theorem (Tools: H-bases and ideals of tensor product grids)

 ${\color{black} 0}$ If Π_{Θ} is degree reducing monomially universal then

$$\Theta \supseteq \bigcup_{j=1}^N \bigcup_{A \in \mathscr{L}_j} B \eqqcolon \Upsilon$$

Solution The set Υ is minimally universal ...
 α ∈ Υ iff ∏_{j=1}^s (1 + α_j) ≤ N. Positive part of *hyperbolic cross*.

Tomas Sauer (Uni Passau)

Theorem

The hyperbolic cross $\Upsilon_N \subset \mathbb{N}_0^s$ of order *N*

- is the unique minimal universal monomial degree reducing interpolation space.
- let has cardinality $\leq N \log^{s-1} N$.
- satisfies $\Upsilon_N \subset \Gamma_N \subset \{ \|\alpha\|_{\infty} \leq N \}.$

Algorithm (Prony ideal & interpolation space)

For increasing sets $\{0\} = A_0 \subset A_1 \subset \cdots \subset \mathbb{N}_0^s$

- 🕘 from ker F
-) from $(\ker F_j)^c$

Tomas Sauer (Uni Passau)

Prony in several variables

Theorem

The hyperbolic cross $\Upsilon_N \subset \mathbb{N}_0^s$ of order *N*

- is the unique minimal universal monomial degree reducing interpolation space.
- 2 has cardinality $\leq N \log^{s-1} N$.
- (a) satisfies $\Upsilon_N \subset \Gamma_N \subset \{ \|\alpha\|_{\infty} \leq N \}.$

Algorithm (Prony ideal & interpolation space)

• build
$$F_j = F_{\Upsilon_N,A_j} = \left[F_{\Upsilon_N,A_{j-1}} | *\right]$$
,

- 🕘 from ker F
- from $(\ker F_j)^c$

Theorem

The hyperbolic cross $\Upsilon_N \subset \mathbb{N}_0^s$ of order *N*

- is the unique minimal universal monomial degree reducing interpolation space.
- 2 has cardinality $\leq N \log^{s-1} N$.

⑤ satisfies $\Upsilon_N \subset \Gamma_N \subset \{ \| \alpha \|_{\infty} \le N \}.$

Algorithm (Prony ideal & interpolation space)

For increasing sets $\{0\} = A_0 \subset A_1 \subset \cdots \subset \mathbb{N}_0^s$

- 🕘 from ker F
-) from $(\ker F_j)^c$

Tomas Sauer (Uni Passau)

Theorem

The hyperbolic cross $\Upsilon_N \subset \mathbb{N}_0^s$ of order *N*

- is the unique minimal universal monomial degree reducing interpolation space.
- 2 has cardinality $\leq N \log^{s-1} N$.
- satisfies $\Upsilon_N \subset \Gamma_N \subset \{\|\alpha\|_{\infty} \leq N\}.$

Algorithm (Prony ideal & interpolation space)

• build
$$F_j = F_{\Upsilon_N, A_j} = \left[F_{\Upsilon_N, A_{j-1}} | *\right]$$
,

- 🕘 from ker F
-) from $(\ker F_j)^c$

Theorem

The hyperbolic cross $\Upsilon_N \subset \mathbb{N}_0^s$ of order *N*

- is the unique minimal universal monomial degree reducing interpolation space.
- 2 has cardinality $\leq N \log^{s-1} N$.
- satisfies $\Upsilon_N \subset \Gamma_N \subset \{\|\alpha\|_{\infty} \leq N\}.$

 S. Kunis, Th. Peter, T. Römer, and U. von der Ohe, A multivariate generalization of Prony's method, Linear Algebra Appl. 490 (2016), 31–47.

• T. Sauer, Prony's method in several variables, Numer. Math., to appear

Algorithm (Prony ideal & interpolation space) For increasing sets $\{0\} = A_0 \subset A_1 \subset \cdots \subset \mathbb{N}_0^s$

Tomas Sauer (Uni Passau)

Theorem

The hyperbolic cross $\Upsilon_N \subset \mathbb{N}_0^s$ of order *N*

- is the unique minimal universal monomial degree reducing interpolation space.
- 2 has cardinality $\leq N \log^{s-1} N$.
- satisfies $\Upsilon_N \subset \Gamma_N \subset \{\|\alpha\|_{\infty} \leq N\}.$

Algorithm (Prony ideal & interpolation space)

• build
$$\mathbf{F}_j = \mathbf{F}_{\Upsilon_N, A_j} = \left| \mathbf{F}_{\Upsilon_N, A_{j-1}} \right| * \right|$$

$$from (\ker F_j)^c$$

Theorem

The hyperbolic cross $\Upsilon_N \subset \mathbb{N}_0^s$ of order *N*

- is the unique minimal universal monomial degree reducing interpolation space.
- **2** has cardinality $\leq N \log^{s-1} N$.
- satisfies $\Upsilon_N \subset \Gamma_N \subset \{\|\alpha\|_{\infty} \leq N\}.$

Algorithm (Prony ideal & interpolation space)

1 build
$$F_j = F_{\Upsilon_N, A_j} = \left[F_{\Upsilon_N, A_{j-1}} | *\right]$$
,

3 from
$$(\ker F_j)^c$$

Theorem

The hyperbolic cross $\Upsilon_N \subset \mathbb{N}_0^s$ of order *N*

- is the unique minimal universal monomial degree reducing interpolation space.
- 2 has cardinality $\leq N \log^{s-1} N$.
- satisfies $\Upsilon_N \subset \Gamma_N \subset \{ \|\alpha\|_{\infty} \leq N \}.$

Algorithm (Prony ideal & interpolation space)

$$I build \mathbf{F}_j = \mathbf{F}_{\mathbf{Y}_N, A_j} = \left[\mathbf{F}_{\mathbf{Y}_N, A_{j-1}} \,|\, * \right],$$

- 2 from ker F_j
- **(** from $(\ker F_j)^c$

Theorem

The hyperbolic cross $\Upsilon_N \subset \mathbb{N}_0^s$ of order *N*

- is the unique minimal universal monomial degree reducing interpolation space.
- 2 has cardinality $\leq N \log^{s-1} N$.
- satisfies $\Upsilon_N \subset \Gamma_N \subset \{ \|\alpha\|_{\infty} \leq N \}.$

Algorithm (Prony ideal & interpolation space)

$$I build \mathbf{F}_j = \mathbf{F}_{\mathbf{Y}_N, A_j} = \left[\mathbf{F}_{\mathbf{Y}_N, A_{j-1}} \,|\, * \right],$$

- 2) from ker F_j extend ideal basis to $I_\Omega \cap \Pi_{A_j}$,
- **i** from $(\ker F_j)^c$

Theorem

The hyperbolic cross $\Upsilon_N \subset \mathbb{N}_0^s$ of order *N*

- is the unique minimal universal monomial degree reducing interpolation space.
- **2** has cardinality $\leq N \log^{s-1} N$.
- satisfies $\Upsilon_N \subset \Gamma_N \subset \{\|\alpha\|_{\infty} \leq N\}.$

Algorithm (Prony ideal & interpolation space)

For increasing sets $\{0\} = A_0 \subset A_1 \subset \cdots \subset \mathbb{N}_0^s$

1 build
$$F_j = F_{\Upsilon_N, A_j} = [F_{\Upsilon_N, A_{j-1}} | *],$$

2) from ker F_j extend ideal basis to $I_\Omega \cap \Pi_{A_j}$,

3 from $(\ker F_i)^c$ extend interpolation space to Π_{A_i} ,

Theorem

The hyperbolic cross $\Upsilon_N \subset \mathbb{N}_0^s$ of order *N*

- is the unique minimal universal monomial degree reducing interpolation space.
- 2 has cardinality $\leq N \log^{s-1} N$.
- satisfies $\Upsilon_N \subset \Gamma_N \subset \{ \|\alpha\|_{\infty} \leq N \}.$

Algorithm (Prony ideal & interpolation space)

For increasing sets $\{0\} = A_0 \subset A_1 \subset \cdots \subset \mathbb{N}_0^s$

1 build
$$\mathbf{F}_j = \mathbf{F}_{\mathbf{Y}_N, A_j} = \left[\mathbf{F}_{\mathbf{Y}_N, A_{j-1}} | *\right],$$

2 from ker F_j extend ideal basis to $I_{\Omega} \cap \Pi_{A_j}$,

• from $(\ker F_j)^c$ extend interpolation space to Π_{A_j} ,

until rank F_j = rank F_{j-1} .

Theorem

The hyperbolic cross $\Upsilon_N \subset \mathbb{N}_0^s$ of order *N*

- is the unique minimal universal monomial degree reducing interpolation space.
- 2 has cardinality $\leq N \log^{s-1} N$.
- satisfies $\Upsilon_N \subset \Gamma_N \subset \{ \|\alpha\|_{\infty} \leq N \}.$

Algorithm (Prony ideal & interpolation space)

For increasing sets $\{0\} = A_0 \subset A_1 \subset \cdots \subset \mathbb{N}_0^s$ filling $\Gamma_0, \Gamma_1, \ldots$

• build
$$\mathbf{F}_j = \mathbf{F}_{\mathbf{Y}_N, A_j} = \left[\mathbf{F}_{\mathbf{Y}_N, A_{j-1}} | *\right],$$

2 from ker F_j extend ideal basis to $I_{\Omega} \cap \prod_{A_j}$,

• from $(\ker F_j)^c$ extend interpolation space to Π_{A_j} ,

until rank F_j = rank F_{j-1} .

Numerically or Symbolically?

O Symbolic:

Sparse Monomial Interpolation with Least Elements

Symbolic/Numeric:

Sparse Homogeneous Ideal Techniques

Theorem (Small sample sets)

SMILE computes Gröbner basis and interpolation space from at most $s N^2 \log^{s-1} N$ samples of f on Γ .

Remarks

- N^2 cannot be improved.
- Nonlinear equations are generated in "good" form:

Symbolic:

Sparse Monomial Interpolation with Least Elements

Symbolic/Numeric:

Sparse Homogeneous Ideal Techniques

Theorem (Small sample sets)

SMILE computes Gröbner basis and interpolation space from at most $s N^2 \log^{s-1} N$ samples of f on Γ .

Remarks

- N^2 cannot be improved.
- Nonlinear equations are generated in "good" form:

Symbolic:

Sparse Monomial Interpolation with Least Elements

Symbolic/Numeric:

Sparse Homogeneous Ideal Techniques

Theorem (Small sample sets)

SMILE computes Gröbner basis and interpolation space from at most $s N^2 \log^{s-1} N$ samples of f on Γ .

Remarks

- N^2 cannot be improved.
- Nonlinear equations are generated in "good" form:

Symbolic:

Sparse Monomial Interpolation with Least Elements (SMILE).

Symbolic/Numeric:

Sparse Homogeneous Ideal Techniques

Theorem (Small sample sets)

SMILE computes Gröbner basis and interpolation space from at most $s N^2 \log^{s-1} N$ samples of f on Γ .

Remarks

- N^2 cannot be improved.
- Nonlinear equations are generated in "good" form:

Symbolic:

Sparse Monomial Interpolation with Least Elements (SMILE).

Symbolic/Numeric:

Sparse Homogeneous Ideal Techniques

Theorem (Small sample sets)

SMILE computes Gröbner basis and interpolation space from at most $s N^2 \log^{s-1} N$ samples of f on Γ .

Remarks

- N^2 cannot be improved.
- Nonlinear equations are generated in "good" form:

Tomas Sauer (Uni Passau)

Symbolic:

Sparse Monomial Interpolation with Least Elements (SMILE).

Symbolic/Numeric:

Sparse Homogeneous Ideal Techniques

Theorem (Small sample sets)

SMILE computes Gröbner basis and interpolation space from at most $s N^2 \log^{s-1} N$ samples of f on Γ .

Remarks

- (1) N^2 cannot be improved.
- Onlinear equations are generated in "good" form:

Symbolic:

Sparse Monomial Interpolation with Least Elements (SMILE).

Symbolic/Numeric:

Sparse Homogeneous Ideal Techniques

Theorem (Small sample sets)

SMILE computes Gröbner basis and interpolation space from at most $s N^2 \log^{s-1} N$ samples of f on Γ .

Remarks

• N^2 cannot be improved.

Nonlinear equations are generated in "good" form:

Symbolic:

Sparse Monomial Interpolation with Least Elements (SMILE).

Symbolic/Numeric:

Sparse Homogeneous Ideal Techniques

Theorem (Small sample sets)

SMILE computes Gröbner basis and interpolation space from at most $s N^2 \log^{s-1} N$ samples of f on Γ .

Remarks

- N^2 cannot be improved.
- Nonlinear equations are generated in "good" form:

Symbolic:

Sparse Monomial Interpolation with Least Elements (SMILE).

Symbolic/Numeric:

Sparse Homogeneous Ideal Techniques

Theorem (Small sample sets)

SMILE computes Gröbner basis and interpolation space from at most $s N^2 \log^{s-1} N$ samples of f on Γ .

Remarks

- N^2 cannot be improved.
- Nonlinear equations are generated in "good" form:

Gröbner/H–basis + graded interpolation basis.

Rank detection

• Compute SVD of *block augmented* $F_i = [F_{i-1} | A_i]$.

 $\circ \tau \geq \sigma_{k+1} \geq \cdots \geq \sigma_n$ yields

 $\|F_j x_j\|_2 \leq \tau \|x\|_2, \qquad x \in \operatorname{span} \{v_1, \ldots, v_{n-k}\}.$

• $F_i = U\Sigma V$: *V* gives bases for ker F_i and (ker F_i)^{*c*}.

SVD update [with J. M. Peña]

- Use SVD of F_{i-1} for SVD of F_i .
- Strategy for given threshold τ.
- Uses QR and SVD of smaller matrices.
- Guarantees rank $F_i \ge \operatorname{rank} F_{i-1}$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 18 / 24

Rank detection

• Compute SVD of *block augmented* $F_j = [F_{j-1} | A_j]$.

 $\ 2 \ \ \tau \geq \sigma_{k+1} \geq \cdots \geq \sigma_n \text{ yields}$

 $\|F_j x_j\|_2 \leq \tau \|x\|_2, \qquad x \in \operatorname{span} \{v_1, \ldots, v_{n-k}\}.$

(a) $F_j = U\Sigma V$: *V* gives bases for ker F_j and (ker F_j)^{*c*}.

SVD update [with J. M. Peña]

- Use SVD of F_{i-1} for SVD of F_i .
- Strategy for given threshold τ.
- Uses QR and SVD of smaller matrices.
- Guarantees rank $F_j \ge \operatorname{rank} F_{j-1}$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 18 / 24

Rank detection

- Compute SVD of *block augmented* $F_j = [F_{j-1} | A_j]$.
- **2** $\tau \geq \sigma_{k+1} \geq \cdots \geq \sigma_n$ yields

 $\|F_j x_j\|_2 \leq \tau \|x\|_2, \qquad x \in \operatorname{span} \{v_1, \ldots, v_{n-k}\}.$

• $F_i = U\Sigma V$: *V* gives bases for ker F_j and (ker F_j)^{*c*}.

SVD update [with J. M. Peña]

- Use SVD of F_{i-1} for SVD of F_i .
- Strategy for given threshold τ.
- Uses QR and SVD of smaller matrices.
- Guarantees rank $F_j \ge \operatorname{rank} F_{j-1}$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 18 / 24

Rank detection

- Compute SVD of *block augmented* $F_j = [F_{j-1} | A_j]$.
- **2** $\tau \geq \sigma_{k+1} \geq \cdots \geq \sigma_n$ yields

 $\|F_j x_j\|_2 \leq \tau \|x\|_2, \qquad x \in \operatorname{span} \{v_1, \ldots, v_{n-k}\}.$

• $F_j = U\Sigma V$: *V* gives bases for ker F_j and $(\ker F_j)^c$.

SVD update [with J. M. Peña]

- Use SVD of F_{j-1} for SVD of F_j .
- Strategy for given threshold τ.
- Uses QR and SVD of smaller matrices.
- Guarantees rank $F_j \ge \operatorname{rank} F_{j-1}$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 18 / 24

Rank detection

- Compute SVD of *block augmented* $F_j = [F_{j-1} | A_j]$.
- **2** $\tau \ge \sigma_{k+1} \ge \cdots \ge \sigma_n$ yields

 $\|F_j x_j\|_2 \leq \tau \|x\|_2, \qquad x \in \operatorname{span} \{v_1, \ldots, v_{n-k}\}.$

• $F_j = U\Sigma V$: *V* gives bases for ker F_j and $(\ker F_j)^c$.

SVD update [with J. M. Peña]

- Use SVD of F_{j-1} for SVD of F_j .
- ⁽²⁾ Strategy for given threshold τ .
- Ises QR and SVD of smaller matrices.
- Guarantees rank $F_j \geq \operatorname{rank} F_{j-1}$.

Tomas Sauer (Uni Passau)

Prony in several variables

Э

Rank detection

- Compute SVD of *block augmented* $F_j = [F_{j-1} | A_j]$.
- **2** $\tau \geq \sigma_{k+1} \geq \cdots \geq \sigma_n$ yields

 $\|F_j x_j\|_2 \leq \tau \|x\|_2, \qquad x \in \operatorname{span} \{v_1, \ldots, v_{n-k}\}.$

• $F_j = U\Sigma V$: *V* gives bases for ker F_j and $(\ker F_j)^c$.

SVD update [with J. M. Peña]

- Use SVD of F_{j-1} for SVD of F_j .
- 2 Strategy for given threshold τ .
- Ises QR and SVD of smaller matrices.
- Guarantees rank $F_j \geq \operatorname{rank} F_{j-1}$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 18 / 24

Э

Rank detection

- Compute SVD of *block augmented* $F_j = [F_{j-1} | A_j]$.
- **2** $\tau \geq \sigma_{k+1} \geq \cdots \geq \sigma_n$ yields

 $\|F_j x_j\|_2 \leq \tau \|x\|_2, \qquad x \in \operatorname{span} \{v_1, \ldots, v_{n-k}\}.$

• $F_j = U\Sigma V$: *V* gives bases for ker F_j and $(\ker F_j)^c$.

SVD update [with J. M. Peña]

- Use SVD of F_{j-1} for SVD of F_j .
- Strategy for given threshold τ.
- I Uses QR and SVD of smaller matrices.

• Guarantees rank $F_j \ge \operatorname{rank} F_{j-1}$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 18 / 24

3

Rank detection

- Compute SVD of *block augmented* $F_j = [F_{j-1} | A_j]$.
- $\tau \geq \sigma_{k+1} \geq \cdots \geq \sigma_n$ yields

 $\|F_j x_j\|_2 \leq \tau \|x\|_2, \qquad x \in \operatorname{span} \{v_1, \ldots, v_{n-k}\}.$

• $F_j = U\Sigma V$: *V* gives bases for ker F_j and $(\ker F_j)^c$.

SVD update [with J. M. Peña]

- Use SVD of F_{j-1} for SVD of F_j .
- **2** Strategy for given threshold τ .
- Uses QR and SVD of smaller matrices.

) Guarantees rank $F_j \ge$ rank F_{j-1} .

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 18 / 24

3

Rank detection

- Compute SVD of *block augmented* $F_j = [F_{j-1} | A_j]$.
- $\tau \geq \sigma_{k+1} \geq \cdots \geq \sigma_n$ yields

 $\|F_j x_j\|_2 \leq \tau \|x\|_2, \qquad x \in \operatorname{span} \{v_1, \ldots, v_{n-k}\}.$

• $F_j = U\Sigma V$: *V* gives bases for ker F_j and $(\ker F_j)^c$.

SVD update [with J. M. Peña]

- Use SVD of F_{j-1} for SVD of F_j .
- **2** Strategy for given threshold τ .
- Uses QR and SVD of smaller matrices.
- Guarantees rank $F_j \ge \operatorname{rank} F_{j-1}$.

Rank detection

- Compute SVD of *block augmented* $F_j = [F_{j-1} | A_j]$.
- $\tau \geq \sigma_{k+1} \geq \cdots \geq \sigma_n$ yields

 $\|F_j x_j\|_2 \leq \tau \|x\|_2, \qquad x \in \operatorname{span} \{v_1, \ldots, v_{n-k}\}.$

• $F_j = U\Sigma V$: *V* gives bases for ker F_j and $(\ker F_j)^c$.

SVD update [with J. M. Peña]

- Use SVD of F_{j-1} for SVD of F_j .
- **2** Strategy for given threshold τ .
- Solution Uses QR and SVD of smaller matrices.
- Guarantees rank $F_j \ge \operatorname{rank} F_{j-1}$ after thresholding.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 18 / 24

イロト 人間 とくほ とくほ とう

Multiplication tables for ideal projectors

- ① Multiplication: $\mathcal{P} \ni p$
- ② Linear operation on $\mathscr{P} \to \operatorname{matrix} M_i$ for a basis P of \mathscr{P} .
- Implicitly computable: reduction.
- Monomial basis: *Frobenius companion matrix*.

Theorem (Stetter, Sticklberger, ...)

The eigenvalues of the M_j are $(x_{\omega})_j$ and the eigenvectors ℓ_{ω} , $\omega \in \Omega$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 19 / 24

Multiplication tables for ideal projectors

- **1** Multiplication: $\mathscr{P} \ni p$
- ② Linear operation on $\mathscr{P} \to \operatorname{matrix} M_i$ for a basis P of \mathscr{P} .
- Implicitly computable: reduction.
- Monomial basis: *Frobenius companion matrix*.

Theorem (Stetter, Sticklberger, ...)

The eigenvalues of the M_j are $(x_{\omega})_j$ and the eigenvectors ℓ_{ω} , $\omega \in \Omega$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 19 / 24

Multiplication tables for ideal projectors

- Multiplication: $\mathscr{P} \ni p \mapsto (\cdot)_j p \in \Pi$
- ② Linear operation on $\mathscr{P} \to \operatorname{matrix} M_i$ for a basis P of \mathscr{P} .
- Implicitly computable: reduction.
- Monomial basis: *Frobenius companion matrix*.

Theorem (Stetter, Sticklberger, ...)

The eigenvalues of the M_j are $(x_{\omega})_j$ and the eigenvectors ℓ_{ω} , $\omega \in \Omega$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 19 / 24

イロト 人間 とくほ とくほ とう

Multiplication tables for ideal projectors

• Multiplication modulo ideal: $\mathscr{P} \ni p \mapsto L_{\mathscr{P}}((\cdot)_{j}p) \in \mathscr{P}.$

- ② Linear operation on $\mathscr{P} \to \text{matrix } M_i$ for a basis P of \mathscr{P} .
- Implicitly computable: reduction.
- Monomial basis: Frobenius companion matrix.

Theorem (Stetter, Sticklberger, ...)

The eigenvalues of the M_j are $(x_{\omega})_j$ and the eigenvectors ℓ_{ω} , $\omega \in \Omega$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 19 / 24

Multiplication tables for ideal projectors

- **(** Multiplication modulo ideal: $\mathscr{P} \ni p \mapsto L_{\mathscr{P}}((\cdot)_j p) \in \mathscr{P}$.
- ② Linear operation on \mathscr{P} → matrix M_i for a basis P of \mathscr{P} .

Implicitly computable: reduction.

Monomial basis: Frobenius companion matrix.

Theorem (Stetter, Sticklberger, ...)

The eigenvalues of the M_j are $(x_{\omega})_j$ and the eigenvectors ℓ_{ω} , $\omega \in \Omega$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 19 / 24

Multiplication tables for ideal projectors

- Multiplication modulo ideal: $\mathscr{P} \ni p \mapsto L_{\mathscr{P}}((\cdot)_{j}p) \in \mathscr{P}.$
- ② Linear operation on \mathscr{P} → matrix M_i for a basis P of \mathscr{P} .
- **Implicitly computable:** *reduction*.

Monomial basis: *Frobenius companion matrix*.

Theorem (Stetter, Sticklberger, ...)

The eigenvalues of the M_j are $(x_{\omega})_j$ and the eigenvectors ℓ_{ω} , $\omega \in \Omega$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 19 / 24

Multiplication tables for ideal projectors

- Multiplication modulo ideal: $\mathscr{P} \ni p \mapsto L_{\mathscr{P}}((\cdot)_{j}p) \in \mathscr{P}.$
- ② Linear operation on \mathscr{P} → matrix M_i for a basis P of \mathscr{P} .
- Implicitly computable: *reduction*. Relies on good decomposition.

Monomial basis: *Frobenius companion matrix*.

Theorem (Stetter, Sticklberger, ...)

The eigenvalues of the M_j are $(x_{\omega})_j$ and the eigenvectors ℓ_{ω} , $\omega \in \Omega$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 19 / 24

Multiplication tables for ideal projectors

- Multiplication modulo ideal: $\mathscr{P} \ni p \mapsto L_{\mathscr{P}}((\cdot)_{j}p) \in \mathscr{P}.$
 - 2 Linear operation on $\mathscr{P} \to \text{matrix } M_i$ for a basis P of \mathscr{P} .
- Implicitly computable: *reduction*. Relies on good decomposition.
- Monomial basis: Frobenius companion matrix.

Theorem (Stetter, Sticklberger, ...)

The eigenvalues of the M_j are $(x_{\omega})_j$ and the eigenvectors ℓ_{ω} , $\omega \in \Omega$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 19 / 24

Multiplication tables for ideal projectors

- Multiplication modulo ideal: $\mathscr{P} \ni p \mapsto L_{\mathscr{P}}((\cdot)_{j}p) \in \mathscr{P}.$
 - 2 Linear operation on $\mathscr{P} \to \text{matrix } M_i$ for a basis P of \mathscr{P} .
- Implicitly computable: *reduction*. Relies on good decomposition.
- Monomial basis: Frobenius companion matrix.

$$L_{\mathscr{P}}p = \sum_{\omega \in \Omega} p(x_{\omega}) \ell_{\omega}, \qquad \ell_{\omega}(\omega') = \delta_{\omega,\omega'}$$

Theorem (Stetter, Sticklberger, ...)

The *eigenvalues* of the M_j are $(x_{\omega})_j$ and the *eigenvectors* ℓ_{ω} , $\omega \in \Omega$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 19 / 24

Multiplication tables for ideal projectors

- Multiplication modulo ideal: $\mathscr{P} \ni p \mapsto L_{\mathscr{P}}((\cdot)_{j}p) \in \mathscr{P}.$
- ② Linear operation on \mathscr{P} → matrix M_i for a basis P of \mathscr{P} .
- Implicitly computable: *reduction*. Relies on good decomposition.
- Monomial basis: Frobenius companion matrix.

$$L_{\mathscr{P}}\left((\cdot)_{j}\ell_{\omega}\right)$$

Theorem (Stetter, Sticklberger, ...)

The eigenvalues of the M_j are $(x_{\omega})_j$ and the eigenvectors ℓ_{ω} , $\omega \in \Omega$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 19 / 24

Multiplication tables for ideal projectors

- Multiplication modulo ideal: $\mathscr{P} \ni p \mapsto L_{\mathscr{P}}((\cdot)_{j}p) \in \mathscr{P}.$
 - 2 Linear operation on $\mathscr{P} \to \text{matrix } M_j$ for a basis *P* of \mathscr{P} .
- Implicitly computable: *reduction*. Relies on good decomposition.
- Monomial basis: Frobenius companion matrix.

$$L_{\mathscr{P}}\left((\cdot)_{j}\ell_{\omega}\right) = \sum_{\omega' \in \Omega} \left((x_{\omega'})_{j} \ell_{\omega}(x_{\omega'}) \right) \, \ell_{\omega'}$$

Theorem (Stetter, Sticklberger, ...)

The eigenvalues of the M_j are $(x_{\omega})_j$ and the eigenvectors ℓ_{ω} , $\omega \in \Omega$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 19 / 24

Multiplication tables for ideal projectors

- Multiplication modulo ideal: $\mathscr{P} \ni p \mapsto L_{\mathscr{P}}((\cdot)_{j}p) \in \mathscr{P}.$
 - 2 Linear operation on $\mathscr{P} \to \text{matrix } M_j$ for a basis *P* of \mathscr{P} .
- Implicitly computable: *reduction*. Relies on good decomposition.
- Monomial basis: Frobenius companion matrix.

$$L_{\mathscr{P}}\left((\cdot)_{j}\ell_{\omega}\right) = \sum_{\omega' \in \Omega} (x_{\omega'})_{j} \,\delta_{\omega,\omega'}\,\ell_{\omega'}$$

Theorem (Stetter, Sticklberger, ...)

The eigenvalues of the M_j are $(x_{\omega})_j$ and the eigenvectors ℓ_{ω} , $\omega \in \Omega$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 19 / 24

Multiplication tables for ideal projectors

- Multiplication modulo ideal: $\mathscr{P} \ni p \mapsto L_{\mathscr{P}}((\cdot)_{j}p) \in \mathscr{P}.$
- ② Linear operation on \mathscr{P} → matrix M_i for a basis P of \mathscr{P} .
- Implicitly computable: *reduction*. Relies on good decomposition.
- Monomial basis: Frobenius companion matrix.

$$L_{\mathscr{P}}\left((\cdot)_{j}\ell_{\omega}\right) = (x_{\omega})_{j}\ell_{\omega}$$

Theorem (Stetter, Sticklberger, ...)

The eigenvalues of the M_j are $(x_{\omega})_j$ and the eigenvectors ℓ_{ω} , $\omega \in \Omega$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 19 / 24

Multiplication tables for ideal projectors

- Multiplication modulo ideal: $\mathscr{P} \ni p \mapsto L_{\mathscr{P}}((\cdot)_{j}p) \in \mathscr{P}.$
 - 2 Linear operation on $\mathscr{P} \to \text{matrix } M_i$ for a basis P of \mathscr{P} .
- Implicitly computable: *reduction*. Relies on good decomposition.
- Monomial basis: Frobenius companion matrix.

$$L_{\mathscr{P}}\left((\cdot)_{j}\ell_{\omega}\right) = (x_{\omega})_{j}\ell_{\omega}$$

Theorem (Stetter, Sticklberger, ...)

The *eigenvalues* of the M_j are $(x_{\omega})_j$ and the *eigenvectors* ℓ_{ω} , $\omega \in \Omega$.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 19 / 24

イロト 人間 とくほ とくほ とう

Random frequencies & coefficients, real, 100 tests

parameters		average error		max error		
S	# freq.	n	coeff	freq	coeff	freq
2	5	3	1.3688e-11	1.8332e-09	3.5131e-09	2.4165e-07
2	10	5	4.9366e-08	2.6388e-06	7.3010e-05	5.3330e-04
2	15	8	7.0614e-07	2.9725e-04	1.4659e-04	4.4493e-02
2	20	9	Inf	Inf	NaN	NaN
3	20	6	1.5874e-08	1.4165e-06	4.7337e-05	8.9382e-04
4	20	5	8.4712e-12	4.6565e-11	9.0309e-09	3.7456e-09
5	20	5	1.6879e-12	5.9416e-11	1.9510e-09	1.3243e-08
5	50	5	1.1079e-10	6.6070e-10	3.1709e-07	6.6913e-08
5	100	6	2.9307e-09	1.9431e-08	1.0034e-05	1.3912e-06
5	150	8	1.3142e-08	8.4199e-08	5.7281e-06	4.3975e-06

Tomas Sauer (Uni Passau)

Prony in several variables

Random frequencies, purely imaginary, 100 tests

parameters			average error		max error	
S	# freq.	n	coeff	freq	coeff	freq
2	10	5	1.3476e-14	3.4744e-13	6.0290e-12	1.3724e-10
2	20	7	2.5148e-14	1.2420e-12	3.2103e-11	7.8847e-10
2	50	11	5.9357e-14	3.9721e-12	1.1845e-10	5.5214e-09
2	100	15	9.0480e-13	5.7684e-11	8.8308e-09	2.0468e-07
5	100	6	2.3796e-15	4.3794e-15	3.1431e-11	3.2918e-14
5	150	8	2.3954e-15	4.7773e-15	1.1702e-11	6.9726e-14

Observations

Performs very well:

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 21 / 24

Random frequencies, purely imaginary, 100 tests

parameters			average error		max error	
S	# freq.	n	coeff	freq	coeff	freq
2	10	5	1.3476e-14	3.4744e-13	6.0290e-12	1.3724e-10
2	20	7	2.5148e-14	1.2420e-12	3.2103e-11	7.8847e-10
2	50	11	5.9357e-14	3.9721e-12	1.1845e-10	5.5214e-09
2	100	15	9.0480e-13	5.7684e-11	8.8308e-09	2.0468e-07
5	100	6	2.3796e-15	4.3794e-15	3.1431e-11	3.2918e-14
5	150	8	2.3954e-15	4.7773e-15	1.1702e-11	6.9726e-14

Observations

Performs very well:

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 21 / 24

Random frequencies, purely imaginary, 100 tests

parameters			average error		max error	
S	# freq.	n	coeff	freq	coeff	freq
2	10	5	1.3476e-14	3.4744e-13	6.0290e-12	1.3724e-10
2	20	7	2.5148e-14	1.2420e-12	3.2103e-11	7.8847e-10
2	50	11	5.9357e-14	3.9721e-12	1.1845e-10	5.5214e-09
2	100	15	9.0480e-13	5.7684e-11	8.8308e-09	2.0468e-07
5	100	6	2.3796e-15	4.3794e-15	3.1431e-11	3.2918e-14
5	150	8	2.3954e-15	4.7773e-15	1.1702e-11	6.9726e-14

Observations

Performs very well:

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 21 / 24

Random frequencies, purely imaginary, 100 tests

parameters			averag	average error		max error	
S	# freq.	n	coeff	freq	coeff	freq	
2	10	5	1.3476e-14	3.4744e-13	6.0290e-12	1.3724e-10	
2	20	7	2.5148e-14	1.2420e-12	3.2103e-11	7.8847e-10	
2	50	11	5.9357e-14	3.9721e-12	1.1845e-10	5.5214e-09	
2	100	15	9.0480e-13	5.7684e-11	8.8308e-09	2.0468e-07	
5	100	6	2.3796e-15	4.3794e-15	3.1431e-11	3.2918e-14	
5	150	8	2.3954e-15	4.7773e-15	1.1702e-11	6.9726e-14	

Observations

Performs very well:

 $#\Omega = 200, s = 13$: 2180 quartic equations in 154.26s, accuracy ~ 10^{-14}

be combined with hyperbolic cross.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 21 / 24

Random frequencies, purely imaginary, 100 tests

parameters			averag	e error	max error	
S	# freq.	n	coeff	freq	coeff	freq
2	10	5	1.3476e-14	3.4744e-13	6.0290e-12	1.3724e-10
2	20	7	2.5148e-14	1.2420e-12	3.2103e-11	7.8847e-10
2	50	11	5.9357e-14	3.9721e-12	1.1845e-10	5.5214e-09
2	100	15	9.0480e-13	5.7684e-11	8.8308e-09	2.0468e-07
5	100	6	2.3796e-15	4.3794e-15	3.1431e-11	3.2918e-14
5	150	8	2.3954e-15	4.7773e-15	1.1702e-11	6.9726e-14

Observations

- Performs very well:
 - $#\Omega = 200, s = 13$: 2180 quartic equations in 154.26s, accuracy ~ 10^{-14}
- 2 Can be combined with hyperbolic cross.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 21 / 24

3

Random frequencies, purely imaginary, 100 tests

parameters			averag	e error	max error	
S	# freq.	n	coeff	freq	coeff	freq
2	10	5	1.3476e-14	3.4744e-13	6.0290e-12	1.3724e-10
2	20	7	2.5148e-14	1.2420e-12	3.2103e-11	7.8847e-10
2	50	11	5.9357e-14	3.9721e-12	1.1845e-10	5.5214e-09
2	100	15	9.0480e-13	5.7684e-11	8.8308e-09	2.0468e-07
5	100	6	2.3796e-15	4.3794e-15	3.1431e-11	3.2918e-14
5	150	8	2.3954e-15	4.7773e-15	1.1702e-11	6.9726e-14

Observations

- Performs very well:
 - $#\Omega = 200, s = 13$: 2180 quartic equations in 154.26s, accuracy ~ 10^{-14}
- **2** Must be combined with hyperbolic cross.

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 21 / 24

Э

Perturbation of imaginary input data, 100 tests, 100 frequencies

parameters			averag	e error	max error	
S	ε	fail	coeff	freq	coeff	freq
5	10^{-5}	0	3.7885e-08	1.1462e-06	2.0235e-06	1.3860e-05
5	10^{-7}	0	3.7916e-10	1.1133e-08	2.1059e-08	7.8396e-08
5	10^{-10}	0	3.7221e-13	1.1200e-11	1.5896e-11	1.6209e-10
3	10^{-4}	27	0.0023822	0.0791873	5.3002	148.6645
4	10^{-4}	1	1.2563e-04	5.9020e+01	1.1638e+00	2.9213e+05
5	10^{-4}	2	3.7969e-07	1.1228e-05	6.8484e-06	7.1493e-05
10	10^{-4}	0	1.2672e-07	3.7955e-06	7.7848e-07	1.4004e-05

Explanation

SVD threshold tolerance adapted to error.

Compensates errors smaller than "conditioning"

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 22 / 24

- 32

ヘロト ヘロト ヘヨト ヘヨト

Perturbation of imaginary input data, 100 tests, 100 frequencies

parameters			averag	e error	max error	
S	ε	fail	coeff	freq	coeff	freq
5	10^{-5}	0	3.7885e-08	1.1462e-06	2.0235e-06	1.3860e-05
5	10^{-7}	0	3.7916e-10	1.1133e-08	2.1059e-08	7.8396e-08
5	10^{-10}	0	3.7221e-13	1.1200e-11	1.5896e-11	1.6209e-10
3	10^{-4}	27	0.0023822	0.0791873	5.3002	148.6645
4	10^{-4}	1	1.2563e-04	5.9020e+01	1.1638e+00	2.9213e+05
5	10^{-4}	2	3.7969e-07	1.1228e-05	6.8484e-06	7.1493e-05
10	10^{-4}	0	1.2672e-07	3.7955e-06	7.7848e-07	1.4004e-05

Explanation

- SVD threshold tolerance adapted to error.
- Compensates errors smaller than "conditioning".

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 22 / 24

э

ヘロン ヘロン ヘビン ヘビン

Perturbation of imaginary input data, 100 tests, 100 frequencies

parameters			averag	e error	max error	
S	ε	fail	coeff	freq	coeff	freq
5	10^{-5}	0	3.7885e-08	1.1462e-06	2.0235e-06	1.3860e-05
5	10^{-7}	0	3.7916e-10	1.1133e-08	2.1059e-08	7.8396e-08
5	10^{-10}	0	3.7221e-13	1.1200e-11	1.5896e-11	1.6209e-10
3	10^{-4}	27	0.0023822	0.0791873	5.3002	148.6645
4	10^{-4}	1	1.2563e-04	5.9020e+01	1.1638e+00	2.9213e+05
5	10^{-4}	2	3.7969e-07	1.1228e-05	6.8484e-06	7.1493e-05
10	10^{-4}	0	1.2672e-07	3.7955e-06	7.7848e-07	1.4004e-05

Explanation

- SVD threshold tolerance adapted to error.
 - Compensates errors smaller than "conditioning".

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 22 / 24

э

イロト 不通 と イヨト イヨト

Perturbation of imaginary input data, 100 tests, 100 frequencies

parameters			averag	e error	max error	
S	ε	fail	coeff	freq	coeff	freq
5	10^{-5}	0	3.7885e-08	1.1462e-06	2.0235e-06	1.3860e-05
5	10^{-7}	0	3.7916e-10	1.1133e-08	2.1059e-08	7.8396e-08
5	10^{-10}	0	3.7221e-13	1.1200e-11	1.5896e-11	1.6209e-10
3	10^{-4}	27	0.0023822	0.0791873	5.3002	148.6645
4	10^{-4}	1	1.2563e-04	5.9020e+01	1.1638e+00	2.9213e+05
5	10^{-4}	2	3.7969e-07	1.1228e-05	6.8484e-06	7.1493e-05
10	10^{-4}	0	1.2672e-07	3.7955e-06	7.7848e-07	1.4004e-05

Explanation

- SVD threshold tolerance adapted to error.
- Oppensates errors smaller than "conditioning".

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 22 / 24

Prony's problem in several variables ...

- In the second second
- 2 ... motivation for universal interpolation.
- Image: Image:

To do

- Quantitative analysis, error estimates.
- Good implementation

It's on the arXiv!

- T. Sauer, Prony's method in several variables. arXiv:1602.02352
- T. Sauer, Prony's method in several variables: symbolic solutions by universal interpolation. arXiv:1603.03944

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 23 / 24

Prony's problem in several variables ...

- ... is interpolation & ideal theory.
- ② motivation for universal interpolation.
- Image: Image:

To do

- Quantitative analysis, error estimates.
- Good implementation

It's on the arXiv!

- T. Sauer, Prony's method in several variables. arXiv:1602.02352
- T. Sauer, Prony's method in several variables: symbolic solutions by universal interpolation. arXiv:1603.03944

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 23 / 24

Prony's problem in several variables ...

- ... is interpolation & ideal theory.
- **2** ... motivation for universal interpolation.
- Image: ... efficiently solvable.

To do

- Quantitative analysis, error estimates.
- Good implementation

It's on the arXiv!

- T. Sauer, Prony's method in several variables. arXiv:1602.02352
- T. Sauer, Prony's method in several variables: symbolic solutions by universal interpolation. arXiv:1603.03944

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 23 / 24

Prony's problem in several variables ...

- ... is interpolation & ideal theory.
- **2** ... motivation for universal interpolation.
- ... efficiently solvable.

To do

- Quantitative analysis, error estimates.
- Good implementation

It's on the arXiv!

- T. Sauer, Prony's method in several variables. arXiv:1602.02352
- T. Sauer, Prony's method in several variables: symbolic solutions by universal interpolation. arXiv:1603.03944

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 23 / 24

Prony's problem in several variables ...

- ... is interpolation & ideal theory.
- **2** ... motivation for universal interpolation.
- ... efficiently solvable.

To do

- Quantitative analysis, error estimates.
- ② Good implementation

It's on the arXiv!

- T. Sauer, Prony's method in several variables. arXiv:1602.02352
- T. Sauer, Prony's method in several variables: symbolic solutions by universal interpolation. arXiv:1603.03944

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 23 / 24

Prony's problem in several variables ...

- ... is interpolation & ideal theory.
- **2** ... motivation for universal interpolation.
- ... efficiently solvable.

To do

- Quantitative analysis, error estimates.
 - Good implementation

It's on the arXiv!

- T. Sauer, Prony's method in several variables. arXiv:1602.02352
- T. Sauer, Prony's method in several variables: symbolic solutions by universal interpolation. arXiv:1603.03944

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 23 / 24

Prony's problem in several variables ...

- ... is interpolation & ideal theory.
- **2** ... motivation for universal interpolation.
- ... efficiently solvable.

To do

- Quantitative analysis, error estimates.
- ② Good implementation

It's on the <code>arXiv!</code>

- T. Sauer, Prony's method in several variables. arXiv:1602.02352
- T. Sauer, Prony's method in several variables: symbolic solutions by universal interpolation. arXiv:1603.03944

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 23 / 24

Prony's problem in several variables ...

- ... is interpolation & ideal theory.
- **2** ... motivation for universal interpolation.
- ... efficiently solvable.

To do

- Quantitative analysis, error estimates.
- Good implementation & application?

It's on the arXiv!

- T. Sauer, Prony's method in several variables. arXiv:1602.02352
- T. Sauer, Prony's method in several variables: symbolic solutions by universal interpolation. arXiv:1603.03944

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 23 / 24

Prony's problem in several variables ...

- ... is interpolation & ideal theory.
- **2** ... motivation for universal interpolation.
- ... efficiently solvable.

To do

- Quantitative analysis, error estimates.
- I Good implementation & application?

It's on the arXiv!

- T. Sauer, Prony's method in several variables. arXiv:1602.02352
- T. Sauer, Prony's method in several variables: symbolic solutions by universal interpolation. arXiv: 1603.03944

Tomas Sauer (Uni Passau)

Prony in several variables

Prony's problem in several variables ...

- ... is interpolation & ideal theory.
- **2** ... motivation for universal interpolation.
- ... efficiently solvable.

To do

- Quantitative analysis, error estimates.
- Ocod implementation & application?

It's on the arXiv!

- T. Sauer, Prony's method in several variables. arXiv:1602.02352
- T. Sauer, Prony's method in several variables: symbolic solutions by universal interpolation. arXiv:1603.03944

Thank you for your attention!

Tomas Sauer (Uni Passau)

Where three rivers meet ...

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 24 / 24

3

ヘロト ヘ回ト ヘヨト ヘヨト

...lies the "Bavarian Venice" ...

Tomas Sauer (Uni Passau)

... lies the "Bavarian Venice" ...

Tomas Sauer (Uni Passau)

...lies the "Bavarian Venice" ...

Tomas Sauer (Uni Passau)

... with a "University at the beach" ...

Tomas Sauer (Uni Passau)

... with a "University at the beach" ...

Tomas Sauer (Uni Passau)

... with a "University at the beach" ...

Tomas Sauer (Uni Passau)

... and great students

Tomas Sauer (Uni Passau)

... and great students

Tomas Sauer (Uni Passau)

Prony in several variables

Luminy, September 19, 2016 24 / 24