Non-symmetric kernel-based greedy approximation

Gabriele Santin Joint work with Bernard Haasdonk

Institute for Applied Analysis and Numerical Simulation

MAIA2016 - Luminy, 18-23.9.2016

Setting: $\Omega \subset \mathbb{R}^d$ compact, points $Y_n := \{y_1, \ldots, y_n\} \subset \Omega$, $f(y_1), \ldots, f(y_n)$ samples.

- K: Ω × Ω → ℝ continuous, SPD and sym. kernel (possibly RBF)
- $s_n(f) := \sum_{j=1}^n \alpha_j K(\cdot, y_j)$ interpolant
- Interpolation conditions
 s_n(f)(y_i) = f(y_i)

- *H*(Ω) native space of *K* on Ω (*K* is the reproducing kernel)
- $V_n := V(Y_n) := \operatorname{span}\{K(\cdot, y), y \in Y_n\}$
- Interpolation operator $f \mapsto s_n(f)$, from $\mathcal{H}(\Omega)$ to V_n

The vector of coefficients c exist and it is unique since

$$A = [K(y_i, y_j)]_{i,j=1}^n$$

is SPD.

The interpolation operator is the projection

 $\Pi_{V_n}:\mathcal{H}(\Omega)\to V_n$

Notation, motivations and setting Notation

Setting: $\Omega \subset \mathbb{R}^d$ compact, points $Y_n := \{y_1, \ldots, y_n\} \subset \Omega$, $f(y_1), \ldots, f(y_n)$ samples.

- K: Ω × Ω → ℝ continuous, SPD and sym. kernel (possibly RBF)
- $s_n(f) := \sum_{j=1}^n \alpha_j K(\cdot, y_j)$ interpolant
- Interpolation conditions
 s_n(f)(y_i) = f(y_i)

H(Ω) native space of *K* on Ω (*K* is the reproducing kernel)

• $V_n := V(Y_n) := \operatorname{span}\{K(\cdot, y), y \in Y_n\}$

• Interpolation operator $f \mapsto s_n(f)$, from $\mathcal{H}(\Omega)$ to V_n

The vector of coefficients c exist and it is unique since

$$A = [K(y_i, y_j)]_{i, j=1}^n$$

is SPD.

The interpolation operator is the projection

 $\Pi_{V_n}:\mathcal{H}(\Omega)\to V_n$

Notation, motivations and setting Notation

Setting: $\Omega \subset \mathbb{R}^d$ compact, points $Y_n := \{y_1, \ldots, y_n\} \subset \Omega$, $f(y_1), \ldots, f(y_n)$ samples.

- K: Ω × Ω → ℝ continuous, SPD and sym. kernel (possibly RBF)
- $s_n(f) := \sum_{j=1}^n \alpha_j K(\cdot, y_j)$ interpolant
- Interpolation conditions
 s_n(f)(y_i) = f(y_i)

The vector of coefficients c exist and it is unique since

$$A = [K(y_i, y_j)]_{i,j=1}^n$$

is SPD.

H(Ω) native space of *K* on Ω (*K* is the reproducing kernel)

•
$$V_n := V(Y_n) := \operatorname{span}\{K(\cdot, y), y \in Y_n\}$$

• Interpolation operator $f \mapsto s_n(f)$, from $\mathcal{H}(\Omega)$ to V_n

The interpolation operator is the projection

 $\Pi_{V_n}:\mathcal{H}(\Omega)\to V_n$

Notation, motivations and setting Notation

Setting: $\Omega \subset \mathbb{R}^d$ compact, points $Y_n := \{y_1, \ldots, y_n\} \subset \Omega$, $f(y_1), \ldots, f(y_n)$ samples.

- K: Ω×Ω → ℝ continuous, SPD and sym. kernel (possibly RBF)
- $s_n(f) := \sum_{j=1}^n \alpha_j K(\cdot, y_j)$ interpolant
- Interpolation conditions
 s_n(f)(y_i) = f(y_i)

H(Ω) native space of *K* on Ω (*K* is the reproducing kernel)

• $V_n := V(Y_n) := \operatorname{span}\{K(\cdot, y), y \in Y_n\}$

• Interpolation operator $f \mapsto s_n(f)$, from $\mathcal{H}(\Omega)$ to V_n

The vector of coefficients c exist and it is unique since

$$A = [K(y_i, y_j)]_{i,j=1}^n$$

is SPD.

The interpolation operator is the projection

 $\Pi_{V_n}:\mathcal{H}(\Omega)\to V_n$

Notation, motivations and setting Notation

Setting: $\Omega \subset \mathbb{R}^d$ compact, points $Y_n := \{y_1, \ldots, y_n\} \subset \Omega$, $f(y_1), \ldots, f(y_n)$ samples.

- K: Ω×Ω → ℝ continuous, SPD and sym. kernel (possibly RBF)
- $s_n(f) := \sum_{j=1}^n \alpha_j K(\cdot, y_j)$ interpolant
- Interpolation conditions
 s_n(f)(y_i) = f(y_i)

H(Ω) native space of *K* on Ω (*K* is the reproducing kernel)

• $V_n := V(Y_n) := \operatorname{span}\{K(\cdot, y), y \in Y_n\}$

• Interpolation operator $f \mapsto s_n(f)$, from $\mathcal{H}(\Omega)$ to V_n

The vector of coefficients c exist and it is unique since

 $A = [K(y_i, y_j)]_{i, j=1}^n$

is SPD.

The interpolation operator is the projection

 $\Pi_{V_n}:\mathcal{H}(\Omega)\to V_n$

Greedy algorithms

Structure

Nested point sets:	Y_1	\subset	Y_2	\subset	 \subset	Y_N
Nested subspaces:	V_1	\subset	V_2	\subset	 \subset	V_N
Projections:	f_1		f_2			f_N

Use of <u>Newton basis</u> $v_1, \ldots, v_n : \longleftarrow$ **Müller-Sch09**

- nested o.n.b. of V_n
- easy construction via Gram-Schmidt over kernel basis
- coefficients from partial Cholesky decomposition of the kernel matrix

Data dependent point-selection rules:

- **[DeM-Sch-Wen05]** f-greedy: $y_i = \arg \max_{y \in Y_N \setminus Y_{i-1}} |f_{i-1}(y)|$
- [Wirtz-Haas13] f/P-greedy: $y_i = \arg \max_{y \in Y_N \setminus Y_{i-1}} |f_{i-1}(y)| / |P_{i-1}(y)|$

Greedy algorithms

Structure

Nested point sets: $Y_1 \subset Y_2 \subset \ldots \subset Y_N$ Nested subspaces: $V_1 \subset V_2 \subset \ldots \subset V_N$ Projections: $f_1 \qquad f_2 \qquad \ldots \qquad f_N$

Use of <u>Newton basis</u> $v_1, \ldots, v_n : \longleftarrow$ Müller-Sch09

- nested o.n.b. of V_n
- easy construction via Gram-Schmidt over kernel basis
- coefficients from partial Cholesky decomposition of the kernel matrix

Data dependent point-selection rules:

- **[DeM-Sch-Wen05]** f-greedy: $y_i = \arg \max_{y \in Y_N \setminus Y_{i-1}} |f_{i-1}(y)|$
- [Wirtz-Haas13] f/P-greedy: $y_i = \arg \max_{y \in Y_N \setminus Y_{i-1}} |f_{i-1}(y)| / |P_{i-1}(y)|$

Greedy algorithms

Structure

Nested point sets: $Y_1 \subset Y_2 \subset \ldots \subset Y_N$ Nested subspaces: $V_1 \subset V_2 \subset \ldots \subset V_N$ Projections: $f_1 \qquad f_2 \qquad \ldots \qquad f_N$

Use of <u>Newton basis</u> $v_1, \ldots, v_n : \longleftarrow$ Müller-Sch09

- nested o.n.b. of V_n
- easy construction via Gram-Schmidt over kernel basis
- coefficients from partial Cholesky decomposition of the kernel matrix

Data dependent point-selection rules:

- [DeM-Sch-Wen05] f-greedy: $y_i = \arg \max_{y \in Y_N \setminus Y_{i-1}} |f_{i-1}(y)|$
- [Wirtz-Haas13] f/P-greedy: $y_i = \arg \max_{y \in Y_N \setminus Y_{i-1}} |f_{i-1}(y)| / |P_{i-1}(y)|$

Application example

<u>Matrix-valued kernel</u> for $f : \Omega \to \mathbb{R}^q$, $q \ge 1$ ([4], [8])

• $\mathcal{H}_K(\Omega)^q := \{ f : \Omega \to \mathbb{R}^q, f_j \in \mathcal{H}(\Omega) \}$

•
$$(f,g)_q := \sum_{j=1}^q (f_j,g_j)$$

Use the same subspace V_n over components

Application example

Blood-flow simulation in vascular networks

(with Tobias Köppl, Dep. Hydromechanics and Modelling of Hydrosystems)

- 1D transport eqs.
- Newton solver for bifurcations
- Sampling of characteristic curves
- Surrogate kernel model of the bifurcations
- $\mathbb{R}^3 \to \mathbb{R}^3$ model (possibly $\mathbb{R}^q \to \mathbb{R}^q$)

GS

- *M* = 12742 samples
- n = 70 selected centers
- issues for small data

Outline

- 1. General definition of non-symmetric problem.
- 2. Some preliminary theoretical result.
- 3. Construction of approximants.
- 4. Construction of greedy approximants.
- 5. Numerical results.

Setting

- <u>Functionals</u> $\{\lambda_i\}_{i=1}^M, \{\mu_j\}_{j=1}^N \subset \mathcal{H}(\Omega)^*$ $(M \leq N, \text{ each set is lin. indep.})$
- Test and trial spaces

 $V_M := \{\lambda_i^y K(\cdot, y), i = 1, \dots, M\}, \quad U_N := \{\mu_j^x K(x, \cdot), j = 1, \dots, N\},\$

• <u>Kernel matrix</u> $(A_{MN})_{ij} := (\lambda_i^y K(\cdot, y), \mu_j^x K(x, \cdot))_{\mathcal{H}(\Omega)^*} = \lambda_i^y \mu_j^x K(x, y)$

Goals (Given $f \in \mathcal{H}(\Omega)$ and $n \leq M$) • determine subspaces $V_n \subset V_M$, $U_n \subset U_N$, such that $s_n(f) := \sum_{j=1}^n \alpha_j u_j$, $(s_n(f), v_i) = (f, v_i)$, $1 \leq i \leq n$ (bases $\{u_j\}_{j=1}^n$ of U_n and $\{v_i\}_{i=1}^n$ of V_n) • Solve $A_n \alpha = b$ $A_n \in \mathbb{R}^{n \times n}$, $(A_n)_{ij} := (v_i, u_j)$ $b \in \mathbb{R}^n$, $b_i := (f, v_i)$ vector of data.

Examples: non-sym interp., non-sym coll. ... (other functs? multiscale interp.?)

Setting

- <u>Functionals</u> $\{\lambda_i\}_{i=1}^M, \{\mu_j\}_{j=1}^N \subset \mathcal{H}(\Omega)^*$ $(M \leq N, \text{ each set is lin. indep.})$
- Test and trial spaces

 $V_M := \{\lambda_i^y K(\cdot, y), i = 1, \dots, M\}, \quad U_N := \{\mu_j^x K(x, \cdot), j = 1, \dots, N\},\$

• Kernel matrix $(A_{MN})_{ij} := (\lambda_i^y K(\cdot, y), \mu_j^x K(x, \cdot))_{\mathcal{H}(\Omega)^*} = \lambda_i^y \mu_j^x K(x, y)$

Goals (Given $f \in \mathcal{H}(\Omega)$ and $n \leq M$)

• determine subspaces $V_n \subset V_M$, $U_n \subset U_N$, such that

$$s_n(f) := \sum_{j=1}^n \alpha_j u_j, \quad (s_n(f), v_i) = (f, v_i), \ 1 \le i \le n$$

(bases $\{u_j\}_{j=1}^n$ of U_n and $\{v_i\}_{i=1}^n$ of V_n)

Solve

$$A_n \alpha = b$$

 $A_n \in \mathbb{R}^{n \times n}$, $(A_n)_{ij} := (v_i, u_j) \ b \in \mathbb{R}^n$, $b_i := (f, v_i)$ vector of data.

Examples: non-sym interp., non-sym coll. ... (other functs? multiscale interp.?)

Setting

- <u>Functionals</u> $\{\lambda_i\}_{i=1}^M, \{\mu_j\}_{j=1}^N \subset \mathcal{H}(\Omega)^*$ $(M \leq N, \text{ each set is lin. indep.})$
- Test and trial spaces

 $V_M := \{\lambda_i^y K(\cdot, y), i = 1, \dots, M\}, \quad U_N := \{\mu_j^x K(x, \cdot), j = 1, \dots, N\},\$

• Kernel matrix $(A_{MN})_{ij} := (\lambda_i^y K(\cdot, y), \mu_j^x K(x, \cdot))_{\mathcal{H}(\Omega)^*} = \lambda_i^y \mu_j^x K(x, y)$

Goals (Given $f \in \mathcal{H}(\Omega)$ and $n \leq M$)

• determine subspaces $V_n \subset V_M$, $U_n \subset U_N$, such that

$$s_n(f) := \sum_{j=1}^n \alpha_j u_j, \quad (s_n(f), v_i) = (f, v_i), \ 1 \le i \le n$$

(bases $\{u_j\}_{j=1}^n$ of U_n and $\{v_i\}_{i=1}^n$ of V_n)

Solve

$$A_n \alpha = b$$

 $A_n \in \mathbb{R}^{n \times n}$, $(A_n)_{ij} := (v_i, u_j) \ b \in \mathbb{R}^n$, $b_i := (f, v_i)$ vector of data.

Examples: non-sym interp., non-sym coll. ... (other functs? multiscale interp.?)

Existence

Principal angles

Let $\gamma_1, \ldots, \gamma_N$ be the cosines of the principal angles between the V_M , U_N . For $M + 1 \le n \le N$, we set $\gamma_n := 0$. Denote by $\{\psi_i\}_i, \{\varphi_j\}_j$ a pair of principal bases.

Characterization and existence

Given $n \leq M$, there exist subspaces $V_n \subset V_M$, $U_n \subset U_N$ such that the approximation problem with test space V_n and trial space U_n has a unique solution, if and only if $\gamma_n > 0$.

In this case, given any pair of such subspaces, the operator $s_n : \mathcal{H}(\Omega) \to U_n$ is a projection with ker $(s_n) = V_n^{\perp}$, and norm

$$||s_n|| := \sup_{f \in \mathcal{H}(\Omega)} \frac{||s_n(f)||}{||f||} = \frac{1}{\gamma_n(V_n, U_n)}.$$

In particular, it is an orthogonal projection if and only if $V_n = U_n$. Moreover, there exist such subspaces that are spanned by *n* elements of the original bases of V_M and U_N .

Existence

Principal angles

Let $\gamma_1, \ldots, \gamma_N$ be the cosines of the principal angles between the V_M , U_N . For $M + 1 \le n \le N$, we set $\gamma_n := 0$. Denote by $\{\psi_i\}_i, \{\varphi_j\}_j$ a pair of principal bases.

Characterization and existence

Given $n \leq M$, there exist subspaces $V_n \subset V_M$, $U_n \subset U_N$ such that the approximation problem with test space V_n and trial space U_n has a unique solution, if and only if $\gamma_n > 0$.

In this case, given any pair of such subspaces, the operator $s_n : \mathcal{H}(\Omega) \to U_n$ is a projection with ker $(s_n) = V_n^{\perp}$, and norm

$$||s_n|| := \sup_{f \in \mathcal{H}(\Omega)} \frac{||s_n(f)||}{||f||} = \frac{1}{\gamma_n(V_n, U_n)}.$$

In particular, it is an orthogonal projection if and only if $V_n = U_n$. Moreover, there exist such subspaces that are spanned by *n* elements of the original bases of V_M and U_N .

Error analysis

Def: Power Function

$$P_n(\lambda) := \sup_{f \in \mathcal{H}(\Omega), \|\|f\| \le 1} \lambda \left(f - s_n(f) \right), \quad \lambda \in \mathcal{H}(\Omega)^*$$

Power Function use:

 $|\lambda(f - s_n)| \le P_n(\lambda) |||f||$ for all $\lambda \in \mathcal{H}(\Omega)^*$ and $P_n(\lambda) = 0$ iff $\lambda \in V_n^*$

Error comparison (for $f \in \mathcal{H}(\Omega)$, use principal bases for U_n , V_n):

$$\|f - \Pi_{V_n}(f)\|^2 = \sum_{k=1}^n \frac{1}{1 - \gamma_k^2} \left((f, \varphi_k) - \gamma_k (f, \psi_k) \right)^2 + \|\Pi_{V_n^{\perp}}(f)\|^2$$
$$\|f - s_n(f)\|^2 = \sum_{k=1}^n \frac{1}{1 - \gamma_k^2} \left((f, \varphi_k) - \frac{1}{\gamma_k} (f, \psi_k) \right)^2 + \|\Pi_{V_n^{\perp}}(f)\|^2$$

In particular, $||f - s_n(f)|| \le ||f - \prod_{V_n}(f)||$ if

$$0 \le |(f,\psi_k)| \le 2\left(\frac{\gamma_k}{1+\gamma_k^2}\right)|(f,\varphi_k)|, \ 1 \le k \le n.$$

Non-sym kernel

lans

Error analysis

Def: Power Function

$$P_n(\lambda) := \sup_{f \in \mathcal{H}(\Omega), \|f\| \le 1} \lambda \left(f - s_n(f) \right), \quad \lambda \in \mathcal{H}(\Omega)^*$$

Power Function use:

 $|\lambda(f - s_n)| \le P_n(\lambda) |||f||$ for all $\lambda \in \mathcal{H}(\Omega)^*$ and $P_n(\lambda) = 0$ iff $\lambda \in V_n^*$.

Error comparison (for $f \in \mathcal{H}(\Omega)$, use principal bases for U_n , V_n):

$$\begin{split} \|f - \Pi_{V_n}(f)\|^2 &= \sum_{k=1}^n \frac{1}{1 - \gamma_k^2} \left((f, \varphi_k) - \gamma_k (f, \psi_k) \right)^2 + \|\Pi_{V_n^{\perp}}(f)\|^2 \\ \|f - s_n(f)\|^2 &= \sum_{k=1}^n \frac{1}{1 - \gamma_k^2} \left((f, \varphi_k) - \frac{1}{\gamma_k} (f, \psi_k) \right)^2 + \|\Pi_{V_n^{\perp}}(f)\|^2 \end{split}$$

In particular, $||f - s_n(f)|| \le ||f - \prod_{V_n}(f)||$ if

$$0 \le |(f,\psi_k)| \le 2\left(\frac{\gamma_k}{1+\gamma_k^2}\right)|(f,\varphi_k)|, \ 1 \le k \le n.$$

Non-sym kernel

lans

Error analysis

Def: Power Function

$$P_n(\lambda) := \sup_{f \in \mathcal{H}(\Omega), \|f\| \le 1} \lambda \left(f - s_n(f) \right), \quad \lambda \in \mathcal{H}(\Omega)^*$$

Power Function use:

 $|\lambda(f - s_n)| \le P_n(\lambda) |||f||$ for all $\lambda \in \mathcal{H}(\Omega)^*$ and $P_n(\lambda) = 0$ iff $\lambda \in V_n^*$.

Error comparison (for $f \in \mathcal{H}(\Omega)$, use principal bases for U_n , V_n):

$$\begin{split} \|f - \Pi_{V_n}(f)\|^2 &= \sum_{k=1}^n \frac{1}{1 - \gamma_k^2} \left((f, \varphi_k) - \gamma_k(f, \psi_k) \right)^2 + \|\Pi_{V_n^{\perp}}(f)\|^2 \\ \|f - s_n(f)\|^2 &= \sum_{k=1}^n \frac{1}{1 - \gamma_k^2} \left((f, \varphi_k) - \frac{1}{\gamma_k}(f, \psi_k) \right)^2 + \|\Pi_{V_n^{\perp}}(f)\|^2. \end{split}$$

In particular, $||f - s_n(f)|| \le ||f - \prod_{V_n}(f)||$ if

$$0 \le |(f,\psi_k)| \le 2\left(\frac{\gamma_k}{1+\gamma_k^2}\right)|(f,\varphi_k)|, \ 1 \le k \le n.$$

Construction

Bases construction I

<u>Now fixed</u> V_n , U_n , A_n .

$$v_{i} := \sum_{k=1}^{n} c_{ki} \lambda_{k}^{y} K(y, \cdot), \quad u_{j} := \sum_{h=1}^{n} d_{hj} \mu_{h}^{x} K(\cdot, x).$$
$$(C_{v})_{ij} := c_{ij}, \ (C_{u})_{ij} := d_{ij}$$

 $(V_{\nu})_{ij} := (\mu_i^x K(x, \cdot), \nu_j) = \mu_i(\nu_j), \quad (V_u)_{ij} := (\lambda_i^y K(\cdot, y), u_j) = \lambda_i(u_j).$

Bases from matrix factorization

Any basis $\{u_j\}_{j=1}^n$ of U_n is uniquely defined by the matrix of coefficients C_u or by the matrix of evaluations V_u , and in particular

$$A_n = V_u \ C_u^{-1}. \tag{1}$$

The same holds for any basis $\{v_j\}_{j=1}^n$ of V_n , with instead $A_n^T = V_v C_v^{-1}$.

Construction

Bases construction I

<u>Now fixed</u> V_n , U_n , A_n .

$$v_{i} := \sum_{k=1}^{n} c_{ki} \lambda_{k}^{y} K(y, \cdot), \quad u_{j} := \sum_{h=1}^{n} d_{hj} \mu_{h}^{x} K(\cdot, x).$$
$$(C_{v})_{ij} := c_{ij}, \ (C_{u})_{ij} := d_{ij}$$

$$(V_{\nu})_{ij} := (\mu_i^x K(x, \cdot), \nu_j) = \mu_i(\nu_j), \quad (V_u)_{ij} := (\lambda_i^y K(\cdot, y), u_j) = \lambda_i(u_j).$$

Bases from matrix factorization

Any basis $\{u_j\}_{j=1}^n$ of U_n is uniquely defined by the matrix of coefficients C_u or by the matrix of evaluations V_u , and in particular

$$A_n = V_u C_u^{-1}. \tag{1}$$

The same holds for any basis $\{v_j\}_{j=1}^n$ of V_n , with instead $A_n^T = V_v C_v^{-1}$.

Def: biorthonormal bases

Bases $\{v_j\}_{j=1}^n$ of V_n and $\{u_j\}_{j=1}^n$ of U_n are <u>biorthonormal</u> (or <u>dual</u>) if

 $(\mathbf{v}_i, u_j) = \delta_{ij}, \quad 1 \le i, j \le n.$

Bi-o.n. bases from matrix factorization

Bases $\{v_j\}_{i=1}^n$ and $\{u_j\}_{i=1}^n$ are biorthonormal if and only if

$$A_n = C_v^{-T} C_u^{-1}. (2$$

Moreover,

$$C_u = V_v^{-T}, \quad C_v = V_u^{-T}.$$
 (3)

and in particular for any basis of U_n there exists a unique dual basis of V_n .

Def: biorthonormal bases

Bases $\{v_j\}_{j=1}^n$ of V_n and $\{u_j\}_{j=1}^n$ of U_n are <u>biorthonormal</u> (or <u>dual</u>) if

 $(\mathbf{v}_i, u_j) = \delta_{ij}, \quad 1 \le i, j \le n.$

Bi-o.n. bases from matrix factorization

Bases $\{v_j\}_{j=1}^n$ and $\{u_j\}_{j=1}^n$ are biorthonormal if and only if

$$A_n = \boldsymbol{C}_v^{-T} \boldsymbol{C}_u^{-1}. \tag{2}$$

Moreover,

$$C_u = V_v^{-T}, \quad C_v = V_u^{-T}.$$
 (3)

and in particular for any basis of U_n there exists a unique dual basis of V_n .

Approximation and Power Function

Given a basis $\{u_j\}_{j=1}^n$ of U_n , and $f \in \mathcal{H}(\Omega)$

$$s_n(f) = \sum_{j=1}^n (f, v_j) u_j,$$

where $\{v_j\}_{j=1}^n$ is the unique basis of V_n which is dual to $\{u_j\}_{j=1}^n$. For any $\lambda \in \mathcal{H}(\Omega)^*$,

$$P_n(\lambda)^2 = \lambda^x \lambda^y K(x, y) - \sum_{j=1}^n \lambda(u_j) \lambda(2v_j - s_n(v_j)).$$

Incrementally selected indexes

 $I_n := \{i_1, \ldots, i_n\} \subset I_M := \{1, \ldots, M\}, \ J_n := \{j_1, \ldots, j_n\} \subset J_N := \{1, \ldots, N\}$

Basis elements

 $\lambda_{i_1}^y K(\cdot, y), \dots, \lambda_{i_n}^y K(\cdot, y)$ and $\mu_{j_1}^x K(\cdot, x), \dots, \mu_{j_n}^x K(\cdot, x)$

Nested subspaces

 $V_1 \subset V_2 \subset \cdots \subset V_n \subset V_M$ and $U_1 \subset U_2 \subset \cdots \subset U_n \subset U_N$,

Goals:

Nested, bi-o.n.bases

 $U_{k-1} = \text{span} \{u_1, \dots, u_{k-1}\}, \quad U_k = \text{span} \{u_1, \dots, u_k\}$

and similarly for V_n .

Check solvability in a cheap way (γ_n > 0 is not enough)

lans

Incrementally selected indexes

 $I_n := \{i_1, \ldots, i_n\} \subset I_M := \{1, \ldots, M\}, \ J_n := \{j_1, \ldots, j_n\} \subset J_N := \{1, \ldots, N\}$

Basis elements

 $\lambda_{i_1}^y K(\cdot, y), \dots, \lambda_{i_n}^y K(\cdot, y)$ and $\mu_{j_1}^x K(\cdot, x), \dots, \mu_{j_n}^x K(\cdot, x)$

Nested subspaces

 $V_1 \subset V_2 \subset \cdots \subset V_n \subset V_M$ and $U_1 \subset U_2 \subset \cdots \subset U_n \subset U_N$,

Goals:

Nested, bi-o.n.bases

 $U_{k-1} = \text{span} \{u_1, \dots, u_{k-1}\}, \quad U_k = \text{span} \{u_1, \dots, u_k\}$

and similarly for V_n .

Check solvability in a cheap way (γ_n > 0 is not enough)

Greedy algorithms Bases

Generalized Newton Bases

A basis $\{u_j\}_j$ of U_n is nested if and only if C_u is upper triangular. A basis $\{u_j\}_j$ and its dual basis $\{v_i\}_i$ are both nested bases if and only if

$$C_v = L^{-T}, \ C_u = U^{-1},$$

or equivalently

$$V_v = U^T, \quad V_u = L,$$

where L, U are lower- and upper-triangular matrices, without constraints on the diagonals and such that

$$A_n = L U$$

is a LU-decomposition of the matrix $\underline{A_n}$, which corresponds to a partial LU-decomposition of the full matrix $\underline{A_{MN}}$ after rearrangement of columns and rows.

Greedy algorithms Approximation

Use rediduals

$$r_0 := f$$
, $r_{n-1} = (r_{n-1}, v_n)u_n + r_n$, $n \ge 1$.

Incremental approximation with gen. Newton bases

$$s_n(f) = \sum_{i=1}^n (r_{k-1}, v_n) u_n = \sum_{i=1}^n \lambda_{i_n}(r_{k-1})$$

and in particular

 $s_n(f) = s_{n-1}(f) + (r_{n-1}, v_n)u_n.$

For the Power Function:

$$P_{n}(\lambda)^{2} - P_{n-1}(\lambda)^{2} = ||v_{n}||^{2} \lambda(u_{n})^{2} - 2\lambda(u_{n})\lambda(v_{n} - s_{n-1}(v_{n})).$$

Greedy algorithms Approximation

Use rediduals

$$r_0 := f$$
, $r_{n-1} = (r_{n-1}, v_n)u_n + r_n$, $n \ge 1$.

Incremental approximation with gen. Newton bases

We have $r_n \in V_n^{\perp}$ and

$$s_n(f) = \sum_{k=1}^n (r_{k-1}, v_n) u_n = \sum_{k=1}^n \lambda_{i_n}(r_{k-1}) u_n,$$

and in particular

 $s_n(f) = s_{n-1}(f) + (r_{n-1}, v_n)u_n.$

For the Power Function:

 $P_{n}(\lambda)^{2} - P_{n-1}(\lambda)^{2} = ||v_{n}||^{2} \lambda(u_{n})^{2} - 2\lambda(u_{n})\lambda(v_{n} - s_{n-1}(v_{n})).$

Greedy algorithms Approximation

Use rediduals

$$r_0 := f$$
, $r_{n-1} = (r_{n-1}, v_n)u_n + r_n$, $n \ge 1$.

Incremental approximation with gen. Newton bases

We have $r_n \in V_n^{\perp}$ and

$$s_n(f) = \sum_{k=1}^n (r_{k-1}, v_n) u_n = \sum_{k=1}^n \lambda_{i_n}(r_{k-1}) u_n,$$

and in particular

$$s_n(f) = s_{n-1}(f) + (r_{n-1}, v_n)u_n.$$

For the Power Function:

$$P_n(\lambda)^2 - P_{n-1}(\lambda)^2 = ||v_n||^2 \lambda(u_n)^2 - 2\lambda(u_n)\lambda(v_n - s_{n-1}(v_n)).$$

Remarks on implementation

Matrix free and cheap rank check :

• Compute *v_n*:

$$v_n := \lambda_{i_n}^{y} K(\cdot, y) - \sum_{k=1}^{n-1} (\lambda_{i_n}^{y} K(\cdot, y), u_k) v_k = \lambda_{i_n}^{y} K(\cdot, y) - \sum_{k=1}^{n-1} \lambda_{i_n}(u_k) v_k$$

Candidate u_n:

$$\tilde{u}_n := \mu_{j_n}^x K(\cdot, x) - \sum_{k=1}^{n-1} (\mu_{j_n}^x K(\cdot, x), v_k) u_k = \mu_{j_n}^x K(\cdot, x) - \sum_{k=1}^{n-1} \mu_{j_n}(v_k) u_k$$

Check solvability:

$$(v_n, \tilde{u}_n) = \lambda_{i_n}^y \mu_{j_n}^x K(y, x) - \sum_{k=1}^{n-1} \mu_{j_n}(v_k) \lambda_{i_n}(u_k) = \mu_{j_n}(v_n)$$

If so, normalize:

$$u_n := \tilde{u}_n/(v_n, \tilde{u}_n)$$

Non-sym kernel

Remarks on implementation

Matrix free and cheap rank check :

• Compute *v_n*:

$$v_n := \lambda_{i_n}^{y} K(\cdot, y) - \sum_{k=1}^{n-1} (\lambda_{i_n}^{y} K(\cdot, y), u_k) v_k = \lambda_{i_n}^{y} K(\cdot, y) - \sum_{k=1}^{n-1} \lambda_{i_n}(u_k) v_k$$

Candidate u_n:

$$\tilde{u}_n := \mu_{j_n}^x K(\cdot, x) - \sum_{k=1}^{n-1} (\mu_{j_n}^x K(\cdot, x), v_k) u_k = \mu_{j_n}^x K(\cdot, x) - \sum_{k=1}^{n-1} \mu_{j_n}(v_k) u_k$$

Check solvability:

$$(v_n, \tilde{u}_n) = \lambda_{i_n}^y \mu_{j_n}^x K(y, x) - \sum_{k=1}^{n-1} \mu_{j_n}(v_k) \lambda_{i_n}(u_k) = \mu_{j_n}(v_n)$$

If so, normalize

$$u_n := \tilde{u}_n/(v_n, \tilde{u}_n)$$

Non-sym kernel

Remarks on implementation

Matrix free and cheap rank check :

• Compute *v_n*:

$$v_n := \lambda_{i_n}^{y} K(\cdot, y) - \sum_{k=1}^{n-1} (\lambda_{i_n}^{y} K(\cdot, y), u_k) v_k = \lambda_{i_n}^{y} K(\cdot, y) - \sum_{k=1}^{n-1} \lambda_{i_n}(u_k) v_k$$

Candidate u_n:

$$\tilde{u}_n := \mu_{j_n}^x K(\cdot, x) - \sum_{k=1}^{n-1} (\mu_{j_n}^x K(\cdot, x), v_k) u_k = \mu_{j_n}^x K(\cdot, x) - \sum_{k=1}^{n-1} \mu_{j_n}(v_k) u_k$$

Check solvability:

$$(v_n, \tilde{u}_n) = \lambda_{i_n}^y \mu_{j_n}^x K(y, x) - \sum_{k=1}^{n-1} \mu_{j_n}(v_k) \lambda_{i_n}(u_k) = \mu_{j_n}(v_n)$$

If so, normalize:

$$u_n := \tilde{u}_n/(v_n, \tilde{u}_n)$$

Non-sym kernel

Remarks on implementation

Matrix free and cheap rank check :

• Compute *v_n*:

$$v_n := \lambda_{i_n}^{y} K(\cdot, y) - \sum_{k=1}^{n-1} (\lambda_{i_n}^{y} K(\cdot, y), u_k) v_k = \lambda_{i_n}^{y} K(\cdot, y) - \sum_{k=1}^{n-1} \lambda_{i_n}(u_k) v_k$$

Candidate u_n:

$$\tilde{u}_n := \mu_{j_n}^x K(\cdot, x) - \sum_{k=1}^{n-1} (\mu_{j_n}^x K(\cdot, x), v_k) u_k = \mu_{j_n}^x K(\cdot, x) - \sum_{k=1}^{n-1} \mu_{j_n}(v_k) u_k$$

Check solvability:

$$(v_n, \tilde{u}_n) = \lambda_{i_n}^y \mu_{j_n}^x K(y, x) - \sum_{k=1}^{n-1} \mu_{j_n}(v_k) \lambda_{i_n}(u_k) = \mu_{j_n}(v_n)$$

If so, normalize:

$$u_n := \tilde{u}_n/(v_n, \tilde{u}_n)$$

- Any LU-piv. rule is valid
- <u>f</u> greedy with rank maximization (minimize residual, maximize spaces extension)

$$i_n := \arg \max_{i \in I_M \setminus I_{n-1}} |\lambda_i(r_{n-1})|$$

$$j_n := \arg \max_{j \in J_N \setminus J_{n-1}} |\mu_j(v_n)|$$

f - greedy with dual stabilization

(minimize residual, minimize dual residual with coefficients as data)

$$\begin{array}{rcl}
V_u c &= b \\
V_v d &= -V_v^T c
\end{array}$$

(comes from [3] - regularized solution of under-determined system)

- Any LU-piv. rule is valid
- <u>f</u> greedy with rank maximization (minimize residual, maximize spaces extension)

$$i_n := \arg \max_{i \in I_M \setminus I_{n-1}} |\lambda_i(r_{n-1})|$$

$$j_n := \arg \max_{j \in J_N \setminus J_{n-1}} |\mu_j(v_n)|$$

f - greedy with dual stabilization

(minimize residual, minimize dual residual with coefficients as data)

$$\begin{bmatrix} V_u c &= b \\ V_v d &= -V_v^T c \end{bmatrix}$$

(comes from [3] - regularized solution of under-determined system)

Numerical experiments Example I

Figure: Gaussian Kernel with $\epsilon = 1, f \in \mathcal{H}(\Omega), \Omega = [-1, 1]^2$.

18/21

Numerical experiments Example I

Numerical experiments Example I

Numerical experiments Example II

Numerical experiments Example II

Numerical experiments Example II

Figure: Gaussian Kernel with $\epsilon = 1, f \in \mathcal{H}(\Omega), \Omega = [-1, 1]^2$.

Numerical experiments Example III

lans

- *M* = 12742 samples
- N = 200000 points on a uniform grid
- Random permutation of data: ٠ 80% train, 10% val., 10% test (is this restrictive?)

- $\varepsilon \in [0.1, 4]$, validate on val. set
- Sym: n = 70 selected samples/centers
- Non-Sym: n = 102 selected samples and centers

Numerical experiments Example III

lans

Thank you!

References I

- S. De Marchi, R. Schaback, and H. Wendland. "Near-optimal data-independent point locations for radial basis function interpolation". Adv. Comput. Math. 23.3 (2005), pp. 317–330.
- B. Haasdonk and G. Santin. "Non-symmetric kernel greedy interpolation." University of Stuttgart, in preparation, 2016.
- L. Ling and R. Schaback. "An improved subspace selection algorithm for meshless collocation methods". Internat. J. Numer. Methods Engrg. 80.13 (2009), pp. 1623–1639.
- [4] C. A. Micchelli and M. Pontil. "On learning vector-valued functions". Neural Comput. 17.1 (2005), pp. 177–204.
- [5] S. Müller and R. Schaback. "A Newton basis for kernel spaces". J. Approx. Theory 161.2 (2009), pp. 645–655.
- [6] E. Novak and H. Woźniakowski. Tractability of multivariate problems. Vol. 1: Linear information. Vol. 6. 2008, pp. xii+384.
- [7] R. Schaback and H. Wendland. "Approximation by Positive Definite Kernels". Advanced Problems in Constructive Approximation. Ed. by M. Buhmann and D. Mache. Vol. 142, 2002, pp. 203–221.
- [8] D. Wirtz and B. Haasdonk. "A Vectorial Kernel Orthogonal Greedy Algorithm". Dolomites Research Notes on Approximation 6 (2013). Proceedings of DWCAA12, pp. 83–100.