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Effects of finite precision arithmetic on numerical algorithms:
• Roundoff errors.
• Data uncertainty.

Key concepts:
• Conditioning: it measures the sensibility of solutions to perturbations

of data.

• Growth factor: it measures the relative size of the intermediate
computed numbers with respect to the initial coefficients or to the final
solution.

• Backward error: if the computed solution is the exact solution of a
perturbated problem, it measures such perturbation.

• Forward error: it measures the distance between the exact solution and
the computed solution.

(Forward error) ≤ (Backward error) × (Condition)

N.J. Higham. Accuracy and Stability of Numerical Algorithms, second ed..
SIAM, Philadelphia, PA, 2002.
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Error analysis

Given a ∈ R, the computed element in floating point arithmetic will be
denoted by either fl(a) or by â.

Models:
fl(a op b) = (a op b)(1 + δ), |δ| ≤ u,

fl(a op b) =
(a op b)

(1 + ε)
, |ε| ≤ u,

with u the unit roundoff and op any of the elementary operations +, −, ×,
/.

Given k ∈ N0 such that ku < 1, let us define

γk :=
ku

1− ku
.

We shall deal with quantities θk satisfying that their absolute value is
upperly bounded by γk.
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γk :=
ku

1− ku
.

|θk| ≤ γk

Properties:

a) (1 + θk)(1 + θj) = 1 + θk+j ,

b) γk + γj + γkγj ≤ γk+j ,
c) γk + u ≤ γk+1,

d) if ρi = ±1, |δi| ≤ u (i = 1, . . . , k) then

k∏
i=1

(1 + δi)
ρi = 1 + θk.
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Accurate algorithm: the relative error is bounded by O(ε), where ε is
the machine precision. They are called HRA (with High Relative Accuracy)
algorithms.

Admissible operations in algorithms with high
relative precision: products, quotients, sums of numbers of the same sign
and sums/subtractions of exact data. They are called NIC (no inaccurate
cancellation) algorithms:

The only forbidden operation is true subtraction, due to possible
cancellation in leading digits.

J. Demmel, I. Dumitriu, O. Holtz, P. Koev: Accurate and efficient
expression evaluation and linear algebra, Acta Numer. 17 (2008), 87-145.

Evaluating x+ y + z is not possible with HRA.
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For some structured classes of matrices, HRA algorithms can be found.
But we also know that this is not possible for other classes of structured
matrices. For instance, the determinant of a Toeplitz matrix cannot
be evaluated with HRA.

B =


a0 a1 a2 a3 a4
a−1 a0 a1 a2 a3
a−2 a−1 a0 a1 a2
a−3 a−2 a−1 a0 a1
a−4 a−3 a−2 a−1 a0


Even if HRA algorithms exist, if the matrices are ill-conditioned, then

they may need to be re-parameterized: first task to construct algorithms
with HRA.

With these new parameters, new algorithms can be designed to compute
the desired values (eigenvalues, singular values, inverses or solutions of the
corresponding linear systems) with HRA.
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In order to guarantee accurate computations for some special classes of
matrices, it is crucial to find an adequate parametrization adapted to
the special classes of matrices:

• For diagonally dominant M -matrices: the off-diagonal entries and
the row sums.

• For nonsingular totally positive matrices: the multipliers of its Neville
elimination (which correspond to their bidiagonal factorzation).
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TP and SR matrices

Definition. A matrix is strictly totally positive (STP) if all its minors
are positive and it is totally positive (TP) if all its minors are nonnegative.

Definition. A matrix is called sign-regular (SR) if all k × k minors of
A have the same sign (which may depend on k) for all k. If, in addition, all
minors are nonzero, then it is called strictly sign-regular (SSR).

Variation diminishing properties of sign-regular matrices A: if A is
a nonsingular (n+ 1)× (n+ 1) matrix, then A is sign-regular if and only if
the number of changes of strict sign in the ordered sequence of components
of Ax is less than or equal to the number of changes of strict sign in the
ordered sequence (x0, . . . , xn), for all x = (x0, . . . , xn)T ∈ Rn+1.

I.J. Schoenberg: Über Variationsderminderende lineare Transformationem.
Math. Z. 32 (1930), 321-328.
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Factorizations in terms of bidiagonal matrices

If K is TP and nonsingular, then we can write

K = Ln−1Ln−2 · · ·L1DU1 · · ·Un−2Un−1,

where the matrices Li (resp., Ui) are nonnegative lower (resp., upper)
triangular bidiagonal with unit diagonal and D is a diagonal matrix with
positive diagonals.

Uniqueness of the factorization, under certain conditions, in:

M. Gasca, J.M. P.: A matricial description of Neville elimination with
applications to total positivity. Linear Alg. Appl. 202 (1994), 33–54.
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Tridiagonal (Jacobi) SR nonsingular matrices have been characterized
in:

A. Barreras, J.M. P.: Characterizations of Jacobi sign regular matrices,
Linear Algebra and its Applications 436 (2012), pp. 381-388.

If K is SSR and nonsingular, then we can write

K = Ln−1Ln−2 · · ·L1DU1 · · ·Un−2Un−1,

where the matrices Li (resp., Ui) are nonnegative lower (resp., upper)
triangular bidiagonal with unit diagonal and D is a diagonal matrix with
nonzero diagonals:

M. Gasca, J.M. P.: A test for strict sign-regularity. Linear Alg. Appl.
197-198 (1994), 133–142.
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If K is nonsingular TP and stochastic, then we can write

K = Fn−1Fn−2 · · ·F1G1 · · ·Gn−2Gn−1,

with

Fi =



1
0 1

. . .
. . .

0 1
αi+1,1 1− αi+1,1

. . .
. . .

αn,n−i 1− αn,n−i
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and

Gi =



1 0
. . .

. . .

1 0
1− α1,i+1 α1,i+1

. . .
. . .

1− αn−i,n αn−i,n
1


,

where, ∀ (i, j), 0 ≤ αi,j < 1.

Interpretation in CAGD of this factorization as a corner cutting
algorithm: the most important algorithms in CAGD.
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The bidiagonal factorization of nonsingular TP matrices is associated
to an elimination procedure alternative to Gauss elimination called Neville
elimination. It requires O(n3) elementary operations to check if an n× n
matrix is either TP or STP:

M. Gasca, J.M. P.: Total positivity and Neville elimination. Linear
Algebra Appl. 165 (1992), 25-44.

Neville elimination produces zeros in each column by adding to each
row an adequate multiple of the previous one (instead of a multiple of the
pivot row as in Gauss elimination).
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Neville elimination (NE)

If A is a nonsingular matrix of order n, it consists of n− 1 steps:

A = A(1) → A(2) → . . .→ A(n) = U,

A(t) =



a
(t)
11 a

(t)
12 . . . . . . . . . . . . a

(t)
1n

0 a
(t)
22 . . . . . . . . . . . . a

(t)
2n

... 0
. . .

...
...

...
. . .

...
...

... a
(t)
tt . . . a

(t)
tn

...
...

...
...

0 0 . . . . . . a
(t)
nt . . . a

(t)
nn


.
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a
(t+1)
ij =


a
(t)
ij i ≤ t

a
(t)
ij −

a
(t)
it

a
(t)
i−1,t

a
(t)
i−1,j i ≥ t+ 1, a

(t)
i−1,t 6= 0

a
(t)
ij i ≥ t+ 1, a

(t)
i−1,t = 0

The element
pij := a

(j)
ij , 1 ≤ j ≤ i ≤ n,

is called (i, j) pivot of the NE of A.

The element

mij := pij/pi−1,j , 1 ≤ j ≤ i ≤ n,

is called (i, j) multiplier of the NE of A.

The complete Neville elimination (CNE) of A: NE of A until obtaining
U and NE of V := UT .
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• Error analysis and recent applications of NE.

ALONSO P., GASCA M., P. J.M.: “Backward error analysis of Neville
elimination” (1997). Applied Numerical Mathematics 23, pp. 193-204.

ALONSO P., DELGADO J., GALLEGO R., P. J.M.: “Neville
elimination: an efficient algorithm with application to Chemistry” (2010).
Journal of Mathematical Chemistry 48, pp. 3-20.

ALONSO P., DELGADO J., GALLEGO R., P. J.M.: “A collection
of examples where Neville elimination outperforms Gaussian elimination”
(2010). Applied Mathematics and Computation 216, pp. 2525-2533.

ALONSO P., DELGADO J., GALLEGO R., P. J.M.: “Growth Factors
of Pivoting Strategies Associated to Neville Elimination” (2011). Journal of
Computational and Applied Mathematics 235, pp. 1755-1762.
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Neville elimination (NE) leads to a factorization of a nonsingular totally
positive matrix in terms of bidiagonal factors, and the elements appearing
in the factorization (the multipliers of NE) are natural parameters of the
matrix.

P. Koev: Accurate computations with totally nonnegative matrices,
SIAM J. Matrix Anal. Appl. 29 (2007), no. 3, 731–751.

P. Koev: Accurate Eigenvalues and SVDs of Totally Nonnegative
Matrices, SIAM J. Matrix Anal. Appl. 27 (2005), 1-23.

This factorization has been used to obtain accurate computations
with subclasses of nonsingular totally positive matrices. In particular,
accurate computation of their inverses , SVD and eigenvalues.

J. Demmel and P. Koev: The Accurate and Efficient Solution of a
Totally Positive Generalized Vandermonde Linear System, SIAM J. Matrix
Anal. Appl. 27 (2005), 142-152.
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J.J. Mart́ınez, J.M. P.: Fast algorithms of Bjrck-Pereyra type for solving
Cauchy-Vandermonde linear systems, Appl. Numer. Math. 26 (1998), 343-
352.

A. Marco, J.J. Mart́ınez: A fast and accurate algorithm for solving
Bernstein-Vandermonde linear systems, Linear Algebra Appl. 422 (2007),
616-628.

A. Marco, J.J. Mart́ınez: Accurate computations with Said-Ball-
Vandermonde matrices, Linear Algebra Appl. 432 (2010), 2894-2908.

J. Delgado, J.M. P.: Accurate computations with collocation matrices of
rational bases (2013). Applied Mathematics and Computation 219, pp.
4354-4364.

J. Delgado, J.M. P.: Fast and accurate algorithms for Jacobi-Stirling
matrices (2014). Applied Mathematics and Computation 236, pp. 253-259.

J. Delgado, J.M. P.: Accurate computations with collocation matrices of
q-Bernstein polynomials (2015). SIAM Journal on Matrix Analysis and its
Applications 36, 880-893

18



We shall illustrate the use of Neville elimination to obtain bidiagonal
decompositions with the case of STP matrices.

Theorem. A matrix A is strictly totally positive if and only if the
Neville elimination of A and AT can be performed without row exchanges,
all the mutipliers of the Neville elimination of A and AT are positive and all
the diagonal pivots of the Neville elimination of A are positive.

Theorem. Let A be a strictly totally positive matrix. Then A and
A−1 admit factorizations in the form

A−1 = G1G2 · · ·GnD−1FnFn−1 · · ·F1 , A = FnFn−1 · · ·F 1DG1 · · ·Gn,

respectively, where Fi and F i, i ∈ {1, . . . , n}, are the lower triangular
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bidiagonal matrices given by

Fi =



1
0 1

. . .
. . .

0 1
−mi,i−1 1

−mi+1,i−1 1
. . .

. . .

−mn,i−1 1
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and

F i =



1
0 1

. . .
. . .

0 1
mi0 1

mi+1,1 1
. . .

. . .

mn,n−i 1


,

Gi and Gi, i ∈ {1, . . . , n}, are the upper triangular bidiagonal matrices
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whose trasposes are given by

GTi =



1
0 1

. . .
. . .

0 1
−m̃i,i−1 1

−m̃i+1,i−1 1
. . .

. . .

−m̃n,i−1 1
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and

G
T

i =



1
0 1

. . .
. . .

0 1
m̃i0 1

m̃i+1,1 1
. . .

. . .

m̃n,n−i 1


,

and D the diagonal matrix diag(p00, p11 . . . , pnn). The entries mij , m̃ij are
the multipliers of the Neville elimination of A and AT , respectively, and the
entries pii are the diagonal pivots of A.
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For many subclasses of nonsingular totally positive
matrices (Vandermonde matrices, Cauchy matrices, Cauchy-Vandermonde
matrices, Bernstein-Vandermonde matrices, rational Bernstein collocation
matrices, Jacobi-Stirling matrices, Pascal matrices, q-Bernstein collocation
matrices,....), many accurate computations can be assured: inverses ,
SVD and eigenvalues.

Open problems:

• Finding more classes of matrices with accurate computations.

• Accurate solution of linear systems even for the previous classes.
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Condition number

κ(A) := ‖A‖∞ ‖A−1‖∞.
The Skeel condition number:

Cond(A) := ‖ |A−1| |A| ‖∞.
• Cond(A) ≤ κ(A)
• Cond(DA) = Cond(A) for any nonsingular diagonal matrix D

Minimal eigenvalue of TP matrices

DELGADO J., P. J.M.: “Progressive iterative approximation and bases
with the fastest convergence rates” (2007). Computer Aided Geometric
Design 24, pp. 10-18.

Theorem. The minimal eigenvalue of a Bernstein collocation matrix is
always greater than or equal to the minimal eigenvalue of the corresponding
collocation matrix of another NTP basis of the space.
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Optimal conditioning of Bernstein collocation matrices

DELGADO J., P. J.M.: “Optimal conditioning of Bernstein collocation
matrices” (2009). SIAM J. Matrix Anal. Appl. 31, 990-996.

Theorem. Let (b0, . . . , bn) be the Bernstein basis, let (v0, . . . , vn)
be another NTP basis of Pn on [0, 1], let 0 ≤ t0 < t1 < · · · < tn ≤ 1 and

V := M
(
v0,...,vn
t0,...,tn

)
and B := M

(
b0,...,bn
t0,...,tn

)
. Then

κ∞(B) ≤ κ∞(V ).
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Cond(A) := ‖ |A−1| |A| ‖∞.

Theorem. Let (b0, . . . , bn) be the Bernstein basis, let (v0, . . . , vn)
be another TP basis of Pn on [0, 1], let 0 ≤ t0 < t1 < · · · < tn ≤ 1 and

V := M
(
v0,...,vn
t0,...,tn

)
and B := M

(
b0,...,bn
t0,...,tn

)
. Then

Cond(BT ) ≤ Cond(V T ).

ALONSO P., DELGADO J., GALLEGO R., P. J.M. (2013):
“Conditioning and accurate computations with Pascal matrices”. Journal
of Computational and Applied Mathematics 252, pp. 21-26.
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Definition. A system of functions (u0, . . . , un) is totally positive (TP)
if all its collocation matrices are totally positive.

TP systems of functions are interesting due to the variation diminishing
properties of totally positive matrices

Definition. A TP basis (u0, . . . , un) is normalized totally positive
(NTP) if

n∑
i=0

ui(t) = 1, ∀t ∈ I.

Collocation matrices of NTP systems are TP and stochastic
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In CAGD, NTP bases are associated with shape preserving
representations.

The normalized B-basis is the basis with optimal shape
preserving properties.

The Bernstein basis is the normalized B-basis of the space of
polynomials of degree less than or equal to n on a compact interval [a, b]:

bi(t) :=
(n
i

)( t− a
b− a

)i(
b− t
b− a

)n−i
, i = 0, . . . , n.

CARNICER J.M., P. J.M.: “Shape preserving representations and
optimality of the Bernstein basis” (1993). Advances in Computational
Mathematics 1, pp. 173-196.

CARNICER J.M., P. J.M.: “Totally positive bases for shape preserving
curve design and optimality of B-splines” (1994). Computer Aided
Geometric Design 11, pp. 633-654.
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basis u = (u0, . . . , un) of a real vector space U of functions defined on
a subset K of Rs and a function f ∈ U ,

f(x) =
n∑
i=0

ciui(x).

We want to know how sensitive a value f(x) is to any perturbations
of a given maximal relative magnitude ε in the coefficients c0, . . . , cn
corresponding to the basis. The corresponding perturbation δf(x) of the
change of f(x) can be bounded by means of a condition number

Cu(f, x) :=
n∑
i=0

|ciui(x)|,

for the evaluation of f(x) in the basis u:

|δf(x)| ≤ Cu(f(x))ε.
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R. T. Farouki & V. T. Rajan (1988): On the numerical condition of
polynomials of algebraic curves and surfaces 1. Implicit equations. Comput.
Aided Geom. Design 5, 215-252.

Farouki, R. T. & Goodman, T. N. T. (1996): On the optimal stability
of Bernstein basis. Math. Comp. 65, 1553–1566.

Relative condition number:

cu(f, x) :=
Cu(f, x)

|f(x)|

(
=

∑n
i=0 |ciui(x)|

|
∑n
i=0 ciui(x)|

)
.
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Let f̂(x) be the computed value wit floating point arithmetic.

f̂(x) =
n∑
i=0

c̄iui(x).

Backward error analysis provides bounds for

|c̄i − ci|
|ci|

or |c̄i − ci|

Forward error analysis provides bounds for

|f(x)− f̂(x)|

(Forward error) ≤ (Backward error) × (Condition)

32



The natural partial order for real-valued functions induces a
corresponding partial order on the bases for U , via

u � v if and only if Cu(f, t) ≤ Cv(f, t), ∀f ∈ U , ∀t ∈ I.

Given a set B of bases of bases of a vector space U of functions defined
on I, we say that a basis b ∈ B is optimally stable for the evaluation of
functions among all bases of B if it is minimal with respect to this partial
order among all bases in B. We shall consider the set B of bases of U formed
by functions with constant sign (i.e., each basis function is either nonnegative
or nonpositive).

Theorem. The normalized B-bases are optimally stable.

Extension of optimally stable bases beyond total positivity context.

33



For spaces of univariate functions:

P. J.M.: “On the optimal stability of bases of univariate functions”
(2002). Numerische Mathematik 91, pp. 305-318.

P. J.M.: “A note on the optimal stability of bases of univariate
functions” (2006). Numerische Mathematik 103, pp. 151-154.

For spaces of multivariate functions:

LYCHE T., P. J.M.: “Optimally stable multivariate bases” (2004).
Advances in Computational Mathematics 20, pp. 149-159.

The tensor product bmn of Bernstein bases is optimally stable on
[0, 1]× [0, 1].

The tensor product of B-splines bases is optimally stable.
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The Bernstein basis B of multivariate polynomials defined on a triangle
(resp., tetrahedron) is optimally stable.

The error analysis of the corresponding evaluation algorithms performed
in:

MAINAR E., P. J.M.: “Running error analysis of evaluation algorithms
for bivariate polynomials in barycentric Bernstein form” (2006). Computing
77, 97-111.

MAINAR E., P. J.M.: “Evaluation algorithms for multivariate
polynomials in Bernstein Bézier form” (2006). Journal of Approximation
Theory 143, 44-61.

DELGADO J., P. J.M.: “Error analysis of efficient evaluation
algorithms for tensor product surfaces” (2008). Journal of Computational
and Applied Mathematics 219, pp. 156-169.
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Rational Bézier surfaces

Given the double-index α = α1α2, with 0 ≤ α1 ≤ m, 0 ≤ α2 ≤ n, we
can define the corresponding basis function

rα(x, y) :=
wα b

m
α1

(x) bnα2
(y)∑m

α1=0

∑n
α2=0 wα b

m
α1

(x) bnα2
(y)

.

The previous basis is optimally stable.

DELGADO J., P. J.M.: “A Corner Cutting Algorithm for Evaluating
Rational Bézier Surfaces and the Optimal Stability of the Basis” (2007).
SIAM J. Scient. Comput. 29, pp. 1668-1682.

The usual method to evaluate rational Bézier surfaces uses the
projection operator. In contrast, we propose a new evaluation method such
that all steps are convex combinations. It is a robust algorithm with optimal
growth factor.

36



Both previous algorithms are more stable than evaluation algorithms of
nested type and with lower complexity which have also been considered.

We have also analyzed the running error analysis of the projection
and the new evaluation algorithm. A posteriori error bounds are
calculated simultaneously with the evaluation algorithm without increasing
the computational cost considerably.

DELGADO J., P. J.M.: “Running Relative Error for the Evaluation
of Polynomials” (2009). SIAM Journal on Scientific Computing 31 , pp.
3905-3921.

DELGADO J., P. J.M.: “Running error for the evaluation of
rational Bézier surfaces” (2010). Journal of Computational and Applied
Mathematics 233, pp. 1685-1696.

DELGADO J., P. J.M.: “Running error for the evaluation of rational
Bézier surfaces through a robust algorithm”. Journal of Computational
and Applied Mathematics (2011). Journal of Computational and Applied
Mathematics 235, pp. 1781-1789.
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Triangular rational Bézier surfaces

The Bernstein polynomials of degree n on a triangle, (bni )|i|=n are

defined by bni (τ) = n!
i0!i1!i2!

τ i00 τ i11 τ i22 , |i| = n.
Now let us consider the rational Bernstein basis of order n (φi)|i|=n

given by φi =
wi b

n
i∑

|i|=n
wi bni

, where (wi)|i|=n is a sequence of positive weights.

The previous basis is optimally stable.

DELGADO J., P. J.M.: “On the evaluation of rational triangular
Bézier surfaces and the optimal stability of the basis” (2013). Advances
in Computational Mathematics 13, pp. 701-721.
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DELGADO J., PEÑA J.M.: “Algorithm 960: POLYNOMIAL:
An object-oriented Matlab library of fast and efficient algorithms for
polynomials”. To appear in Transactions on Mathematical Software.

Construction and evaluation of polynomials in Bernstein form:

• Efficient constructions for the coefficients of a polynomial in Bernstein
form when the polynomial is not given with this representation are
provided.

• The presented adaptative evaluation algorithm uses VS (Volk and
Schumaker) algorithm, de Casteljau algorithm and a compensated VS
algorithm.
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Construction of the Bernstein form from interpolation conditions

Given a sequence of parameters (ti)0≤i≤n verifying 0 < t0 < t1 < · · · <
tn < 1 and a sequence of points q = (qi)0≤i≤n, there exists a unique
p(t) ∈ Pn satisfying p(ti) = qi for 0 ≤ i ≤ n.

The interpolation conditions can be formulated as the following
Bernstein-Vandermonde linear system of equations (BV linear
system):

B(c0, c1, . . . , cn)T = (q0, q1, . . . , qn)T ,

where B is the collocation matrix of the basis (bn0 , b
n
1 , . . . , b

n
n) at t0, t1, . . . , tn.

We only need to obtain the bidiagonal decomposition of the inverse of
a BV matrix with high relative accuracy in order to solve the above BV
linear system of equations with high accuracy, obtaining in this way the
corresponding interpolation polynomial in Bernstein form.
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Evaluation algorithms of a polynomial

Given the Bernstein basis bn := (bn0 (t), bn1 (t), . . . , bnn(t)), t ∈ [0, 1], and
p(t) =

∑n
i=0 ci b

n
i (t), we can evaluate p(t) with the de Casteljau algorithm.

L.L. Schumaker, W. Volk: “Efficient evaluation of multivariate
polynomials”, Comput. Aided Geom. Design 3 (1986), 149-154.

The VS basis zn := (zn0 (t), zn1 (t), . . . , znn(t)), t ∈ [0, 1], is given by
zni (t) = ti(1− t)n−i, i = 0, 1, . . . , n.

The corresponding condition numbers coincide Czn(p(t)) = Cbn(p(t)).
The VS algorithm has linear time complexity, whereas the de Casteljau
algorithm has quadratic time complexity. Nevertheless, in the case of
extremely ill-conditioned polynomials, the de Casteljau algorithm can
outperform VS algorithm in terms of accuracy.

The usual polynomial evaluation algorithm is the Horner algorithm,
which uses the monomial basis mn := (mn

0 (t),mn
1 (t), . . . ,mn

n(t)), t ∈ [0, 1],
is given by mn

i (t) = ti, i = 0, 1, . . . , n
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Forward error bounds for the relative errors when evaluating the
polynomial by the Horner, de Casteljau and VS algorithms:∣∣∣∣fl(p(t))− p(t)p(t)

∣∣∣∣ ≤ k · n · uCU (p(t))

|fl(p(t))|
+O(u2),

assuming that |fl(p(t))| > uk · n · CU (p(t)) and k nu < 1, with k = 2 for
Horner and de Casteljau, k = 4 for VS, U = mn for Horner and U = bn for
de Casteljau and VS, where u is the unit roundoff.

The relative error bounds of de Casteljau and VS algorithms are lower
than that of Horner algorithm due to the better conditioning of their bases.

Running error analysis for these algorithms have also been
performed.
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Graillat, Langlois and Louvet presented a compensated Horner
algorithm for the evaluation of a polynomial represented in the monomial
basis.

The compensated algorithm is accurate for not too ill-conditioned
polynomials. In fact, the compensated version of an algorithm delays the
effects of the bad conditioning in the accuracy of the results.

The key tool to obtain more accurate results is to apply what Ogita,
Rump and Oishi call error-free transformations.

Let us recall the typical improvement of these compensated algorithms
for the evaluation accuracy. If we have an evaluation algorithm of a
polynomial p(t) represented in a basis U with a forward error bound of
the form:

|p(t)− fl(p(t))| ≤ (|p(t)|CU (p(t)))×O(u),

then the compensated algorithm produces a computed evaluation fl(p(t))
satisfying

|p(t)− fl(p(t))| ≤ |p(t)|u+ (|p(t)|CU (p(t)))×O(u2).
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Adaptative evaluation algorithm of a polynomial in Bernstein form

In general, VS and de Casteljau algorithms provide similar
approximations with respect to accuracy. The same occurs with its
compensated versions.

In general, the de Casltejau and VS algorithms provide accurate enough
approximations except for very ill-conditioned polynomials, where their
compensated versions can be very useful. The compensated version of the
de Casteljau algorithm is very expensive computationally and it provides
results with an accuracy very similar to those provided by the compensated
VS algorithm.

We propose an adaptative evaluation algorithm using the VS
algorithm except when the relative error bound requires more accuracy.
In this case, we apply either the de Casteljau algorithm or a compensated
VS algorithm, depending on the computational cost.
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For degrees n ≤ 32 de Casteljau algorithm has a lower computational
cost than that of to the compensated VS algorithm, whereas for other degrees
the compensated VS algorithm is more efficient.

If n ≥ 33 we evaluate the polynomials by the compensated VS
algorithm, and otherwise, first we evaluate them by the de Casteljau
algorithm and only the points where the corresponding test error is not
satisfactory are evaluated by the compensated VS algorithm.
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