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High-dimensional problems in uncertainty quantification

Parameter-dependent models
M(u(X );X ) = 0

where X = (X1, . . . ,Xd) are random variables.

Forward problem: evaluation of statistics, probability of events, sensitivity indices...

E(f (u(X ))) =

∫
Rd

f (u(x))p(x)dx

Inverse problem: from (partial) observations of u, estimate the density of X

p(x)

Solving forward and inverse problems requires the evaluation of the model for many
instances of X .
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High-dimensional problems in uncertainty quantification (UQ)

In practice, we rely on approximations of the solution map

x 7→ u(x)

which are used as surrogate models.

Complexity issues:

• For complex models, only a few evaluations of the function are available.
• High-dimensional function

u(x1, . . . , xd)

Specific low-dimensional structures of functions have to be exploited (low effective
dimensionality, anisotropy, sparsity, low rank...)
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Tensor spaces of multivariate functions

Let Vν be a space of functions defined on an interval Xν ⊂ R.

The elementary tensor product v = v (1) ⊗ . . .⊗ v (d) of functions v (ν) ∈ Vν is a
multivariate function defined on X = X1 × . . .×Xd and such that

v(x) = v(x1, . . . , xd) = v (1)(x1) . . . v (d)(xd)

The algebraic tensor product of spaces Vν is defined as

V1 ⊗ . . .⊗ Vd = span{v (1) ⊗ . . .⊗ v (d) : v (ν) ∈ Vν , 1 ≤ ν ≤ d}

A Banach tensor space V1 ⊗ . . .⊗ Vd
‖·‖

is obtained by completion with respect to a
norm ‖ · ‖.

Here we consider Vν = L2
µν

(Xν) where Xν is equipped with a probability measure µν ,
and the Hilbert tensor space

L2
µ1

(X1)⊗ . . .⊗ L2
µd

(Xd)
‖·‖

= L2
µ(X )

with µ = µ1 ⊗ . . .⊗ µd and where ‖ · ‖ is the natural norm on L2
µ(X ).
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Canonical rank

The canonical rank of a tensor v ∈ V1 ⊗ . . .⊗ Vd is the minimal integer r such that

v =
r∑

k=1

v
(1)
k (x1) . . . v

(d)
k (xd)

For d = 2, it is the unique notion of rank and

Rr = {v : rank(v) ≤ r}

is a proximinal set and a smooth manifold.

An order-two tensor u in the Hilbert tensor space V1 ⊗ V2
‖·‖

admits a singular value
decomposition

u =
∑
k≥1

σkv
(1)
k (x1)v

(2)
k (x2)

An element of best approximation of u from Rr is given by the truncated singular value
decomposition where we retain the r largest singular values.
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Canonical rank

For d ≥ 3, the set Rr looses many of the favorable properties of the case d = 2.

Determining the rank of a given tensor is a NP-hard problem.

Rr is not closed. The consequence is that for most problems involving
approximation in canonical format Rr , there is no robust method when d > 2.

The set Rr is not an algebraic variety.

No notion of singular value decomposition.
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α-rank

For a non-empty subset α of D = {1, . . . , d}, a tensor u ∈ V = V1 ⊗ . . .⊗ Vd can be
identified with an order-two tensor

Mα(u) ∈ Vα ⊗ Vαc ,

where Vα =
⊗

ν∈α Vν , and αc = D \ α.

M{1}←−−−−
M{2}−−−−→

The α-rank of u, denoted rankα(u), is the rank of the order-two tensor Mα(u),

rankα(u) = rank(Mα(u)),

which is the minimal integer rα such that

u(x) =

rα∑
k=1

vαk (xα)wαc

k (xαc )

for some functions vαk (xα) and wαc

k (xαc ) of groups of variables

xα = {xν}ν∈α and xαc = {xν}ν∈αc .
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α-rank

The motivation behind the definition of tensor formats based on α-ranks is to benefit
from the nice properties of the two dimensional case.

The set
T {α}rα = {v ∈ V : rankα(v) ≤ rα}

of tensors with α-rank bounded by rα is weakly closed (and therefore proximinal).

For a given tensor u, Mα(u) admits a singular value decomposition. A best

approximation of u from T {α}rα is provided by the truncated singular value
decomposition of Mα(u) where we retain the rα largest singular values.

The determination of the α-rank of a tensor is feasible.

T {α}rα is a smooth manifold.
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α-ranks and related low-rank formats

For T a collection of subsets of D, we define the T -rank of a tensor v , denoted
rankT (u), as the tuple

rankT (v) = {rankα(v)}α∈T .

The subset of tensors with T -rank bounded by r = (rα)α∈T is

T T
r = {v ∈ V : rankT (v) ≤ r} =

⋂
α∈T

T {α}rα .

As a finite intersection of subsets T {α}rα , T T
r inherits from geometrical and topological

properties of the subsets T {α}rα which are favorable for numerical simulation.

In particular, T T
r is weakly closed.

Anthony Nouy Ecole Centrale Nantes 10



α-ranks and related low-rank formats

Different choices for T yield different tensor formats:

the Tucker format for T = {{1}, . . . , {d}}

the Tensor Train format [Oseledets-Tyrtyshnikov’09] for
T = {{1}, {1, 2}, . . . , {1, . . . , d − 1}}

and more general tree-based (or hierarchical) Tucker formats [Hackbusch-Kuhn’09]

for T a tree-structured subset of 2D .

{1, 2, 3, 4, 5}

{1} {2} {3} {4} {5}

Tucker

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

Tensor Train

{1, 2, 3, 4, 5}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5}

{4} {5}

Tree-based Tucker
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Tree-based tensor formats

A tensor v ∈ T T
r admits a representation

v(x1, . . . , xd) =

r1∑
k1=1

. . .

rL∑
kL=1

d∏
ν=1

p(ν) (xν , (ki )i∈Sν )
M∏

ν=d+1

p(ν) ((ki )i∈Sν )

where the parameter p(ν) is a tensor which depends on a subset of summation variables
(ki )i∈Sν := kSν .

Multilinear parametrization:

T T
r = {v = F (p1, . . . , pL); pk ∈ Pk , 1 ≤ k ≤ L}

where F is a multilinear map.

Storage complexity scaling as O(dR s) where #Sν ≤ s, rν ≤ R.

Different extensions of the notion of singular value decomposition for higher-order
tensors u, which provide quasi-optimal approximations ur ∈ T T

r such that

‖u − ur‖ ≤
√

#T min
v∈T T

r

‖u − v‖

T T
r is a smooth manifold
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Statistical learning methods for tensor approximation

Approximation of a function u(X ) = u(X1, . . . ,Xd) from evaluations
{yk = u(xk)}Kk=1 on a training set {xk}Kk=1 (i.i.d. samples of X )

Approximation in subsets of rank-structured functions Mr by minimization of an
empirical risk

R̂K (v) =
1

K

K∑
k=1

`(u(xk), v(xk))

where ` is a certain loss function.

Here, we consider for least-squares regression

R̂K (v) =
1

K

K∑
k=1

(u(xk)− v(xk))2 = ÊK ((u(X )− v(X ))2)

but other loss functions could be used for different objectives than L2-approximation
(e.g. classification).
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Alternating minimization algorithm

Multilinear parametrization of tensor manifolds

Mr = {v = F (p1, . . . , pL) : pl ∈ Rml , 1 ≤ l ≤ L}

so that
min
v∈Mr

R̂K (v) = min
p1,...,pL

R̂K (F (p1, . . . , pL))

Alternating minimization algorithm: Successive minimization problems

min
pl∈Rml

R̂K (F (p1, . . . , pl , . . . , pL)︸ ︷︷ ︸
Ψl(·)Tpl

)

which are standard linear approximation problems

min
pl∈Rml

1

K

K∑
k=1

`(u(xk),Ψl(x
k)Tpl)

Anthony Nouy Ecole Centrale Nantes 14



Alternating minimization algorithm

Multilinear parametrization of tensor manifolds

Mr = {v = F (p1, . . . , pL) : pl ∈ Rml , 1 ≤ l ≤ L}

so that
min
v∈Mr

R̂K (v) = min
p1,...,pL

R̂K (F (p1, . . . , pL))

Alternating minimization algorithm: Successive minimization problems

min
pl∈Rml

R̂K (F (p1, . . . , pl , . . . , pL)︸ ︷︷ ︸
Ψl(·)Tpl

)

which are standard linear approximation problems

min
pl∈Rml

1

K

K∑
k=1

`(u(xk),Ψl(x
k)Tpl)

Anthony Nouy Ecole Centrale Nantes 14



Alternating minimization algorithm

Regularization

min
pl

1

K

K∑
k=1

`(u(xk),Ψl(x
k)Tpl) + Ωl(pl) (?)

with regularization functional Ωl promoting

• smoothness (of univariate functions),
• sparsity (e.g. Ωl(pl) = λl‖pl‖1 for convex relaxation methods, or a

characteristic function for working set algorithms),
• ...

(?) is a standard regularized linear approximation problem.

• For square-loss and Ωl(pl) = λl‖pl‖1, (?) is a LASSO problem.

Cross-validation methods for the selection of Ωl .
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Illustrations

Approximation in tensor-train (TT) format:

v(x1, . . . , xd) =

r1∑
i1=1

. . .

rd−1∑
id−1=1

v
(1)
1,i1

(x1)v
(2)
i1,i2

(x2) . . . v
(d)
id−1,1

(xd)

• Polynomial approximations: v
(k)
ik−1,ik

∈ Pq

• Parametrization: v = F (p1, . . . , pd) with parameter pk ∈ R(q+1)rk rk−1 gathering
the coefficients of functions of xk on a polynomial basis (orthonormal in
L2
µk

(Xk)).

Number of parameters:

storage(v) =
d∑

k=1

rk−1rk(p + 1) = O(d(p + 1)R2)

with R ≥ rµ.

Sparsity inducing regularization and cross-validation (leave one out) for the
automatic selection of polynomial basis functions. Use of standard least-squares in
the selected basis.
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Illustration : Borehole function

The Borehole function models water flow through a borehole:

u(X ) =
2πTu(Hu − Hl)

ln(r/rw )
(

1 + 2LTu
ln(r/rw )r2

wKw
+ Tu

Tl

) , X = (rw , log(r),Tu,Hu,Tl ,Hl , L,Kw )

rw radius of borehole (m) N(µ = 0.10, σ = 0.0161812)
r radius of influence (m) LN(µ = 7.71, σ = 1.0056)
Tu transmissivity of upper aquifer (m2/yr) U(63070, 115600)
Hu potentiometric head of upper aquifer (m) U(990, 1110)
Tl transmissivity of lower aquifer (m2/yr) U(63.1, 116)
Hl potentiometric head of lower aquifer (m) U(700, 820)
L length of borehole (m) U(1120, 1680)
Kw hydraulic conductivity of borehole (m/yr) U(9855, 12045)

Polynomial approximation with degree q = 8.

Test set of size 1000.
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Illustration : Borehole function

Test error for different ranks and for different sizes K of the training set.

rank K = 100 K=1000 K=10000

(1 1 1 1 1 1 1) 1.7 10−2 1.4 10−2 1.4 10−2

(2 2 2 2 2 2 2) 6.7 10−4 9.1 10−4 3.3 10−4

(3 3 3 3 3 3 3) 3.2 10−3 1.2 10−4 1.0 10−5

(4 4 4 4 4 4 4) 2.1 10−1 7.6 10−5 1.9 10−7

(5 5 5 5 5 5 5) 7.3 100 3.8 10−4 2.8 10−7

(6 6 6 6 6 6 6) 7.9 10−1 4.1 10−3 2.1 10−7

Finding optimal rank is a combinatorial problem...
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Heuristic strategy for rank adaptation (tree-based Tucker format)

Given T ⊂ 2{1,...,d}, construction of a sequence of approximations um in tree-based
Tucker format with increasing rank:

um ∈ {v : rankT (v) ≤ (rmα )α∈T}

At iteration m, {
rm+1
α = rmα + 1 if α ∈ Tm

rm+1
α = rmα if α /∈ Tm

where Tm is selected in order to obtain (hopefully) the fastest decrease of the error.

A heuristic strategy consists in computing the singular values

σα1 ≥ . . . ≥ σαrmα

of α-matricizations Mα(um) of um for all α ∈ T

• ‖um‖2 =
∑rmα

i=1(σαi )2 for all α ∈ T .
• σαrmα provides an estimation of an upper bound of ‖u − um‖∨(Vα⊗Vαc )

• Letting 0 ≤ θ ≤ 1, we choose

Tm =

{
α ∈ T : σαrmα ≥ θmax

β∈T
σβrm

β

}

Anthony Nouy Ecole Centrale Nantes 19



Heuristic strategy for rank adaptation (tree-based Tucker format)

Given T ⊂ 2{1,...,d}, construction of a sequence of approximations um in tree-based
Tucker format with increasing rank:

um ∈ {v : rankT (v) ≤ (rmα )α∈T}

At iteration m, {
rm+1
α = rmα + 1 if α ∈ Tm

rm+1
α = rmα if α /∈ Tm

where Tm is selected in order to obtain (hopefully) the fastest decrease of the error.

A heuristic strategy consists in computing the singular values

σα1 ≥ . . . ≥ σαrmα

of α-matricizations Mα(um) of um for all α ∈ T

• ‖um‖2 =
∑rmα

i=1(σαi )2 for all α ∈ T .
• σαrmα provides an estimation of an upper bound of ‖u − um‖∨(Vα⊗Vαc )

• Letting 0 ≤ θ ≤ 1, we choose

Tm =

{
α ∈ T : σαrmα ≥ θmax

β∈T
σβrm

β

}

Anthony Nouy Ecole Centrale Nantes 19



Heuristic strategy for rank adaptation (tree-based Tucker format)

Given T ⊂ 2{1,...,d}, construction of a sequence of approximations um in tree-based
Tucker format with increasing rank:

um ∈ {v : rankT (v) ≤ (rmα )α∈T}

At iteration m, {
rm+1
α = rmα + 1 if α ∈ Tm

rm+1
α = rmα if α /∈ Tm

where Tm is selected in order to obtain (hopefully) the fastest decrease of the error.

A heuristic strategy consists in computing the singular values

σα1 ≥ . . . ≥ σαrmα

of α-matricizations Mα(um) of um for all α ∈ T

• ‖um‖2 =
∑rmα

i=1(σαi )2 for all α ∈ T .
• σαrmα provides an estimation of an upper bound of ‖u − um‖∨(Vα⊗Vαc )

• Letting 0 ≤ θ ≤ 1, we choose

Tm =

{
α ∈ T : σαrmα ≥ θmax

β∈T
σβrm

β

}
Anthony Nouy Ecole Centrale Nantes 19



Illustration : Borehole function

Training set of size K = 1000

iteration rank test error

0 (1 1 1 1 1 1 1) 1.4 10−2

1 (2 2 2 2 2 2 2) 4.4 10−4

2 (2 2 2 3 3 2 2) 8.1 10−6

3 (3 3 3 4 3 2 2) 6.2 10−6

4 (3 3 3 4 4 3 2) 2.1 10−5

5 (3 3 3 4 4 3 3) 9.6 10−6

6 (3 4 4 4 5 4 4) 1.5 10−5

The selected rank is one order of magnitude better than the optimal “isotropic”
rank (r , r , . . . , r)

Different sizes K of training set, selection of optimal ranks.

TT format

K rank test error

100 (3 4 4 3 3 2 1) 7.1 10−4

1000 (3 3 3 4 4 3 2) 6.2 10−6

10000 (5 6 6 7 7 5 4) 2.4 10−8

Canonical format

K rank test error

100 2 1.0 10−3

1000 5 3.8 10−4

10000 7 6.0 10−6
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Influence of the tree

Test error for different trees T (Training set of size K = 50)

{ν1, ν2, ν3, ν4, ν5}

{ν1, ν2, ν3, ν4}

{ν1, ν2, ν3}

{ν1, ν2}

{ν1} {ν2}

{ν3}

{ν4}

{ν5}

tree {ν1, . . . , νd} optimal rank test error

T1 (1 2 3 4 5 6 7 8) (2 2 2 2 2 1 1) 6.2 10−4

T2 (1 3 8 5 6 2 4 7) (2 2 2 2 2 2 1) 1.3 10−3

T3 (7 6 8 1 4 5 2 3) (1 1 1 1 1 1 1) 1.5 10−2

T4 (8 2 4 7 5 1 3 6) (1 1 2 3 3 2 2) 1.3 10−2

Finding the optimal tree is a combinatorial problem...
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Strategy for tree adaptation

Starting from an initial tree, we perform iteratively the following two steps:

Run the learning algorithm with rank adaptation to compute an approximation v
associated with the current tree

v(x1, . . . , xd) =

r1∑
i1=1

. . .

rd−1∑
id−1=1

v
(1)
1,i1

(xν1 ) . . . v
(d)
id−1,1

(xνd )

Run a tree optimization algorithm yielding an equivalent representation of v (at the
current precision)

v(x1, . . . , xd) ≈ ṽ(x1, . . . , xd) =

r̃1∑
i1=1

. . .

r̃d−1∑
id−1=1

ṽ
(ν̃1)
1,i1

(xν̃1 ) . . . ṽ
(ν̃d )
id−1,1

(xν̃d )

with reduced storage complexity, where {ν̃1, . . . , νd} is a permutation of
{ν1, . . . , νd}.
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Strategy for tree adaptation

Illustration with training set of size K = 50.
We run the algorithm for different initial trees.
Indicated in blue are the permuted dimensions in the final tree.

tree {ν1, . . . , νd} optimal rank test error

initial (1 2 3 4 5 6 7 8) (2 2 2 2 2 1 1) 6.2 10−4

final (1 2 3 5 4 6 7 8) (2 2 2 2 2 1 1) 4.5 10−4

initial (1 3 8 5 6 2 4 7) (2 2 2 2 2 2 1) 1.3 10−3

final (1 3 8 5 2 6 4 7) (2 2 2 2 2 2 1) 5.1 10−4

initial and final (7 6 8 1 4 5 2 3) (1 1 1 1 1 1 1) 1.5 10−2

initial (8 2 4 7 5 1 3 6) (1 1 2 3 3 2 2) 1.3 10−2

(8 2 7 5 1 4 3 6) (1 1 2 2 2 2 2) 1.2 10−3

final (8 2 7 5 1 3 4 6) (1 1 2 2 2 2 2) 1.3 10−3
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Concluding remarks

For rank adaptation, possible use of constructive (greedy) algorithms for tree-based
Tucker formats.

Need for robust strategies for tree adaptation.

“Statistical dimension” of low-rank subsets ?

For example, the Henon-Heiles potential

u(x) =
1

2

d∑
i=1

x2
i + 0.2

d−1∑
i=1

(xixi+1 − x3
i ) +

0.22

16

d−1∑
i=1

(x2
i + x2

i+1), xi ∼ U(−1, 1),

has TT -rank (3, . . . , 3), a storage complexity scaling as O(d), and the number of
samples to recover the function with probability 90% scales as O(d3/2).

Adaptive/structured sampling strategies.

Goal-oriented approximations.
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