
TU Graz, Institute of Geometry

Smoothing of vector and Hermite subdivision schemes

Caroline Moosmüller

Joint work with Nira Dyn

September 22, 2016

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 1 / 13



Overview

Subdivision and smoothing of subdivision schemes

Hermite subdivision

Smoothing procedure for Hermite schemes

Examples

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 2 / 13



Overview

Subdivision and smoothing of subdivision schemes

Hermite subdivision

Smoothing procedure for Hermite schemes

Examples

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 2 / 13



Overview

Subdivision and smoothing of subdivision schemes

Hermite subdivision

Smoothing procedure for Hermite schemes

Examples

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 2 / 13



Overview

Subdivision and smoothing of subdivision schemes

Hermite subdivision

Smoothing procedure for Hermite schemes

Examples

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 2 / 13



Subdivision schemes

Subdivision: Successive refinement of initial data to create smooth curve.

Example: Chaikin’s algorithm applied to initial data δ = (i , δi ,0)i∈Z

The limit of this subdivision process is a degree 2 spline.

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 3 / 13



Subdivision schemes

Subdivision: Successive refinement of initial data to create smooth curve.

Example: Chaikin’s algorithm applied to initial data δ = (i , δi ,0)i∈Z

The limit of this subdivision process is a degree 2 spline.

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 3 / 13



Subdivision schemes

Subdivision: Successive refinement of initial data to create smooth curve.

Example: Chaikin’s algorithm applied to initial data δ = (i , δi ,0)i∈Z

The limit of this subdivision process is a degree 2 spline.

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 3 / 13



Subdivision schemes

Subdivision: Successive refinement of initial data to create smooth curve.

Example: Chaikin’s algorithm applied to initial data δ = (i , δi ,0)i∈Z

The limit of this subdivision process is a degree 2 spline.

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 3 / 13



Subdivision schemes

Subdivision: Successive refinement of initial data to create smooth curve.

Example: Chaikin’s algorithm applied to initial data δ = (i , δi ,0)i∈Z

The limit of this subdivision process is a degree 2 spline.

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 3 / 13



Subdivision schemes

Subdivision: Successive refinement of initial data to create smooth curve.

Example: Chaikin’s algorithm applied to initial data δ = (i , δi ,0)i∈Z

The limit of this subdivision process is a degree 2 spline.

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 3 / 13



Subdivision schemes

Subdivision: Successive refinement of initial data to create smooth curve.

Example: Chaikin’s algorithm applied to initial data δ = (i , δi ,0)i∈Z

The limit of this subdivision process is a degree 2 spline.

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 3 / 13



Subdivision schemes

Chaikin’s algorithm in more detail:

Input: δ

First step: Sδ

Second step: S2δLimit: S∞δ = B2

(Sδ)2i = 3
4δi + 1

4δi+1

(Sδ)2i+1 = 1
4δi + 3

4δi+1

S is a subdivision operator

The iterates Snδ describe the
refined data

Snδ → S∞δ = B2 as n→∞

In this example the limit is C 1

δ0

δ−1 δ1

Sδ0

Sδ1

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 4 / 13



Subdivision schemes

Chaikin’s algorithm in more detail:

Input: δ

First step: Sδ

Second step: S2δLimit: S∞δ = B2

(Sδ)2i = 3
4δi + 1

4δi+1

(Sδ)2i+1 = 1
4δi + 3

4δi+1

S is a subdivision operator

The iterates Snδ describe the
refined data

Snδ → S∞δ = B2 as n→∞

In this example the limit is C 1

δ0

δ−1 δ1

Sδ0

Sδ1

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 4 / 13



Subdivision schemes

Chaikin’s algorithm in more detail:

Input: δ

First step: Sδ

Second step: S2δ

Limit: S∞δ = B2

(Sδ)2i = 3
4δi + 1

4δi+1

(Sδ)2i+1 = 1
4δi + 3

4δi+1

S is a subdivision operator

The iterates Snδ describe the
refined data

Snδ → S∞δ = B2 as n→∞

In this example the limit is C 1

δ0

δ−1 δ1

Sδ0

Sδ1

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 4 / 13



Subdivision schemes

Chaikin’s algorithm in more detail:

Input: δ

First step: SδSecond step: S2δ

Limit: S∞δ = B2

(Sδ)2i = 3
4δi + 1

4δi+1

(Sδ)2i+1 = 1
4δi + 3

4δi+1

S is a subdivision operator

The iterates Snδ describe the
refined data

Snδ → S∞δ = B2 as n→∞

In this example the limit is C 1

δ0

δ−1 δ1

Sδ0

Sδ1

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 4 / 13



Subdivision schemes

Chaikin’s algorithm in more detail:

Input: δ

First step: SδSecond step: S2δ

Limit: S∞δ = B2

(Sδ)2i = 3
4δi + 1

4δi+1

(Sδ)2i+1 = 1
4δi + 3

4δi+1

S is a subdivision operator

The iterates Snδ describe the
refined data

Snδ → S∞δ = B2 as n→∞

In this example the limit is C 1

δ0

δ−1 δ1

Sδ0

Sδ1

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 4 / 13



Subdivision schemes
Start from input data p, a subdivision operator can be defined by two rules:

(Sp)2i =
∑
j∈Z

a−2jpi+j ,

(Sp)2i+1 =
∑
j∈Z

a−2j+1pi+j

The sequence a is called mask, ai 6= 0 for only finitely many i

The limit S∞p is at least C 0, we are interested in higher regularity

Use generating functions: a(z) =
∑

j∈Z ajz
j .

For example, Chaikin’s algorithm:

a(z) = 1
4z
−2 + 3

4z
−1 + 3

4 + 1
4z .

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 5 / 13



Subdivision schemes
Start from input data p, a subdivision operator can be defined by two rules:

(Sp)2i =
∑
j∈Z

a−2jpi+j ,

(Sp)2i+1 =
∑
j∈Z

a−2j+1pi+j

The sequence a is called mask, ai 6= 0 for only finitely many i

The limit S∞p is at least C 0, we are interested in higher regularity

Use generating functions: a(z) =
∑

j∈Z ajz
j .

For example, Chaikin’s algorithm:

a(z) = 1
4z
−2 + 3

4z
−1 + 3

4 + 1
4z .

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 5 / 13



Subdivision schemes
Start from input data p, a subdivision operator can be defined by two rules:

(Sp)2i =
∑
j∈Z

a−2jpi+j ,

(Sp)2i+1 =
∑
j∈Z

a−2j+1pi+j

The sequence a is called mask, ai 6= 0 for only finitely many i

The limit S∞p is at least C 0, we are interested in higher regularity

Use generating functions: a(z) =
∑

j∈Z ajz
j .

For example, Chaikin’s algorithm:

a(z) = 1
4z
−2 + 3

4z
−1 + 3

4 + 1
4z .

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 5 / 13



Subdivision schemes
Start from input data p, a subdivision operator can be defined by two rules:

(Sp)2i =
∑
j∈Z

a−2jpi+j ,

(Sp)2i+1 =
∑
j∈Z

a−2j+1pi+j

The sequence a is called mask, ai 6= 0 for only finitely many i

The limit S∞p is at least C 0, we are interested in higher regularity

Use generating functions: a(z) =
∑

j∈Z ajz
j .

For example, Chaikin’s algorithm:

a(z) = 1
4z
−2 + 3

4z
−1 + 3

4 + 1
4z .

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 5 / 13



Subdivision schemes
Start from input data p, a subdivision operator can be defined by two rules:

(Sp)2i =
∑
j∈Z

a−2jpi+j ,

(Sp)2i+1 =
∑
j∈Z

a−2j+1pi+j

The sequence a is called mask, ai 6= 0 for only finitely many i

The limit S∞p is at least C 0, we are interested in higher regularity

Use generating functions: a(z) =
∑

j∈Z ajz
j .

For example, Chaikin’s algorithm:

a(z) = 1
4z
−2 + 3

4z
−1 + 3

4 + 1
4z .

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 5 / 13



Smoothing of subdivision schemes
Necessary condition for convergence:∑

j∈Z a2j =
∑

j∈Z a2j+1 = 1

⇒ a(−1) =
∑

j∈Z aj(−1)j = 0

⇒ a(z) has a factor (z + 1)

⇒ a∗(z) = 2z a(z)
z+1 is well-defined

The derived scheme S∗ satisfies ∆S = 1
2S∗∆.

Theorem

If S∗ is C
`, for ` ≥ 0 then S is C `+1 ⇔

A C ` mask a∗(z) gives rise to a C `+1 mask via a(z) = z+1
2z a∗(z).

Smoothing of subdivision schemes:

S∗, C
` S , C `+1

× z+1
2z

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 6 / 13



Smoothing of subdivision schemes
Necessary condition for convergence:∑

j∈Z a2j =
∑

j∈Z a2j+1 = 1 ⇒ a(−1) =
∑

j∈Z aj(−1)j = 0

⇒ a(z) has a factor (z + 1)

⇒ a∗(z) = 2z a(z)
z+1 is well-defined

The derived scheme S∗ satisfies ∆S = 1
2S∗∆.

Theorem

If S∗ is C
`, for ` ≥ 0 then S is C `+1 ⇔

A C ` mask a∗(z) gives rise to a C `+1 mask via a(z) = z+1
2z a∗(z).

Smoothing of subdivision schemes:

S∗, C
` S , C `+1

× z+1
2z

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 6 / 13



Smoothing of subdivision schemes
Necessary condition for convergence:∑

j∈Z a2j =
∑

j∈Z a2j+1 = 1 ⇒ a(−1) =
∑

j∈Z aj(−1)j = 0

⇒ a(z) has a factor (z + 1)

⇒ a∗(z) = 2z a(z)
z+1 is well-defined

The derived scheme S∗ satisfies ∆S = 1
2S∗∆.

Theorem

If S∗ is C
`, for ` ≥ 0 then S is C `+1 ⇔

A C ` mask a∗(z) gives rise to a C `+1 mask via a(z) = z+1
2z a∗(z).

Smoothing of subdivision schemes:

S∗, C
` S , C `+1

× z+1
2z

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 6 / 13



Smoothing of subdivision schemes
Necessary condition for convergence:∑

j∈Z a2j =
∑

j∈Z a2j+1 = 1 ⇒ a(−1) =
∑

j∈Z aj(−1)j = 0

⇒ a(z) has a factor (z + 1)

⇒ a∗(z) = 2z a(z)
z+1 is well-defined

The derived scheme S∗ satisfies ∆S = 1
2S∗∆.

Theorem

If S∗ is C
`, for ` ≥ 0 then S is C `+1 ⇔

A C ` mask a∗(z) gives rise to a C `+1 mask via a(z) = z+1
2z a∗(z).

Smoothing of subdivision schemes:

S∗, C
` S , C `+1

× z+1
2z

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 6 / 13



Smoothing of subdivision schemes
Necessary condition for convergence:∑

j∈Z a2j =
∑

j∈Z a2j+1 = 1 ⇒ a(−1) =
∑

j∈Z aj(−1)j = 0

⇒ a(z) has a factor (z + 1)

⇒ a∗(z) = 2z a(z)
z+1 is well-defined

The derived scheme S∗ satisfies ∆S = 1
2S∗∆.

Theorem

If S∗ is C
`, for ` ≥ 0 then S is C `+1 ⇔

A C ` mask a∗(z) gives rise to a C `+1 mask via a(z) = z+1
2z a∗(z).

Smoothing of subdivision schemes:

S∗, C
` S , C `+1

× z+1
2z

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 6 / 13



Smoothing of subdivision schemes
Necessary condition for convergence:∑

j∈Z a2j =
∑

j∈Z a2j+1 = 1 ⇒ a(−1) =
∑

j∈Z aj(−1)j = 0

⇒ a(z) has a factor (z + 1)

⇒ a∗(z) = 2z a(z)
z+1 is well-defined

The derived scheme S∗ satisfies ∆S = 1
2S∗∆.

Theorem

If S∗ is C
`, for ` ≥ 0 then S is C `+1

⇔

A C ` mask a∗(z) gives rise to a C `+1 mask via a(z) = z+1
2z a∗(z).

Smoothing of subdivision schemes:

S∗, C
` S , C `+1

× z+1
2z

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 6 / 13



Smoothing of subdivision schemes
Necessary condition for convergence:∑

j∈Z a2j =
∑

j∈Z a2j+1 = 1 ⇒ a(−1) =
∑

j∈Z aj(−1)j = 0

⇒ a(z) has a factor (z + 1)

⇒ a∗(z) = 2z a(z)
z+1 is well-defined

The derived scheme S∗ satisfies ∆S = 1
2S∗∆.

Theorem

If S∗ is C
`, for ` ≥ 0 then S is C `+1 ⇔

A C ` mask a∗(z) gives rise to a C `+1 mask via a(z) = z+1
2z a∗(z).

Smoothing of subdivision schemes:

S∗, C
` S , C `+1

× z+1
2z

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 6 / 13



Smoothing of subdivision schemes
Necessary condition for convergence:∑

j∈Z a2j =
∑

j∈Z a2j+1 = 1 ⇒ a(−1) =
∑

j∈Z aj(−1)j = 0

⇒ a(z) has a factor (z + 1)

⇒ a∗(z) = 2z a(z)
z+1 is well-defined

The derived scheme S∗ satisfies ∆S = 1
2S∗∆.

Theorem

If S∗ is C
`, for ` ≥ 0 then S is C `+1 ⇔

A C ` mask a∗(z) gives rise to a C `+1 mask via a(z) = z+1
2z a∗(z).

Smoothing of subdivision schemes:

S∗, C
` S , C `+1

× z+1
2z

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 6 / 13



Smoothing of subdivision schemes

The mask of the Lane-Riesenfeld algorithm for degree k B-Splines:

ak(z) =
(z + 1)k+1

(2z)k

Apply subdivision operator Sk to 2D input data δ = (i , δi ,0)i∈Z:

S∞1 δ S∞2 δ S∞3 δ

a1(z) = (z+1)2

2z a2(z) = z+1
2z a1(z) a3(z) = z+1

2z a2(z)

C 0 C 1 C 2

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 7 / 13



Smoothing of subdivision schemes

The mask of the Lane-Riesenfeld algorithm for degree k B-Splines:

ak(z) =
(z + 1)k+1

(2z)k

Apply subdivision operator Sk to 2D input data δ = (i , δi ,0)i∈Z:

S∞1 δ S∞2 δ S∞3 δ

a1(z) = (z+1)2

2z a2(z) = z+1
2z a1(z) a3(z) = z+1

2z a2(z)

C 0 C 1 C 2

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 7 / 13



Smoothing of subdivision schemes

The mask of the Lane-Riesenfeld algorithm for degree k B-Splines:

ak(z) =
(z + 1)k+1

(2z)k

Apply subdivision operator Sk to 2D input data δ = (i , δi ,0)i∈Z:

S∞1 δ S∞2 δ S∞3 δ

a1(z) = (z+1)2

2z a2(z) = z+1
2z a1(z) a3(z) = z+1

2z a2(z)

C 0 C 1 C 2

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 7 / 13



Hermite subdivision

Successive refinement of point-vector data for generating a function

and its derivative

Subdivision operator: S
(
p
v

)
i

=
∑

j∈Z
( ai−2j bi−2j

ci−2j di−2j

)( pj
vj

)
.

The iterates Sn
(
p
v

)
describe the refined point-vector data

Sn
(
p
v

)
converges to function and its derivative

(after appropriate scaling)

p0

v0

p1 v1

p2
v2

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 8 / 13



Hermite subdivision

Successive refinement of point-vector data for generating a function

and its derivative

Subdivision operator: S
(
p
v

)
i

=
∑

j∈Z
( ai−2j bi−2j

ci−2j di−2j

)( pj
vj

)
.

The iterates Sn
(
p
v

)
describe the refined point-vector data

Sn
(
p
v

)
converges to function and its derivative

(after appropriate scaling)

p0

v0

p1 v1

p2
v2

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 8 / 13



Hermite subdivision

Successive refinement of point-vector data for generating a function

and its derivative

Subdivision operator: S
(
p
v

)
i

=
∑

j∈Z
( ai−2j bi−2j

ci−2j di−2j

)( pj
vj

)
.

The iterates Sn
(
p
v

)
describe the refined point-vector data

Sn
(
p
v

)
converges to function and its derivative

(after appropriate scaling)

p0

v0

p1 v1

p2
v2

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 8 / 13



Hermite subdivision

Successive refinement of point-vector data for generating a function

and its derivative

Subdivision operator: S
(
p
v

)
i

=
∑

j∈Z
( ai−2j bi−2j

ci−2j di−2j

)( pj
vj

)
.

The iterates Sn
(
p
v

)
describe the refined point-vector data

Sn
(
p
v

)
converges to function and its derivative

(after appropriate scaling)

p0

v0

p1 v1

p2
v2

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 8 / 13



Hermite subdivision

Successive refinement of point-vector data for generating a function

and its derivative

Subdivision operator: S
(
p
v

)
i

=
∑

j∈Z
( ai−2j bi−2j

ci−2j di−2j

)( pj
vj

)
.

The iterates Sn
(
p
v

)
describe the refined point-vector data

Sn
(
p
v

)
converges to function and its derivative

(after appropriate scaling)

p0

v0

p1 v1

p2
v2

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 8 / 13



Hermite subdivision

Successive refinement of point-vector data for generating a function

and its derivative

Subdivision operator: S
(
p
v

)
i

=
∑

j∈Z
( ai−2j bi−2j

ci−2j di−2j

)( pj
vj

)
.

The iterates Sn
(
p
v

)
describe the refined point-vector data

Sn
(
p
v

)
converges to function and its derivative

(after appropriate scaling)

p0

v0

p1 v1

p2
v2

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 8 / 13



Hermite subdivision

Successive refinement of point-vector data for generating a function

and its derivative

Subdivision operator: S
(
p
v

)
i

=
∑

j∈Z
( ai−2j bi−2j

ci−2j di−2j

)( pj
vj

)
.

The iterates Sn
(
p
v

)
describe the refined point-vector data

Sn
(
p
v

)
converges to function and its derivative

(after appropriate scaling)

p0

v0

p1 v1

p2
v2

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 8 / 13



Smoothing of Hermite schemes

The spectral condition implies the existence of the derived scheme S∗ with
respect to the Taylor operator:

( ∆ −1
0 1

)
S =

1

2
S∗
( ∆ −1

0 1

)

Theorem (Merrien and Sauer 2012; Conti, Merrien and Romani 2014)

If the vector scheme S∗ is C
`, ` ≥ 0, then the Hermite scheme S is C `+1

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 9 / 13



Smoothing of Hermite schemes

The spectral condition implies the existence of the derived scheme S∗ with
respect to the Taylor operator:

( ∆ −1
0 1

)
S =

1

2
S∗
( ∆ −1

0 1

)

Theorem (Merrien and Sauer 2012; Conti, Merrien and Romani 2014)

If the vector scheme S∗ is C
`, ` ≥ 0, then the Hermite scheme S is C `+1

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 9 / 13



Smoothing of Hermite schemes

Hermite S , C ` vector S∗, C
`−1

Hermite S , C `+1 vector S∗, C
`

Taylor factorisation

vector smoothing

Taylor factorisation

smoothing

Theorem (Dyn, M. 2016)

Any ∗ Hermite scheme S which is C `, ` ≥ 1, can be transformed to a new
Hermite scheme S of regularity C `+1.

S is constructed from S by manipulating generating functions.

Advantage: Procedure can be iterated.

Disadvantage: Makes support larger by a maximum of 5.

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 10 / 13



Smoothing of Hermite schemes

Hermite S , C ` vector S∗, C
`−1

Hermite S , C `+1 vector S∗, C
`

Taylor factorisation

vector smoothing

Taylor factorisation

smoothing

Theorem (Dyn, M. 2016)

Any ∗ Hermite scheme S which is C `, ` ≥ 1, can be transformed to a new
Hermite scheme S of regularity C `+1.

S is constructed from S by manipulating generating functions.

Advantage: Procedure can be iterated.

Disadvantage: Makes support larger by a maximum of 5.

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 10 / 13



Smoothing of Hermite schemes

Hermite S , C ` vector S∗, C
`−1

Hermite S , C `+1 vector S∗, C
`

Taylor factorisation

vector smoothing

Taylor factorisation

smoothing

Theorem (Dyn, M. 2016)

Any ∗ Hermite scheme S which is C `, ` ≥ 1, can be transformed to a new
Hermite scheme S of regularity C `+1.

S is constructed from S by manipulating generating functions.

Advantage: Procedure can be iterated.

Disadvantage: Makes support larger by a maximum of 5.

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 10 / 13



Smoothing of Hermite schemes

Hermite S , C ` vector S∗, C
`−1

Hermite S , C `+1 vector S∗, C
`

Taylor factorisation

vector smoothing

Taylor factorisation

smoothing

Theorem (Dyn, M. 2016)

Any ∗ Hermite scheme S which is C `, ` ≥ 1, can be transformed to a new
Hermite scheme S of regularity C `+1.

S is constructed from S by manipulating generating functions.

Advantage: Procedure can be iterated.

Disadvantage: Makes support larger by a maximum of 5.

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 10 / 13



Smoothing of Hermite schemes

Hermite S , C ` vector S∗, C
`−1

Hermite S , C `+1 vector S∗, C
`

Taylor factorisation

vector smoothing

Taylor factorisation

smoothing

Theorem (Dyn, M. 2016)

Any ∗ Hermite scheme S which is C `, ` ≥ 1, can be transformed to a new
Hermite scheme S of regularity C `+1.

S is constructed from S by manipulating generating functions.

Advantage: Procedure can be iterated.

Disadvantage: Makes support larger by a maximum of 5.

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 10 / 13



Examples
We smoothen an interpolatory C 1 Hermite scheme by J.-L. Merrien.

C 1 Hermite limit

S∞δ

C 2 Hermite limit

S∞δ

S∞′δ S∞′δ

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 11 / 13



Examples
We smoothen an interpolatory C 1 Hermite scheme by J.-L. Merrien.

C 1 Hermite limit

S∞δ

C 2 Hermite limit

S∞δ

S∞′δ S∞′δ

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 11 / 13



Examples
We smoothen a C 2 Hermite scheme constructed by a de Rham transform.

C 2 Hermite limit

S∞δ

C 3 Hermite limit

S∞δ

S∞′′δ S∞′′δ

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 12 / 13



Examples
We smoothen a C 2 Hermite scheme constructed by a de Rham transform.

C 2 Hermite limit

S∞δ

C 3 Hermite limit

S∞δ

S∞′′δ S∞′′δ

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 12 / 13



Conclusion

We can smoothen Hermite schemes in a manner similar to scalar
schemes, by manipulating generating functions.

Our procedure is able to construct arbitrarily regular Hermite
schemes.

Thank you!

D  O  C  T  O  R  A  L       P  R  O  G  R  A  M

D I S C R E T E      M A T H E M A T I C S

T U   &   K F U   G R A Z  •  M U   L E O B E N

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 13 / 13



Conclusion

We can smoothen Hermite schemes in a manner similar to scalar
schemes, by manipulating generating functions.

Our procedure is able to construct arbitrarily regular Hermite
schemes.

Thank you!

D  O  C  T  O  R  A  L       P  R  O  G  R  A  M

D I S C R E T E      M A T H E M A T I C S

T U   &   K F U   G R A Z  •  M U   L E O B E N

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 13 / 13



Conclusion

We can smoothen Hermite schemes in a manner similar to scalar
schemes, by manipulating generating functions.

Our procedure is able to construct arbitrarily regular Hermite
schemes.

Thank you!

D  O  C  T  O  R  A  L       P  R  O  G  R  A  M

D I S C R E T E      M A T H E M A T I C S

T U   &   K F U   G R A Z  •  M U   L E O B E N

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 13 / 13



Smoothing of Hermite schemes

For example, if S has the mask
(

a b
c d

)
and b(1) = 0, then the mask of S

is given by

a(z) = (z+1)
2z

(
(z−2 − 2)b(z) + a(z)

)
,

b(z) = 1
2

zb(z)

(1− z)
,

c(z) = 1
2(z−2 − 1)

(
c(z)− a(z)(z−1 − 2)

+ d(z)(z−2 − 2)− b(z)(z−1 − 2)(z−2 − 2)
)
,

d(z) = 1
2(d(z)− (z−1 − 2)b(z)).

Caroline Moosmüller Smoothing of vector and Hermite schemes September 22, 2016 13 / 13


