

Smoothing of vector and Hermite subdivision schemes

Caroline Moosmüller

Joint work with Nira Dyn

September 22, 2016

• Subdivision and smoothing of subdivision schemes

→ < ∃ →</p>

Image: A 1 → A

э

- Subdivision and smoothing of subdivision schemes
- Hermite subdivision

3

-

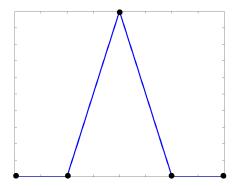
< 67 ▶

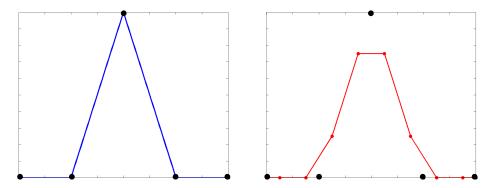
- Subdivision and smoothing of subdivision schemes
- Hermite subdivision
- Smoothing procedure for Hermite schemes

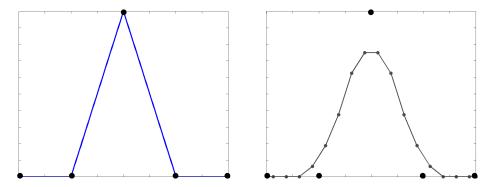
- Subdivision and smoothing of subdivision schemes
- Hermite subdivision
- Smoothing procedure for Hermite schemes
- Examples

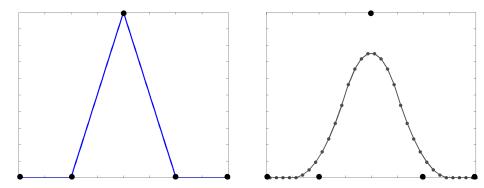
Subdivision: Successive refinement of initial data to create smooth curve.

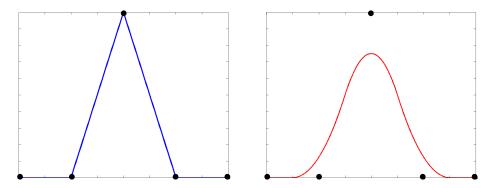
< 67 ▶



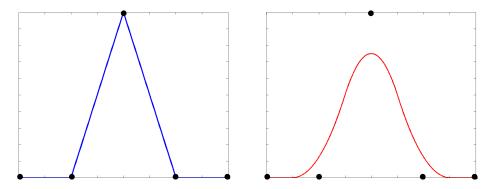






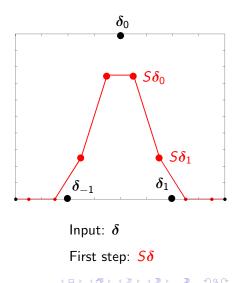


Subdivision: Successive refinement of initial data to create smooth curve. Example: Chaikin's algorithm applied to initial data $\boldsymbol{\delta} = (i, \delta_{i,0})_{i \in \mathbb{Z}}$



The limit of this subdivision process is a degree 2 spline.

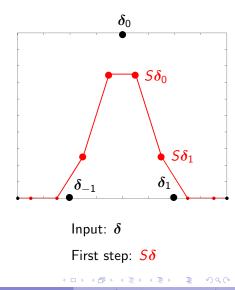
$$(S\delta)_{2i} = \frac{3}{4}\delta_i + \frac{1}{4}\delta_{i+1}$$
$$(S\delta)_{2i+1} = \frac{1}{4}\delta_i + \frac{3}{4}\delta_{i+1}$$



Chaikin's algorithm in more detail:

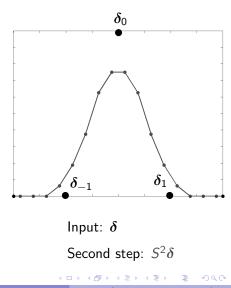
$$(S\delta)_{2i} = \frac{3}{4}\delta_i + \frac{1}{4}\delta_{i+1}$$
$$(S\delta)_{2i+1} = \frac{1}{4}\delta_i + \frac{3}{4}\delta_{i+1}$$

• S is a subdivision operator



$$(S\delta)_{2i} = \frac{3}{4}\delta_i + \frac{1}{4}\delta_{i+1}$$
$$(S\delta)_{2i+1} = \frac{1}{4}\delta_i + \frac{3}{4}\delta_{i+1}$$

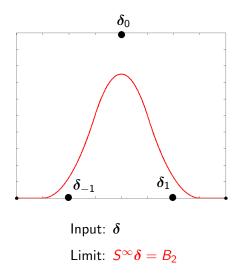
- S is a subdivision operator
- The iterates $S^n \delta$ describe the refined data



$$(S\delta)_{2i} = \frac{3}{4}\delta_i + \frac{1}{4}\delta_{i+1}$$
$$(S\delta)_{2i+1} = \frac{1}{4}\delta_i + \frac{3}{4}\delta_{i+1}$$

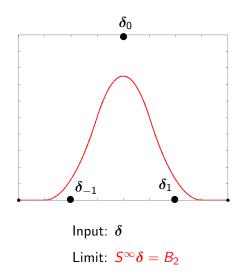
- S is a subdivision operator
- The iterates $S^n \delta$ describe the refined data

•
$$S^n \delta o S^\infty \delta = B_2$$
 as $n o \infty$



$$(S\delta)_{2i} = \frac{3}{4}\delta_i + \frac{1}{4}\delta_{i+1}$$
$$(S\delta)_{2i+1} = \frac{1}{4}\delta_i + \frac{3}{4}\delta_{i+1}$$

- S is a subdivision operator
- The iterates $S^n \delta$ describe the refined data
- $S^n \delta o S^\infty \delta = B_2$ as $n o \infty$
- In this example the limit is C^1



Start from input data p, a subdivision operator can be defined by two rules:

$$(Sp)_{2i} = \sum_{j \in \mathbb{Z}} a_{-2j} p_{i+j},$$

 $(Sp)_{2i+1} = \sum_{j \in \mathbb{Z}} a_{-2j+1} p_{i+j}$

(

Start from input data p, a subdivision operator can be defined by two rules:

$$(Sp)_{2i} = \sum_{j \in \mathbb{Z}} a_{-2j} p_{i+j},$$

 $(Sp)_{2i+1} = \sum_{j \in \mathbb{Z}} a_{-2j+1} p_{i+j}$

• The sequence a is called mask, $a_i \neq 0$ for only finitely many i

(日) (周) (三) (三)

Start from input data p, a subdivision operator can be defined by two rules:

$$(Sp)_{2i} = \sum_{j \in \mathbb{Z}} a_{-2j} p_{i+j},$$

 $(Sp)_{2i+1} = \sum_{j \in \mathbb{Z}} a_{-2j+1} p_{i+j}$

- The sequence *a* is called *mask*, $a_i \neq 0$ for only finitely many *i*
- The limit $S^{\infty}p$ is at least C^0 , we are interested in higher regularity

Start from input data p, a subdivision operator can be defined by two rules:

$$(Sp)_{2i} = \sum_{j \in \mathbb{Z}} a_{-2j} p_{i+j},$$

 $(Sp)_{2i+1} = \sum_{j \in \mathbb{Z}} a_{-2j+1} p_{i+j}$

- The sequence *a* is called *mask*, $a_i \neq 0$ for only finitely many *i*
- The limit $S^{\infty}p$ is at least C^0 , we are interested in higher regularity

Use generating functions: $a(z) = \sum_{j \in \mathbb{Z}} a_j z^j$.

Start from input data p, a subdivision operator can be defined by two rules:

$$(Sp)_{2i} = \sum_{j \in \mathbb{Z}} a_{-2j} p_{i+j},$$

 $(Sp)_{2i+1} = \sum_{j \in \mathbb{Z}} a_{-2j+1} p_{i+j}$

- The sequence *a* is called *mask*, $a_i \neq 0$ for only finitely many *i*
- The limit $S^{\infty}p$ is at least C^0 , we are interested in higher regularity

Use generating functions: $a(z) = \sum_{j \in \mathbb{Z}} a_j z^j$.

For example, Chaikin's algorithm:

$$a(z) = \frac{1}{4}z^{-2} + \frac{3}{4}z^{-1} + \frac{3}{4} + \frac{1}{4}z.$$

Necessary condition for convergence:

$$\sum_{j\in\mathbb{Z}}\mathsf{a}_{2j}=\sum_{j\in\mathbb{Z}}\mathsf{a}_{2j+1}=1$$

3

4 E b

-

< 🗗 🕨

Necessary condition for convergence:

$$\sum_{j\in\mathbb{Z}}a_{2j}=\sum_{j\in\mathbb{Z}}a_{2j+1}=1$$
 \Rightarrow $a(-1)=\sum_{j\in\mathbb{Z}}a_j(-1)^j=0$

3

4 E b

-

< 🗗 🕨

Necessary condition for convergence:

$$\sum_{j \in \mathbb{Z}} a_{2j} = \sum_{j \in \mathbb{Z}} a_{2j+1} = 1 \quad \Rightarrow \quad a(-1) = \sum_{j \in \mathbb{Z}} a_j (-1)^j = 0$$
$$\Rightarrow \quad a(z) \text{ has a factor } (z+1)$$

3

4 E b

-

< 🗗 🕨

Necessary condition for convergence:

$$\sum_{j \in \mathbb{Z}} a_{2j} = \sum_{j \in \mathbb{Z}} a_{2j+1} = 1 \quad \Rightarrow \quad a(-1) = \sum_{j \in \mathbb{Z}} a_j(-1)^j = 0$$
$$\Rightarrow \quad a(z) \text{ has a factor } (z+1)$$
$$\Rightarrow \quad a_*(z) = 2z \frac{a(z)}{z+1} \text{ is well-defined}$$

3

- - E - N

< 4 → <

Necessary condition for convergence:

$$\sum_{j \in \mathbb{Z}} a_{2j} = \sum_{j \in \mathbb{Z}} a_{2j+1} = 1 \quad \Rightarrow \quad a(-1) = \sum_{j \in \mathbb{Z}} a_j (-1)^j = 0$$
$$\Rightarrow \quad a(z) \text{ has a factor } (z+1)$$
$$\Rightarrow \quad a_*(z) = 2z \frac{a(z)}{z+1} \text{ is well-defined}$$

The derived scheme S_* satisfies $\Delta S = \frac{1}{2}S_*\Delta$.

3

47 ▶

Necessary condition for convergence:

$$\sum_{j \in \mathbb{Z}} a_{2j} = \sum_{j \in \mathbb{Z}} a_{2j+1} = 1 \quad \Rightarrow \quad a(-1) = \sum_{j \in \mathbb{Z}} a_j(-1)^j = 0$$
$$\Rightarrow \quad a(z) \text{ has a factor } (z+1)$$
$$\Rightarrow \quad a_*(z) = 2z \frac{a(z)}{z+1} \text{ is well-defined}$$

The derived scheme S_* satisfies $\Delta S = \frac{1}{2}S_*\Delta$.

Theorem

If S_* is C^{ℓ} , for $\ell \geq 0$ then S is $C^{\ell+1}$

Necessary condition for convergence:

$$\sum_{j \in \mathbb{Z}} a_{2j} = \sum_{j \in \mathbb{Z}} a_{2j+1} = 1 \quad \Rightarrow \quad a(-1) = \sum_{j \in \mathbb{Z}} a_j(-1)^j = 0$$
$$\Rightarrow \quad a(z) \text{ has a factor } (z+1)$$
$$\Rightarrow \quad a_*(z) = 2z \frac{a(z)}{z+1} \text{ is well-defined}$$

The derived scheme S_* satisfies $\Delta S = \frac{1}{2}S_*\Delta$.

Theorem

If S_* is C^{ℓ} , for $\ell \ge 0$ then S is $C^{\ell+1} \Leftrightarrow$ A C^{ℓ} mask $a_*(z)$ gives rise to a $C^{\ell+1}$ mask via $a(z) = \frac{z+1}{2z}a_*(z)$.

Necessary condition for convergence:

$$\sum_{j \in \mathbb{Z}} a_{2j} = \sum_{j \in \mathbb{Z}} a_{2j+1} = 1 \quad \Rightarrow \quad a(-1) = \sum_{j \in \mathbb{Z}} a_j(-1)^j = 0$$
$$\Rightarrow \quad a(z) \text{ has a factor } (z+1)$$
$$\Rightarrow \quad a_*(z) = 2z \frac{a(z)}{z+1} \text{ is well-defined}$$

The derived scheme S_* satisfies $\Delta S = \frac{1}{2}S_*\Delta$.

Theorem

If
$$S_*$$
 is C^{ℓ} , for $\ell \ge 0$ then S is $C^{\ell+1} \Leftrightarrow$
A C^{ℓ} mask $a_*(z)$ gives rise to a $C^{\ell+1}$ mask via $a(z) = \frac{z+1}{2z}a_*(z)$.

Smoothing of subdivision schemes:

$$S_*, C^\ell \xrightarrow{ imes rac{z+1}{2z}} S, C^{\ell+1}$$

The mask of the Lane-Riesenfeld algorithm for degree k B-Splines:

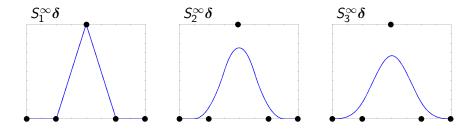
$$a_k(z) = rac{(z+1)^{k+1}}{(2z)^k}$$

Apply subdivision operator S_k to 2D input data $\delta = (i, \delta_{i,0})_{i \in \mathbb{Z}}$:

The mask of the Lane-Riesenfeld algorithm for degree k B-Splines:

$$a_k(z) = rac{(z+1)^{k+1}}{(2z)^k}$$

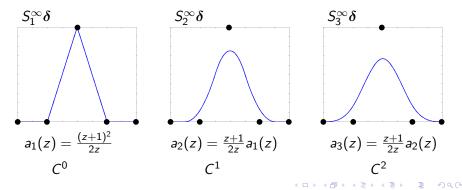
Apply subdivision operator S_k to 2D input data $\delta = (i, \delta_{i,0})_{i \in \mathbb{Z}}$:



The mask of the Lane-Riesenfeld algorithm for degree k B-Splines:

$$a_k(z) = rac{(z+1)^{k+1}}{(2z)^k}$$

Apply subdivision operator S_k to 2D input data $\delta = (i, \delta_{i,0})_{i \in \mathbb{Z}}$:



Smoothing of vector and Hermite schemes

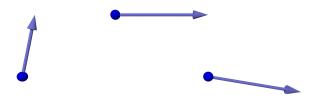
Hermite subdivision

Successive refinement of point-vector data for generating a function and its derivative

< 67 ▶

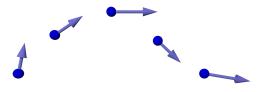
Hermite subdivision

Successive refinement of point-vector data for generating a function and its derivative

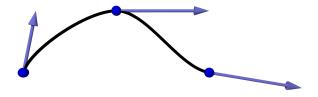


Hermite subdivision

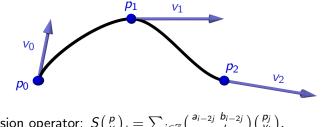
Successive refinement of point-vector data for generating a function and its derivative



Successive refinement of point-vector data for generating a function and its derivative



Successive refinement of point-vector data for generating a function and its derivative



Subdivision operator: $S\begin{pmatrix}p\\v\end{pmatrix}_i = \sum_{j\in\mathbb{Z}} \begin{pmatrix}a_{i-2j} & b_{i-2j}\\c_{i-2i} & d_{i-2i}\end{pmatrix} \begin{pmatrix}p_j\\v_j\end{pmatrix}$.

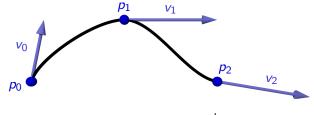
Successive refinement of point-vector data for generating a function and its derivative



Subdivision operator: $S\begin{pmatrix}p\\v\end{pmatrix}_{i} = \sum_{j\in\mathbb{Z}} {a_{i-2j} \atop c_{i-2j} \atop d_{i-2j}} {p_{j} \choose v_{j}}.$

• The iterates $S^n({}^p_v)$ describe the refined point-vector data

Successive refinement of point-vector data for generating a function and its derivative



Subdivision operator: $S({}^{p}_{v})_{i} = \sum_{j \in \mathbb{Z}} {a_{i-2j} \ b_{i-2j} \ c_{i-2j} \ d_{i-2j}} {p_{j} \ v_{j}}.$

- The iterates $S^n({p \atop v})$ describe the refined point-vector data
- Sⁿ (^p_v) converges to function and its derivative (after appropriate scaling)

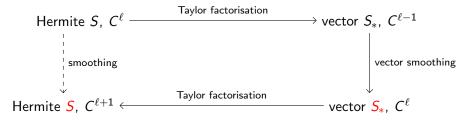
The spectral condition implies the existence of the derived scheme S_* with respect to the Taylor operator:

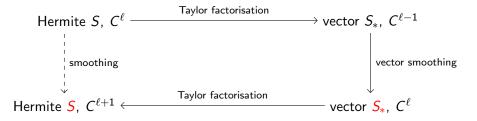
$$\left(egin{array}{cc} \Delta & -1 \\ 0 & 1 \end{array}
ight) S = rac{1}{2} S_* \left(egin{array}{cc} \Delta & -1 \\ 0 & 1 \end{array}
ight)$$

The spectral condition implies the existence of the derived scheme S_* with respect to the Taylor operator:

$$\left(\begin{array}{cc} \Delta & -1 \\ 0 & 1 \end{array} \right) S = rac{1}{2} S_* \left(\begin{array}{cc} \Delta & -1 \\ 0 & 1 \end{array} \right)$$

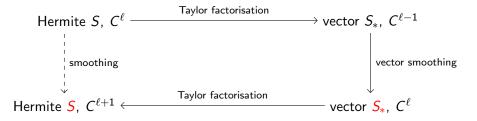
Theorem (Merrien and Sauer 2012; Conti, Merrien and Romani 2014) If the vector scheme S_* is C^{ℓ} , $\ell \ge 0$, then the Hermite scheme S is $C^{\ell+1}$





Theorem (Dyn, M. 2016)

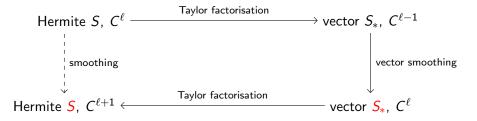
Any^{*} Hermite scheme S which is $C^{\ell}, \ell \ge 1$, can be transformed to a new Hermite scheme S of regularity $C^{\ell+1}$.



Theorem (Dyn, M. 2016)

Any^{*} Hermite scheme S which is $C^{\ell}, \ell \ge 1$, can be transformed to a new Hermite scheme S of regularity $C^{\ell+1}$.

S is constructed from S by manipulating generating functions.

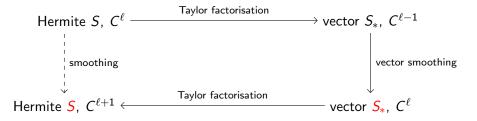


Theorem (Dyn, M. 2016)

Any^{*} Hermite scheme S which is $C^{\ell}, \ell \ge 1$, can be transformed to a new Hermite scheme S of regularity $C^{\ell+1}$.

 \boldsymbol{S} is constructed from \boldsymbol{S} by manipulating generating functions.

Advantage: Procedure can be iterated.



Theorem (Dyn, M. 2016)

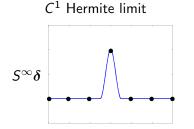
Any^{*} Hermite scheme S which is $C^{\ell}, \ell \ge 1$, can be transformed to a new Hermite scheme S of regularity $C^{\ell+1}$.

S is constructed from S by manipulating generating functions.

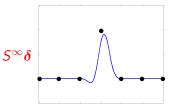
Advantage: Procedure can be iterated.

Disadvantage: Makes support larger by a maximum of 5.

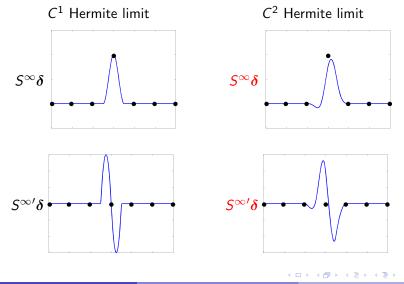
We smoothen an interpolatory C^1 Hermite scheme by J.-L. Merrien.



 C^2 Hermite limit



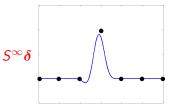
We smoothen an interpolatory C^1 Hermite scheme by J.-L. Merrien.



We smoothen a C^2 Hermite scheme constructed by a de Rham transform.

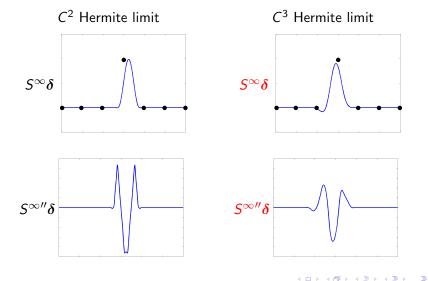
 C^2 Hermite limit

 C^3 Hermite limit



3

We smoothen a C^2 Hermite scheme constructed by a de Rham transform.



Smoothing of vector and Hermite schemes

Conclusion

• We can smoothen Hermite schemes in a manner similar to scalar schemes, by manipulating generating functions.

Conclusion

- We can smoothen Hermite schemes in a manner similar to scalar schemes, by manipulating generating functions.
- Our procedure is able to construct arbitrarily regular Hermite schemes.

Conclusion

- We can smoothen Hermite schemes in a manner similar to scalar schemes, by manipulating generating functions.
- Our procedure is able to construct arbitrarily regular Hermite schemes.

Thank you!

DOCTORAL PROGRAM DISCRETE MATHEMATICS

TU & KFU GRAZ•MU LEOBEN

Smoothing of vector and Hermite schemes

For example, if S has the mask $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and b(1) = 0, then the mask of S is given by

$$\begin{aligned} \mathbf{a}(z) &= \frac{(z+1)}{2z} \Big((z^{-2} - 2)b(z) + \mathbf{a}(z) \Big), \\ b(z) &= \frac{1}{2} \frac{zb(z)}{(1-z)}, \\ c(z) &= \frac{1}{2} (z^{-2} - 1) \Big(c(z) - \mathbf{a}(z)(z^{-1} - 2) \\ &+ d(z)(z^{-2} - 2) - b(z)(z^{-1} - 2)(z^{-2} - 2) \Big), \\ d(z) &= \frac{1}{2} (d(z) - (z^{-1} - 2)b(z)). \end{aligned}$$

September 22, 2016