Sampling for Solutions of the Heat Equation

Karlheinz Gröchenig

University of Vienna

Joint work with Richard Bass, Univ. of Connecticut

MAIA 2016

Problem

Place sensors in a swamp and measure pollution level.

- 1. Interpolate and determine pollution everywhere.
- 2. Determine source of pollution.
- 3. Determine original intensity of pollution.

u(x,t) pollution level at $x \in \mathbb{R}^d$ at time t > 0.

Diffusion Equation (Heat Equation)

Tool: u(x, t) is driven by the heat equation

$$u_t - \Delta u = 0$$
 on $\mathbb{R}^d \times (0, \infty)$
 $u(\cdot, 0) = f$ $f \in L^p(\mathbb{R}^d)$.

Its solution is

$$u(x,t) = \frac{1}{(4\pi t)^{d/2}} \int_{\mathbb{R}^d} f(y) e^{-\frac{(x-y)^2}{4t}} dy = (f * G_t)(x)$$

with heat kernel

$$G_t(x) = \frac{1}{(4\pi t)^{d/2}} e^{-\frac{x^2}{4t}}.$$

Pollution Scenario

$$f(x)$$
 ... initial *pollution* level at time $t=0$ and $f\in L^p(\mathbb{R}^d)$ $u(x,t)$... pollution at x at time t Assumption: supp $f\subseteq B(0,R)$ (compact)

Possible types of given data acquired by the sensors at

$$x_j \in B(0,2R)$$

- (i) Samples at a fixed time: $y_j = u(x_j, t)$ for j = 1, ..., n
- (ii) Arbitrary samples: $y_j = u(x_j, t_j)$
- (iii) Dynamic sampling: $y_j(t) = u(x_j, t)$ for all $t \in [t_0, t_1]$ (Aldroubi etc.)

Data are samples of a solution of the heat equation.

Possible Estimation Problems

- (i) Determine the *spread of pollution*: estimate pollution u(x, t) from samples $u(x_i, t)$ at fixed time t
- (ii) Estimate *source* of pollution \Leftrightarrow estimate initial condition f
- (iii) Determine total initial pollution \Leftrightarrow estimate norm $||f||_1$ or $||f||_2$

- (i) ... sampling in space of smooth functions (reasonably stable)
- (ii) and (iii) require backwards solution of heat equation: this is extremely ill-conditioned inverse problem.

Error estimate with mesh-width

Lemma (Lack of uniqueness)

Assume that $\delta > 0$ is such that

$$B(0,2R)\subseteq \bigcup_{j=1}^n B(x_j,\delta)$$

and $y_j=(f_1*G_t)(x_j)=(f_2*G_t)(x_j)$ for $f_1,f_2\in L^p(\mathbb{R}^d)$ and $j=1,\ldots,n$. Two initial conditions yield the same data. Then

$$||f_1 * G_t - f_2 * G_t||_p \le C(t) ||f_1 - f_2||_p \delta$$

Covering requires $n \approx |B(0,2R)|/|B(0,\delta)| \approx \delta^{-d}$ samples and yields

$$||u(\cdot,t)-f*G_t||_p=\mathcal{O}(n^{-1/d})$$

Aspects

- Positivity
- Sparsity
- Random sampling because deterministic results in higher dimensions are hard (and usually weak).
- Linear measurements

$$y_j = u(x_j, t_j) = (f * G_{t_j})(x) = \langle f, G_{t_j}(\cdot - x_j) \rangle$$
 $j = 1, \ldots, n$

(use radial basis functions?)

Positivity

Important aspect: pollution level is a non-negative quantity.

$$f(x) \geq 0$$
 and $u(x,t) = f * G_t \geq 0$

- crucial for physical model
- not usually assumed in sampling and interpolation problems

Is there Sparsity?

Recipe to introduce sparsity Initial condition f is taken from a compact set \mathcal{B} in $L^p(B(0,R))$

(i) \mathcal{B} is a compact subset of

$$\{f\in L^1: f\geq 0, \operatorname{supp} f\subset B(0,R), \|f\|_1=1\}$$
 and $\mathcal{B}^*=\{\alpha f: \alpha>0, f\in \mathcal{B}\}.$

(ii) Or

$$\mathcal{B}_0 = \{ f \in L^2(B(0, R)) : 1/2 \le ||f||_2 \le 1, ||\nabla f||_2 \le 1, f \ge 0 \}$$

$$\mathcal{B}_t = \{ f * G_t \Big|_{B(0, 2R)} : f \in \mathcal{B}_0 \} \quad \text{is compact}$$

Random sampling of solutions I — L^1 -theory

• Sample neighborhood B(0,2R) of B(0,R) randomly at points $x_i \in B(0,2R)$.

 $\{x_j: j=1,\ldots n\}$ i.i.d. random variables and uniformly distributed in B(0,2R).

• Compact set for initial conditions: Let \mathcal{B} be a compact subset of

$$\{f \in L^1 : f \ge 0, \text{supp } f \subset B(0, R), \|f\|_1 = 1\}.$$

Let
$$\mathcal{B}^* = \{ \alpha f : \alpha > 0, f \in \mathcal{B} \}.$$

Random sampling of solutions I

Theorem (R. Bass, K.G.)

Suppose x_1, \ldots, x_n are i.i.d. random variables uniformly distributed on B(0,2R). Suppose $0 < a \le t_1, \ldots, t_r \le b < \infty$ are arbitrary. There exist $A, B, c_1, c_2 > 0$ such that with probability at least

$$1-c_1\exp(-c_2n)$$

we have the sampling inequality

$$nA||f||_1 \leq \sum_{j=1}^n u(x_j, t_j) \leq nB||f||_1, \qquad f \in \mathcal{B}^*.$$

• Norm of initial condition (= intensity of pollution) can be reliably estimated by sampling heat equation (parameter estimation of $\alpha > 0$).

Idea

$$\frac{1}{n} \sum_{j=1}^{n} u(x_j, t) \approx \mathbb{E}(u(\cdot, t))$$

$$= \frac{1}{\text{vol}(B(0, 2R))} \int_{B(0, 2R)} u(x, t) dx$$

$$\approx \frac{1}{\text{vol}(B(0, 2R))} \int_{\mathbb{R}^d} u(x, t) dx$$

$$= \frac{1}{\text{vol}(B(0, 2R))} \int_{\mathbb{R}^d} (f * G_t)(x) dx$$

$$= \frac{1}{\text{vol}(B(0, 2R))} \int_{\mathbb{R}^d} f(x) dx$$

- probabilistic Bernstein inequality for sums of random variables
- · covering numbers

Lemma for comparison of local and global norm

Lemma

Let R > 0 be fixed and $1 \le p < \infty$. There exists $b \in (0,1)$ such that if $f \in L^p$, supp $f \subset B(0,R)$, $f \ge 0$, and $u = f * G_t$. Then

$$\int_{B(0,2R)} u(x,t)^p dx \ge b \int_{\mathbb{R}^d} u(x,t)^p dx.$$

Comment:
$$b \simeq \left(CK^{-d}e^{pK^2/t}t^{pd/2}+1\right)^{-1}$$
 for constant $C=\mathcal{O}(1)$.

All constants in Theorems depend explicitly on R, t etc.

Random sampling of solutions II — L^2 -Theory

Compact set for sparsity is

$$\mathcal{B}_0 = \{ f \in L^2(B(0,R)) : 1/2 \le \|f\|_2 \le 1, \|\nabla f\|_2 \le 1, h \ge 0 \}$$

Theorem

Suppose x_1, \ldots, x_n are i.i.d. random variables uniformly distributed on B(0, 2R). There exist $A, B, c_1, c_2 > 0$ such that with probability at least

$$1 - c_1 e^{-c_2 n}$$

the sampling inequality holds:

$$An\|f\|_2^2 \le \sum_{j=1}^n |u(x_j,t)|^2 \le Bn\|f\|_2^2, \qquad u = f * G_t \in \mathcal{B}_0.$$

Summary

- New sampling and interpolation problems coming from PDE
- Interaction between PDEs and sampling theory
- Probabilistic methods
- Still a lots to do . . .

Some Ideas for Numerical Approximation and/or Interpolation

Data given by linear measurements

$$y_j = u(x_j, t_j) = \langle f, G_{t_i}(\cdot - x_j) \rangle$$
 $j = 1, \ldots, n.$

Possible least square approximations:

(i) Smallest solution at time t:

$$\operatorname{argmin}\{\|f * G_t\|_2 : f \in L^2(K)\}$$

(ii) Smallest initial condition:

$$\operatorname{argmin}\{\|f\|_{2}: f \in L^{2}(K)\}$$

(iii) Interpolation of given data:

$$\operatorname{argmin} \left\{ \sum_{j=1}^{n} |y_j - h(x_j)|^2 : h \in \operatorname{span} \{ G_{t_j}(\cdot - x_j) : j = 1, \dots, n \} \right\}$$

Second Approach to Sparsity

Observation: solution $Tf = f * G_t \Big|_{\tilde{B}}$ is self-adjoint and compact.

As we sample $u(x, t) = f * G_t$ on n points in \tilde{B} , only eigenfunctions of large eigenvalues should be relevant relevant. Possible approach:

(a) Choose an (orthonormal) basis of eigenfunctions

$$\{\psi_{\mathbf{k}}, \mathbf{k} \in \mathbb{N} : T\psi_{\mathbf{k}} = \lambda_{\mathbf{k}}\psi_{\mathbf{k}}\}$$

(b) Solve

$$\operatorname{argmin}\{\sum_{i=1}^{n}|y_{j}-h(x_{j})|^{2}:h\in\operatorname{span}\{\psi_{k}:k=1,\ldots,N_{0}\}\}$$

for suitable dimension N_0 .

→ functionals for sampling are different from basis in reconstruction spaces — *generalized sampling* (Adcock-Hansen)