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Problem

Place sensors in a swamp and measure pollution level.
1. Interpolate and determine pollution everywhere.
2. Determine source of pollution.

3. Determine original intensity of pollution.

u(x, t) pollution level at x € R? at time t > 0.
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Diffusion Equation (Heat Equation)
Tool: u(x, t) is driven by the heat equation

ur—Au=0 on R? x (0, o0)
u(-,0)="f f e LP(RY).

Its solution is

u(x, t) = —(47r:)d/2 /Rd fly)e™ (x

with heat kernel

»?
i dy = (fx Gr)(x)

1 x2

Gi(x) = We_ a
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Pollution Scenario

f(x) ... initial pollution level at time t = 0 and f € LP(RY)
u(x,t) ... pollution at x at time ¢
Assumption: supp f C B(0, R) (compact)

Possible types of given data acquired by the sensors at
x; € B(0,2R)

(i) Samples at a fixed time: y; = u(x;,t)forj=1,...,n

(ii) Arbitrary samples: y; = u(x;, t;)

(iii) Dynamic sampling: y;(t) = u(x;, t) for all t € [ty, #]
(Aldroubi etc.)

‘ Data are samples of a solution of the heat equation. ‘
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Possible Estimation Problems

(i) Determine the spread of pollution: estimate pollution
u(x, t) from samples u(x;, t) at fixed time ¢

(i) Estimate source of pollution < estimate initial
condition f

(iii) Determine total initial pollution <  estimate norm ||f||4
or [If]l2

e (i) ... sampling in space of smooth functions (reasonably stable)
e (ii) and (iii) require backwards solution of heat equation: this is
extremely ill-conditioned inverse problem.

Karlheinz Gréchenig (Univ. of Vienna) Sampling heat equation MAIA 2016 5/17



Error estimate with mesh-width

Lemma (Lack of uniqueness)
Assume that § > 0 is such that

n
B(0,2R) C | ] B(x;,0)
j=1

and yj = (fi « G)(x)) = (b * Gi)(x)) for fy, f, € LP(RY) andj=1,...,n

Two initial condtions yield the same data. 1 €N

Iy Gt — o+ Gillp < C() [|fy — Fallp 0

Covering requires n ~ |B(0,2R)|/|B(0, §)| =< 6~9 samples and yields
lu(-,t) = f % Gillp = O(n~"/9)
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Aspects
e Positivity
e Sparsity

e Random sampling
because deterministic results in higher dimensions are hard (and
usually weak).

e Linear measurements

yp=ulx; ) = (Fx Gy)(x) = (£, Gy(- = %)) j=1,...,n

(use radial basis functions?)
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R ——
Positivity

Important aspect: pollution level is a non-negative quantity.

f(x)>0and u(x,t) =f+«Gt >0

e crucial for physical model
e not usually assumed in sampling and interpolation problems
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Is there Sparsity?

Recipe to introduce sparsity
Initial condition f is taken from a compact set 5 in LP(B(0, R))

(i) Bis a compact subset of
{fel':f>0,suppfc BO,R),|f|: =1}
and B* = {af : a« > 0, f € B}.
(i) Or
Bo = {f € L*(B(0,R)) : 1/2 < ||fll2 <1,||Vfl2 < 1,7 >0}
Bi = {f x G¢ B(0.2F) :fe By} is compact
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Random sampling of solutions | — L'-theory

e Sample neighborhood B(0,2R) of B(0, R) randomly at points
x; € B(0,2R).

{x;j:j=1,...n}iid. random variables and uniformly distributed in
B(0,2R).
e Compact set for initial conditions:
Let B be a compact subset of
{fel':f>0,suppfc B(O,R),|fll1 =1}

Let B* = {af : a > 0,f € B}.
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Random sampling of solutions |

Theorem (R. Bass, K.G.)

Suppose xq, ..., Xp are i.i.d. random variables uniformly distributed on
B(0,2R). Suppose 0 < a< ty,...,t, < b < oo are arbitrary. There
exist A, B, ¢y, ¢, > 0 such that with probability at least

1 — ¢y exp(—czn)
we have the sampling inequality

n
nAlfls <> u(x.4) < nB||flly,  feB".
j=1

e Norm of initial condition (= intensity of pollution) can be reliably
estimated by sampling heat equation (parameter estimation of a > 0).
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Idea
LS w1y ~ E(u(, 1)
j=1
1
= Vol(B(0.2R) /B(o,zm (x.t) dx

"
vol(B(0,2R)) /Rd ulx 1) dx

1
~ Vol(B(0, 2R)) /Rd(f* Gi)(x) dx
1

= B0 A oo ()

Q

e probabilistic Bernstein inequality for sums of random variables

e covering numbers
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Lemma for comparison of local and global norm
Lemma

Let R > 0 be fixed and 1 < p < co. There exists b € (0, 1) such that if
felP,suppfc B(0,R),f>0,andu = f« G;. Then

/ u(x, t)P dx > b/ u(x, t)P dx.
B(0,2R) RY

-
Comment: b = (CK*"’e”Kz/ttpd/2 + 1) for constant C = O(1).

All constants in Theorems depend explicitly on R, t etc.
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Random sampling of solutions Il — L?>-Theory
Compact set for sparsity is
By = {f € L3(B(0,R)) : 1/2 < ||f|l2 < 1,|[Vfll2 < 1,h > 0}

Theorem

Suppose xq, ..., Xp are i.i.d. random variables uniformly distributed on
B(0,2R). There exist A, B, ¢y, co > 0 such that with probability at least

1—cre @

the sampling inequality holds:

n
Anlfll5 <> |u(Cx, P < Bnllf|3,  u=fxG e By
j=1

.
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Summary

e New sampling and interpolation problems coming from PDE
e Interaction between PDEs and sampling theory
e Probabilistic methods

e Stillalotstodo...
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Some Ideas for Numerical Approximation and/or Interpolation

Data given by linear measurements
yp=ux, ) = (£, Gy(-—x))  j=1,....n
Possible least square approximations:
(i) Smallest solution at time t:
argmin{||f * G2 : f € L3(K)}
(i) Smallest initial condition:
argmin{|f]2 : f € L3(K)}

(iii) Interpolation of given data:

argmm{ZU// )|2 h e span{Gy(-—x) :j=1,...,
j=1
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|
Second Approach to Sparsity

Observation: solution Tf = f % Gt‘ is self-adjoint and compact.

As we sample u(x,t) = f x G; on n points in B, only eigenfunctions of
large eigenvalues should be relevant relevant.
Possible approach:

(a) Choose an (orthonormal) basis of eigenfunctions

{tk, k € N: Toop = Ay}
(b) Solve

argmm{z ly; — h(xj) )2 :hespan{yg:k=1,...,No}}
j=1

for suitable dimension N.

— functionals for sampling are different from basis in reconstruction
spaces — generalized sampling (Adcock-Hansen)
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