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1. How to generate frames in higher dimensions?

Possible approaches:
@ Tensor products of 1D frames
— no directional or other geometric information.

@ Native 2D constructions with additional structures:
ridgelets, curvelets, shearlets, ...

@ |dea by Grafakos and Sansing in the setting of continuous
Gabor frames:
Ridges — directional information for R”

Aim of this talk:

Generalizing the ridge idea to more general continuous and discrete
frames, e.g. wavelet frames.

[L. Grafakos and C. Sansing. Gabor frames and directional time-frequency analysis. Appl. Comp.
Harm. Anal., 25:47-67, 2008.]
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2. Ridge functions

Notation:
For functions f,g : R™ — C, m € N,

@ f Fourier transform and 7" inverse Fourier transform of f, if
defined.

° (1.g) = [ 100g( o
whenever the right hand side converges.

Let h € S(R) (or hin a Sobolov space).
Let u € S™', n e N, be a direction.

@ Ridge function h, on R"™:
hy(x) :== h(u-x), xeR".

[A. Pinkus. Interpolation by ridge functions. J. Approx. Theory, 73:218-236, 1993.]
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2. Ridge functions

Definition
Consider any function g € S(R).

(i) For given o > 0, consider the differential operator
D*g:=(g()|- )"

(i) Let

(iiiy Foru e S"', define the weighted ridge function G, by

Gu(x) := G(u-x), xeR"

These definitions make sense for a large class of non-differentiable
functions and for Sobolov spaces H?(R) with 3 > «.
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3. Continuous frames

A generalization of the widely known (discrete) frames:
Definition (Continuous Frame)

Let H be a complex Hilbert space and M a measure space with a
positive measure ... A continuous frame is a family of vectors {fx} kem
for which the following hold:

(i) For all f € H, the mapping k — (f, fx) is a measurable function on M.

(i) There exist constants A, B > 0 such that

Alf|? < /M|<f, fi) | du(k) < B ||f|?, vf € H.

The continuous frame {fx} ke is tight if we can choose A = B.

[S. Twareque Ali et al. Continuous frames in Hilbert space. Ann. Physics, 222(1):1-37, 1993.
G. Kaiser. A Friendly Guide to Wavelets. Birkhduser, Boston, 1994.]
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3. Continuous frames

Example:
For a countable set M equipped with the counting measure:
Classical frames.

Theorem (Dual continuous frame)

For every continuous frame {fx} ke, there exists at least one dual
continuous frame {g }kcn such that each f € H has the
representation

f /M (. ) gk dpu(K);

the integral should be interpreted in the weak sense.

Example:
If {fx}kem is @ continuous tight frame with bound A,
then {A~"fx}kem is a dual continuous frame.

Christensen, Forster, Massopust Frame recycling MAIA 2016

7/26



3. Continuous frames

The usual notation for translation, modulation, dilation
@ T,f(x) = f(x — a),
@ Epf(x) := e2™™f(x),
@ D f(x) := c'/?f(cx),

where a,b € R,c > 0.
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3. Continuous frames
Example: Continuous Gabor Frames

@ Letfy,f, gy, € L2(R). Then
/ / (fi, EpTag1)(f2, EpTage) dbda = (fi, f2) (g2, 91)-

@ Let g € L?(R)\ {0}.
{EpTag}aper is a continuous tight frame for L2(R).
(M = R? equipped with the Lebesgue measure.)
Frame bound A = ||g]|2.

® Let g1, gz € L%(R) with <g1,gz> # 0.

Then {EpTa91}aper and { Eb Tag2}aber are dual continuous
frames.
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3. Continuous frames

Example: Wavelet systems

Let {DaTpt)}axo.bcr be a wavelet system for an admissible wavelet
¥ € L2(R) with admissibility constant C,.

@ For all functions f, g € L?(R),

da db

/ / (f. DaTo) (G, DaTott) 2222 — it q).

@ {DaTpt}azo.ber is @ continuous frame for L2(R).
M =R x R\ {0} with the Haar measure ,da db.

@ Frame bound is the admissibility constant A = C,.
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4. Decompositions in R” via continuous frames

Frame generators for R":

Let {gk }xem be a continuous frame for L2(R).

D2 gk := (Gk()| -1"2')¥ and Gk(s) = D"z gk(s), s € R.
Gk u(X) :== Gk(u - x).

Theorem

Let {f}kem and {gx}kem be dual continuous frames for L?(R),
consisting of functions in S(R) or H*+("=1/2(R), a > 0.
Then, for f € L'(R") such that f € L'(R"),

f:1/ /(f,Gku>Fkudkdu.
2 S”_1 M ’ ’

[Grafakos and Sansing 2008 for Gabor systems, i.e., for generators satisfying (g1, g2) # 0.
O. Christensen, BF and P. Massopust: Bull. Aust. Math. Soc. 92 (2015), 268—281, for Sobolev

spaces and general frames.]
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5. Semi-discrete representations

Theorem
Let f € L'(R") N L2(R") and let M be a countable index set.

(i) Let {gk}kem C S(R) denote a frame for L2(R) with bounds A, B.
Then

2A||f|? < / Z |(f, Giu)|? du < 2B]|f|]2.
S kem

(i) Assuming that {gk}xenm and {fy}xem are dual frames for L?(R),
both consisting of functions in S(R), then

’
f= 2/ > (f, Gk,u) Fie.u du.
S kem

(i) and (ii) also hold for frames { gk} kem and {fx} kem in Sobolev space
H*(R), a > 0.
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5. Semi-discrete representations

Example: The Meyer wavelet ¢

~

V(7)== e (w(2m) + w(-277))

with 5
—1)), for 28 <y < 41,

—1)), for 4 <y < 81,

0, elsewhere,

with v : R — [0, 1] a smooth enough function
of sigmoidal shape:

v(y)=0fory <0,

v(y)=1fory > 1, and

v(y)+v(l—y)=1.
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5. Semi-discrete representations

Example: The Meyer wavelet ¢ |

@ ¢ can be chosen a Schwartz functionorat J”/ \ Mo,
least H*(RR). U1

is an orthonormal wavelet basis for L2(R).
@ In particular, {x m}k mez is its own dual \\ /‘"‘

frame. v
@ Thus, we can apply the Theorem:

The ridge frame elements Gi , = Fx 4

have the form

{kmbkmez = {27 ™2p(2"™—K) | k,m € Z} [\ v [\\

n—1
Vimu(X) = Viem(U-x) =Dz Yy m(u-x)
= (|'\n;2115<\,m)v(u'x), kmeZ, uesS".
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5. Semi-discrete representations

Meyer wavelet v
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5. Semi-discrete representations

2D ridge frame generator W o , with u = (1,0)7
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5. Semi-discrete representations

Another Example: Complex B-splines 3, and their wavelets
Let z € Cwith Rez > 1.

. 1 — g2miv\*
Bz(v) == (27”7> :
Interpretation:

Approximate single band frequency analysis

BZ(’Y) = Bre 2(7) Mz g=Imzarg(y),

Im z enhances the positive or the negative frequency spectrum,
depending on the sign of Im z.
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5. Semi-discrete representations

Complex B-spline for z=3.5+ i

[B. F, T. Blu, and M. Unser. Complex B-splines. Appl. Comp. Harmon. Anal., 20:281-282, 2006.]
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5. Semi-discrete representations

Orthonormal complex B-splines
Bz generate a multiresolution analysis
{Vk | k € Z} of L3(R).

{Bz(- — £) | £ € Z} is a Riesz basis for
Vo.

Orthonormalization
via the autocorrelation filter:

A7) =D 1B(v + )P

keZ

Orthonormal complex B-spline:

Bz 1(v) = Bz(7)/V/Az(7)
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5. Semi-discrete representations

Complex B-spline wavelets
Scaling filter: R
Hz("}//Z) — /\BZ,L(V)
5Z,J_(’Y/2)

Associated orthonormal wavelet v, | :

V21(7) = —e ™ Hy((v + 1)/2) Bz, (7/2).
Associated ridge wavelet:
Vo (X)) =V (U X) = D g (e X) = (|2 1) (U x)

generates a ridge wavelet frame of L2(R").
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5. Semi-discrete representations

Orthonormal complex B-spline wavelet
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5. Semi-discrete representations

3D complex spline ridge wavelet:

Modulus, real and imaginary part.
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6. Discrete representations

Last step: Discretization of the sphere, i.e., the directions of the ridges.
E.g. via e-nets.

Definition
Let (X, d) be a metric space and a discrete set N C X. Given any
e > 0, the set N is called an e—net for X if

(@) inf{d(y,y) |y #y € N} > ¢;
(b) inf{r | U,en Br(¥) 2 X} < ¢, where B,(y) denotes the closed ball
of radius r > 0 centered at y.

An e-net is called finite if N is a finite set.

We follow the construction by Candés.

[E. Candés. Harmonic analysis of neural networks. Appl. Comp. Harm. Anal, 6:197-218, 1999.]
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6. Discrete representations

General setup:

Let g € S(R) and assume that

o [0z, <

oo Y7

— G:=D"7 g satisfies the admissibility condition.

(i) inf Z ‘g (ay ’y)‘ ‘ao v’_zn ) 0;

1<|’y|<30

(i) [g(v)| < K|y (1 + |y])~7, for some K > 0, a > 251 and
I6; >a+%3.
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6. Discrete representations

Theorem
LetQ:=[-1,1]" Cc R".
Let g € S(R) be as in the general setup and let G := D7 g.

Then there exists by > 0 so that for any b < by, we can find constants
A, B > 0, such that

AlflZeqy < D° D DI DacTen Gu)? < Blfl2 g

kel ueS,’j*‘ ez

forall f € L2(Q).

l.e., the orthogonal projection of {Da, Typ Gy | k € I, L € Z; u € S,’(H}
onto L2(Q) forms a frame for L?(Q).
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Conclusions

@ Novel approach to directionally sensitive continuous frames
for L?(R") based on ridges.

@ Discretization in two steps:

e Semidiscrete representation with continuous directions;
Frame bounds recycling up to a factor 2.

e discrete representation via e-nets;
Frame bounds recycling open question.

@ Examples on directional continuous wavelet frames based on the
Meyer wavelet and on complex B-splines.

[O. Christensen, BF, P. Massopust: Directional time frequency analysis via continuous frames.
Bull. Aust. Math. Soc. 92 (2015), 268—281.]
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