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Deterministic Kernel-based Interpolation

Given data {(x;, y;)}" ,, use a data-dependent linear function space,
i.e.,

N
s(x) =Y gK(x,x;) =k(x)Te, xeQCR
Jj=1

with K : Q x Q — R a positive definite reproducing kernel.
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Deterministic Kernel-based Interpolation

Given data {(x;, y;)}" ,, use a data-dependent linear function space,
i.e.,

N
s(x)=> gK(x,x)) =k(x)"e, xeQCR’
j=1
with K : Q x Q — R a positive definite reproducing kernel.
To find ¢; solve the interpolation equations
S(X,'):y,'7 I':'l,...,N,

which leads to a linear system Ke = y with symmetric positive definite
— often ill-conditioned — system matrix

K,‘j:K(X,',Xj), i,j:1,...,N,
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Deterministic Kernel-based Interpolation

Given data {(x;, y;)}" ,, use a data-dependent linear function space,
i.e.,

N
s(x)=> gK(x,x)) =k(x)"e, xeQCR’
j=1
with K : Q x Q — R a positive definite reproducing kernel.
To find ¢; solve the interpolation equations
S(X,'):y,'7 I':'l,...,N,

which leads to a linear system Ke = y with symmetric positive definite
— often ill-conditioned — system matrix

K,‘j:K(X,',Xj), i,j:1,...,N,
and cardinal representation O
s(x) = k(x)TK_1y = £(x)Ty' aaaaaaaa
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Connection to Kriging

Given a Gaussian (zero-mean) random field Y with covariance kernel
K, process variance 2 and observations

T .
Y= (Y% - Yxy) . Yy, zero-mean random variables,

the (simple) kriging predictor is of the form

Yy = Z wi(X) Yy, = w(x)TY,

o \A/x: zero-mean random variable,
o w()=(wm() - WN(-))T: vector of weight functions.

“Optimal” weights v*vj(-) will minimize the MSE of the predictor, i.e.,

MSE(VX):E[(YX—W(X)TY)Q]. O
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Deterministic and Statistical Views of Kernel Methods

Using the covariance kernel K and process variance o2 of Y, i.e.,
0?K(x,2z) = E[Yy Yz], we have

MSE(Yy) = E [(Yx - w(x)TY>2]

= E[Yx Yx] — 2E[Yew(x)" Y] + E[w(x)TYY T w(x)]
= 02K(x, x) — 2w(x) T (c%k(x)) + w(x)T (oK) w(x).
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Deterministic and Statistical Views of Kernel Methods

Using the covariance kernel K and process variance o2 of Y, i.e.,
0?K(x,2z) = E[Yy Yz], we have

MSE(Yy) = E [(Yx - w(x)TY>2]

= E[Yx Yx] — 2E[Yew(x)" Y] + E[w(x)TYY T w(x)]
= 02K(x, x) — 2w(x) T (c%k(x)) + w(x)T (oK) w(x).
Differentiation and equating to 0 yields the optimum weight vector

*

w(x) = K k(x),

Greg Fasshauer Computing with PD Kernels 7



Deterministic and Statistical Views of Kernel Methods

Using the covariance kernel K and process variance o2 of Y, i.e.,
0?K(x,2z) = E[Yy Yz], we have
MSE(Yy) = E [(Yx - w(x)TY>2]
= E[Yx Yx] — 2E[Yew(x)" Y] + E[w(x)TYY T w(x)]
= 02K(x, x) — 2w(x) T (c%k(x)) + w(x)T (oK) w(x).
Differentiation and equating to 0 yields the optimum weight vector
w(x) = K k(x),
so that the (simple) kriging predictor
Yy = k(x)TK- 1y
is the best linear unbiased predictor.

Remark
Note that this is independent of the process variance o°.
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Parametrized Kernel Methods

Many kernels contain parameters whose values greatly affect the
performance of the kernel method.

For example, such parameters may affect

@ shape,

@ smoothness,

@ accuracy,

@ numerical stability,

@ computational efficiency, i.e., density of (sparse) K,
@ balance between closeness of fit and smoothness.

It is therefore important to find “optimal” values for these parameterso
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Examples

@ isotropic shape parameter, e.g.,

_ 2,2
K(x,z)=r(r)=e =", r=|x-2z|2

Isotropic Gaussian kernels, ¢ = 4,6,8,10,12
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Examples (cont.)

@ radial anisotropic shape parameters, e.g.,

R(r) = (1= (4r+1), r=/(x - 2)TE(x - 2), E= (1

1

0.5 1

A, 05 O
Compactly supported Wendland kernels, O
€= [47 4]: [272]7 [571]7 [175]7[277] MINES
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Examples (cont.)

@ tensor product anisotropic shape parameters, e.g.,

d
K(X,Z) — H efgl‘xlfzd
=1

Tensor product and radial C° Matérn kernels,
e=[15,25,6 =25
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Examples (cont.)

@ smoothness parameter(s), e.g.,

K(x,z) = Z Anen(X)en(2)
n=1

’
An = L on(X) =V2Th(x), n=1,2,...

Chebyshev kernels with 5 = 1,2 0
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Examples (cont.)
@ regularization parameter, e.g.,
min {(y —Ke)  (y — Ke) + ucTKc]
ceRN
so that we have the smoothing spline/ridge regression

s(x) = k(x)"(K+ul) "y

Smoothing spline to noisy data, u=10'5

0@ O

© noisy data
——ridge regression
0 1 2 3

Greg Fasshauer Computing with PD Kernels 13




Examples (cont.)
@ regularization parameter, e.g.,

min {(y —Ke)  (y — Ke) + ucTKc]

ceRN
so that we have the smoothing spline/ridge regression

s(x) = k()T (K+ ul) ™y = k(x) "K' (K4 ul) 'Ky
=¢(x)7y.

Noisy and smoothed data Smoothing spline to noisy data, u=10'5 Interpolant to smoothed data, u=10'5
G0 O

-05 -0.5H

=—true function
% smoothed data

® smoothed data

1 & © noisy data 1 —ridge regression
© noisy data ° —ridge regression =—true function

0 1 2 3 0 1 2 3 0 1 2 3
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Parametrization Criteria

Outline

e Parametrization Criteria
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How do we decide “optimality”?

We use parametrization criteria such as

Covtep) = (& )

NN

) LOOCV
o

CmpLE(c) = Nlog (yTK—1 y) +logdetK, profile likelihood

Cow(e;p) =/ yTK- 1yHPKXHp, Golomb—Weinberger
where Py »(x \/K X, X) x)TK-1k(x) or kriging variance

These criteria all aim to maximize some form of accuracy.
They may require computing

Ky, y'Kly, k(x)TK™', logdetK, Pk x(x). 0
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Outline for remainder of talk

@ Explain parametrization criteria:

e maximum profile likelihood
e Golomb-Weinberger error bound (kriging variance)

@ Explain how to compute
e cardinal functions £(x)” = k(x)TK~1
o logdetK
e power function Pk x(X) = /K(x, x) — k(x)TK-Tk(x)

@ Show a few numerical examples
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Maximum Profile Likelihood

We consider a zero-mean Gaussian random field Y with covariance
kernel 2K and likelihood function

L(c? ) =

V/(2m)No2N det(K) =P < 202

where ¢ appears within K.

Greg Fasshauer Computing with PD Kernels 17



Maximum Profile Likelihood

We consider a zero-mean Gaussian random field Y with covariance
kernel 2K and likelihood function

L(c? ) =

ex
v/ (2m)No2N det(K) P < 202
where ¢ appears within K.

Maximizing L(o?, ) is equivalent to minimizing

—2log (L(o—z, 5)) = Nlog 27 + Nlog o2 + logdetK + 0_12yTK_1y.
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Maximum Profile Likelihood

We consider a zero-mean Gaussian random field Y with covariance
kernel 2K and likelihood function

L(c? ) =

ex
v/ (2m)No2N det(K) P < 202
where ¢ appears within K.

Maximizing L(o?, ) is equivalent to minimizing

’
—2log (L(o—z, 5)) = Nlog 27 + Nlog o2 + logdetK + ?yTqu.

Differentiating with respect to o2 and equating to 0 gives the optimal
profile variance 0
1
2 _ TK71 ]
Tt = NV Y MINES
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Using the optimal profile variance o3, = ;¥ K™y, we now find ¢ that
minimizes
—2log (L(agpt,s)) — Nlog2r

’
= Nlog o5y + logdetK + ——y K™y
O opt

= Nlog (yTK‘1y) — Nlog N + logdetK + N.
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Parametrization Criteria

Using the optimal profile variance o3, = ;¥ K™y, we now find ¢ that
minimizes
—2log (L(agpt,s)> — Nlog2r

’
= Nlog o5y + logdetK + ——y K™y
O opt

= Nlog (yTK‘1y) — Nlog N + logdetK + N.

This yields the profile likelihood criterion

CmpLe(e) = Nlog (yTK‘1y) + log detK.
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Golomb—Weinberger/kriging variance criterion

Using the representation £(x)™ = k(x)"K~" of the cardinal functions
and

y=(f(x1) - flxn)
R (KX)o (EKC X)) | = (KD
we have the standard pointwise error bound for interpolation
£0x) = s(x)| = [F(x) ~ 00Ty | = [(F, K( X)) = £ (F, ()
= (1, K %) = €T (KD

< [l

K. x) = KTOOKTRC)|| = [l P (0),
with power function

Pr.(X) = \/K(x, x) — k(X)TK-k(x). [8)
Computing with PD Kernels




Parametrization Criteria

The standard error bound
(%) = s(X)| < [|fll34x Pie,2c (%)
can be improved to the tight bound (see [GW59])
(%) = s(X)| < [|f = |34 Pic,x(X)

since f — s is orthogonal to s in H, i.e.,

2 2 2
W70 = I1f = sl + lISll3,-
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Parametrization Criteria

The standard error bound
(%) = s(X)| < [|fll34x Pie,2c (%)
can be improved to the tight bound (see [GW59])
(%) = s(X)| < [|f = |34 Pic,x(X)

since f — s is orthogonal to s in H, i.e.,

2 2 2
W70 = I1f = sl + lISll3,-

Problem: Usually, neither ||f||4, nor ||f — s||4, are computable.
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Parametrization Criteria

The standard error bound
(%) = s(X)| < [|fll34x Pie,2c (%)
can be improved to the tight bound (see [GW59])
(%) = s(X)| < [|f = |34 Pic,x(X)

since f — s is orthogonal to s in H, i.e.,

2 2 2
W70 = I1f = sl + lISll3,-

Problem: Usually, neither ||f||4, nor ||f — s||4, are computable.
But ||s]|7 is.
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Parametrization Criteria

If we assume that our approximation s is not too bad, i.e.,

If = Sll#() < dlISllrg@ A'S

s

for some not too large constant §, then the Golomb—Weinberger tight
error bound yields a computable error bound

[F(x) = s(x)| < 6]l Pr.¢(X)-
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Parametrization Criteria

If we assume that our approximation s is not too bad, i.e.,

If = Sll#() < dlISllrg@ A'S

s

for some not too large constant §, then the Golomb—Weinberger tight
error bound yields a computable error bound

|f(x) — s(x)| < 6l[8ll3 Pr,x(X).
This is indeed computable since

815, = (Y TL(), L) V)20 = (Y TKTTK(), K()TK ),
=y K Nk(), k()Y Ky = yTKTTKK Ty
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Parametrization Criteria

If we assume that our approximation s is not too bad, i.e.,

If = Sll#() < dlISllrg@ A'S

s

for some not too large constant §, then the Golomb—Weinberger tight
error bound yields a computable error bound

[f(x) — s(x)| < 6]l P, (X).
This is indeed computable since
1815, = (Y70, £C) V)i = (Y TKTTRC), k() TKT )20,
=y K Nk(), k()Y Ky = yTKTTKK Ty

Therefore we have

Caw(eip) = YKy [Pk.xllp, 0O

where we compute the p-norm on a discrete evaluation grid. MINES
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Kriging Variance

Using the optimal weights w(-) = K~"k(x), the kriging variance (MSE
of the kriging predictor) does depend on the process variance:

MSE(Yy) = E [(Yx _ ?x)z]
= 02K(x, x) — 2w(x) T (c%k(x)) + w(x)T (c®K)w(x)
= o2 (K(x, x) = 2k(x)TK™"k(x) + k(x)TK~'KK~"k(x))
= o2 (K(x,X) = k() TK~'k(x)) .
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Kriging Variance

Using the optimal weights w(-) = K~"k(x), the kriging variance (MSE
of the kriging predictor) does depend on the process variance:

MSE(Yy) = E [(Yx _ VX)Z]
= 0?K(x,x) — 2w(x)" (02k(x)) + w(x)T (c?K)w(x)
= o2 (K(x, x) = 2k(x)TK™"k(x) + k(x)TK~'KK~"k(x))
= o2 (K(x,X) = k() TK~'k(x)) .

As for the MLE criterion, we can use the optimal profile variance

1 _
ngt = N.VTK ly

to see that the kriging variance is essentially the same as the 0

Golomb—Weinberger criterion. MINES
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Computational Aspects
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e Computational Aspects
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Computing the Cardinal Functions

In the standard basis we find the cardinal basis functions /;(x;) = ¢; via
Ke(x) = k(x) <= £x)" =k(x)TK™,

where £(-) = (¢1() -+ In().
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Computing the Cardinal Functions

In the standard basis we find the cardinal basis functions /;(x;) = ¢; via
Ke(x) = k(x) <= £x)" =k(x)TK™,
where £(-) = (¢1() -+ In().
Moreover, in any alternate basis defined by (see [PS11])
vix)" =k(x)"T, K=VT,
we have

£(x)T = k(x)"K™!
=v(x) T TV

=v(x)Tv" O
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Examples of Alternate Bases
Newton basis [MS09, PS11]: via Cholesky factorization K = NN”
n(x)" =k(x)'N"7, V=N, T=NT
SVD basis [PS11, DMS13]: via SVD K = Qx2Q7
vix)T =k(x)TQz"", V=Qr, T=Qxr"'

HS-SVD basis [FM12]: via HS-SVD WA ;d] = K

I
T _ T N _ — o7 AT
¢(X) —d)(X) </\2¢2T¢1T/\11>7 V_\U7 T_¢1 A1

Remark
Can also use low rank approximate bases (see, e.g., [PS11, FM12]). J
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Computing log det K

We compute determinants using logarithms to prevent underflow errors
that may/will arise for small enough values of the shape parameter.
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Computational Aspects

Computing log det K

We compute determinants using logarithms to prevent underflow errors
that may/will arise for small enough values of the shape parameter.

Mathematically, computing log det K is straightforward and stable using
the Hilbert-Schmidt SVD K = WA ¢] e,

logdetK = logdet W + logdet Ay + logdet ..
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Computing log det K

We compute determinants using logarithms to prevent underflow errors
that may/will arise for small enough values of the shape parameter.

Mathematically, computing log det K is straightforward and stable using
the Hilbert-Schmidt SVD K = WA ¢] e,

logdetK = logdet W + logdet Ay + logdet ..

Computationally,

@ the very small eigenvalues can be handled safely by taking their
logarithms (since A is diagonal),
° d>1T gets inverted while forming the stable basis, and

@ WV gets inverted while computing an interpolant, so the cost of
computing log(det(K)) is negligible. 0
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Computing the Power Function

In addition to the ill-conditioning which may be present in the matrix K
(and so K—1), evaluation of the power function is susceptible to
numerical cancelation.
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Computing the Power Function
In addition to the ill-conditioning which may be present in the matrix K

(and so K—1), evaluation of the power function is susceptible to
numerical cancelation.

Consid
onsider - K(x,x) k(x)T
S () (6,
so that
. 1 k(X)T K(X,X)—k(X)TK_1k(x) OT
det(K)—det(<0N K )< K—1k(x) I/\A/I>)
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Computing the Power Function
In addition to the ill-conditioning which may be present in the matrix K

(and so K—1), evaluation of the power function is susceptible to
numerical cancelation.

Consid
onsider - Koex) koo™
_< k(x) K )
so that
. T - T T
det(K):det(<01N k(:é) ) <K(X,X) K‘l:(kx()x)K "k(x) (I)IC/>>
= det(K)(K(x, x) — k(x) K~ k(x)).
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Computing the Power Function
In addition to the ill-conditioning which may be present in the matrix K

(and so K—1), evaluation of the power function is susceptible to
numerical cancelation.

Consi
onsider - K(x, x) k(x)T
_< k(x) K )
so that
. 1 k(X)T K(X,X)—k(X)TK_1k(x) OT
det(K)—det(<0N K )< K—1k(x) I/\A/I>)

= det(K)(K(x, x) — k(x)TK~k(x)).

Therefore, the power function can be computed via [FWL04, Sch05]

Pea) = | e o)
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Numerical lllustrations

Outline

© Numerical lllustrations
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Computing the Power Function — Example

10°

power function 1-norm

10—15

Analytic Chebyshev kernel K(x, z) = Z Anen(X)pn(2) on 11 Chebyshev points in [—1,1]

Ao =

)

K(x,z)= - +

N = N =

10—10 3

standard basis
= =HS-SVD basis
—determinant

107 1072 10 10°

b

n=0
Ay — %, @n(X) = /2= 6,0 Ta(x),
(1 - p) 2= BF) = 2D +22) + (1 + 36P)xz

(1= b2)2 4+ 4b (b(x2 4+ 22) — (1 + b2)x2)
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Using various criteria and isotropic kernels to fit track
data [pavi4]

1000 —110"°
CMPLE
—Ccv

Cow o

2

©

500 g

£

8

0 10°

10° 10"

Interpolation with isotropic Gaussian kernel, ¢ = 6:

cawopt = 73162, ecyopt = 4.2518,  empLEopt = 5.0950 0
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Numerical lllustrations

Using Cgw and anisotropic kernels to fit track data
[Davi4]

temperature

10" 107

€2 €1

Interpolation with anisotropic tensor product C?> Matérn kernels:
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Summary

@ Explained various criteria for choosing
“optimal” kernel parameters (including Cgyy,
based on error bound)

@ Reliable evaluation of these criteria requires

@ alternate (stable) bases
@ kriging variance with process variance
@ determinant formula for power function

Kernel-based Approximation

@ Vast applications Methods using MATLAB
@ function interpolation/approximation
@ numerical solution of PDEs (collocation, MFS, GrogoryFosshauer
MPS, RBF-FD) Michael McCourt

@ machine learning (RBF network regression,
low-rank approximation for SVM classification)
° ..

MATLAB code available at
http: //math.iit.eduO

~mccomic/gaussqgr  [iNES
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http://math.iit.edu/~mccomic/gaussqr
http://math.iit.edu/~mccomic/gaussqr

One more inspiring perspective

Calanque
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Using Cyp g With universal kriging to fit glacier data

[Davi4]

Appendix

1st dimension degree

1st dimension degree

2nd dimension degree

2nd dimension degree

1st dimension degree

1st dimension degree

2nd dimension degree

2nd dimension degree

MINES

e=(54)

(8 11),

E =

e = (16 14),

Interpolation with anisotropic Wendland kernels and polynomials
e =(2021),

36
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Appendix References

Using Cyp g With universal kriging to fit glacier data
[Davi4]

Interpolation with anisotropic “missing” Wendland kernels [Sch11]
81 15 r
= (q1_7,2_ 4 — 2 194 2 _r
ﬁs,g(f) (1 7r i ) 1—r il (6+r<)log (1 +m>
and polynomial trend

s(x) = k(x) "K' (y =PB) +p(x)"8, B=(PTK'P)TIPTKy.

2000

1800

1600

1400

12004
I ~

05 \“O*—— 0
S

e =(54),deg=(00)



References
Improved efficiency with hybrid/multiscale methods

€ degree density times (s)
K=LLT CMpLE(s,p) eval

(20 21) 0 0.25% 0.59 0.03 0.32
(20 21) 8 0.59 0.21 0.33
(54) 0 4.17% 4.04 0.35 0.63
(54) 8 4.04 1.45 0.64
Handle
@ large-scale trends with polynomials (or global kernels)
@ small-scale features with compactly supported kernels. O
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