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Deterministic and Statistical Views of Kernel Methods

Deterministic Kernel-based Interpolation

Given data {(x i , yi)}Ni=1, use a data-dependent linear function space,
i.e.,

s(x) =
N∑

j=1

cjK (x ,x j) = k(x)T c, x ∈ Ω ⊆ Rd

with K : Ω× Ω→ R a positive definite reproducing kernel.

To find cj solve the interpolation equations

s(x i) = yi , i = 1, . . . ,N,

which leads to a linear system Kc = y with symmetric positive definite
— often ill-conditioned — system matrix

Kij = K (x i ,x j), i , j = 1, . . . ,N,

and cardinal representation

s(x) = k(x)T K−1y = `(x)T y .
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Deterministic and Statistical Views of Kernel Methods

Connection to Kriging

Given a Gaussian (zero-mean) random field Y with covariance kernel
K , process variance σ2 and observations

Y =
(
Yx1 · · · YxN

)T
, Yx j zero-mean random variables,

the (simple) kriging predictor is of the form

Ŷx =
N∑

j=1

wj(x)Yx j = w(x)T Y ,

Ŷx : zero-mean random variable,
w(·) =

(
w1(·) · · · wN(·)

)T : vector of weight functions.

“Optimal” weights
?
wj(·) will minimize the MSE of the predictor, i.e.,

MSE(Ŷx ) = E
[(

Yx −w(x)T Y
)2
]
.
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Deterministic and Statistical Views of Kernel Methods

Using the covariance kernel K and process variance σ2 of Y , i.e.,
σ2K (x , z) = E[YxYz ], we have

MSE(Ŷx ) = E
[(

Yx −w(x)T Y
)2
]

= E[YxYx ]− 2E[Yxw(x)T Y ] + E[w(x)T YY T w(x)]

= σ2K (x ,x)− 2w(x)T (σ2k(x)) + w(x)T (σ2K)w(x).

Differentiation and equating to 0 yields the optimum weight vector
?
w(x) = K−1k(x),

so that the (simple) kriging predictor

Ŷx = k(x)T K−1Y

is the best linear unbiased predictor.

Remark

Note that this is independent of the process variance σ2.
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Deterministic and Statistical Views of Kernel Methods

Parametrized Kernel Methods

Many kernels contain parameters whose values greatly affect the
performance of the kernel method.

For example, such parameters may affect
shape,
smoothness,
accuracy,
numerical stability,
computational efficiency, i.e., density of (sparse) K,
balance between closeness of fit and smoothness.

It is therefore important to find “optimal” values for these parameters.
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Deterministic and Statistical Views of Kernel Methods

Examples

isotropic shape parameter, e.g.,

K (x , z) = κ(r) = e−ε
2r2
, r = ‖x − z‖2

Isotropic Gaussian kernels, ε = 4,6,8,10,12
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Deterministic and Statistical Views of Kernel Methods

Examples (cont.)

radial anisotropic shape parameters, e.g.,

κ(r) = (1−r)4
+(4r+1), r =

√
(x − z)T E(x − z), E =

ε2
1

. . .
ε2

d



Compactly supported Wendland kernels,
ε = [4,4], [2,2], [5,1], [1,5], [2,7]
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Deterministic and Statistical Views of Kernel Methods

Examples (cont.)

tensor product anisotropic shape parameters, e.g.,

K (x , z) =
d∏
`=1

e−ε`|x`−z`|

Tensor product and radial C0 Matérn kernels,
ε = [1.5,2.5], ε = 2.5
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Deterministic and Statistical Views of Kernel Methods

Examples (cont.)

smoothness parameter(s), e.g.,

K (x , z) =
∞∑

n=1

λnϕn(x)ϕn(z)

λn =
1

ζ(2β)n2β , ϕn(x) =
√

2Tn(x), n = 1,2, . . .

Chebyshev kernels with β = 1,2
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Deterministic and Statistical Views of Kernel Methods

Examples (cont.)
regularization parameter, e.g.,

min
c∈RN

[
(y − Kc)T (y − Kc) + µcT Kc

]
so that we have the smoothing spline/ridge regression

s(x) = k(x)T (K + µI)−1y

= k(x)T K−1(K + µI)−1Ky

= `(x)T ỹ .
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Parametrization Criteria

How do we decide “optimality”?

We use parametrization criteria such as

CCV(ε; p) =
∥∥∥( c1

K−1
11
· · · cN

K−1
NN

)∥∥∥
p
, LOOCV

CMPLE(ε) = N log
(

yT K−1y
)

+ log det K, profile likelihood

CGW(ε; p) =
√

yT K−1y ‖PK ,X ‖p, Golomb–Weinberger

where PK ,X (x) =
√

K (x ,x)− k(x)T K−1k(x) or kriging variance

These criteria all aim to maximize some form of accuracy.
They may require computing

K−1y , yT K−1y , k(x)T K−1, log det K, PK ,X (x).
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Parametrization Criteria

Outline for remainder of talk

Explain parametrization criteria:
maximum profile likelihood
Golomb–Weinberger error bound (kriging variance)

Explain how to compute
cardinal functions `(x)T = k(x)T K−1

log det K
power function PK ,X (x) =

√
K (x ,x)− k(x)T K−1k(x)

Show a few numerical examples
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Parametrization Criteria

Maximum Profile Likelihood

We consider a zero-mean Gaussian random field Y with covariance
kernel σ2K and likelihood function

L(σ2, ε) =
1√

(2π)Nσ2N det(K)
exp

(
− 1

2σ2 yT K−1y
)
,

where ε appears within K.

Maximizing L(σ2, ε) is equivalent to minimizing

−2 log
(

L(σ2, ε)
)

= N log 2π + N logσ2 + log det K +
1
σ2 yT K−1y .

Differentiating with respect to σ2 and equating to 0 gives the optimal
profile variance

σ2
opt =

1
N

yT K−1y .
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Parametrization Criteria

Using the optimal profile variance σ2
opt = 1

N yT K−1y , we now find ε that
minimizes

−2 log
(

L(σ2
opt, ε)

)
− N log 2π

= N logσ2
opt + log det K +

1
σ2

opt
yT K−1y

= N log
(

yT K−1y
)
− N log N + log det K + N.

This yields the profile likelihood criterion

CMPLE(ε) = N log
(

yT K−1y
)

+ log det K.
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Parametrization Criteria

Golomb–Weinberger/kriging variance criterion

Using the representation `(x)T = k(x)T K−1 of the cardinal functions
and

y =
(
f (x1) · · · f (xN)

)T

K is RK
=

(
〈f ,K (·,x1)〉HK · · · 〈f ,K (·,xN)〉HK

)T
= 〈f ,k(·)〉HK

we have the standard pointwise error bound for interpolation

|f (x)− s(x)| =
∣∣∣f (x)− `(x)T y

∣∣∣ =
∣∣∣〈f ,K (·,x)〉HK − `(x)T 〈f ,k(·)〉HK

∣∣∣
=
∣∣∣〈f ,K (·,x)− `T (x)k(·)〉HK

∣∣∣
≤ ‖f‖HK

∥∥∥K (·,x)− kT (x)K−1k(·)
∥∥∥
HK

= ‖f‖HK PK ,X (x),

with power function

PK ,X (x) =
√

K (x ,x)− k(x)T K−1k(x).
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Parametrization Criteria

The standard error bound

|f (x)− s(x)| ≤ ‖f‖HK PK ,X (x)

can be improved to the tight bound (see [GW59])

|f (x)− s(x)| ≤ ‖f − s‖HK PK ,X (x)

since f − s is orthogonal to s in HK , i.e.,

‖f‖2HK
= ‖f − s‖2HK

+ ‖s‖2HK
.

Problem: Usually, neither ‖f‖HK nor ‖f − s‖HK are computable.
But ‖s‖HK is.
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Parametrization Criteria

If we assume that our approximation s is not too bad, i.e.,

‖f − s‖HK (Ω) ≤ δ‖s‖HK (Ω)

for some not too large constant δ, then the Golomb–Weinberger tight
error bound yields a computable error bound

|f (x)− s(x)| ≤ δ‖s‖HK PK ,X (x).

This is indeed computable since

‖s‖2HK
= 〈yT `(·), `(·)T y〉HK = 〈yT K−1k(·),k(·)T K−1y〉HK

= yT K−1〈k(·),k(·)T 〉HK K−1y = yT K−1KK−1y .

Therefore we have

CGW(ε; p) =
√

yT K−1y ‖PK ,X ‖p,

where we compute the p-norm on a discrete evaluation grid.
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Parametrization Criteria

Kriging Variance

Using the optimal weights
?
w(·) = K−1k(x), the kriging variance (MSE

of the kriging predictor) does depend on the process variance:

MSE(Ŷx ) = E
[(

Yx − Ŷx

)2
]

= σ2K (x ,x)− 2
?
w(x)T (σ2k(x)) +

?
w(x)T (σ2K)

?
w(x)

= σ2
(

K (x ,x)− 2k(x)T K−1k(x) + k(x)T K−1KK−1k(x)
)

= σ2
(

K (x ,x)− k(x)T K−1k(x)
)
.

As for the MLE criterion, we can use the optimal profile variance

σ2
opt =

1
N

yT K−1y

to see that the kriging variance is essentially the same as the
Golomb–Weinberger criterion.
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Computational Aspects

Computing the Cardinal Functions

In the standard basis we find the cardinal basis functions `j(x i) = δij via

K`(x) = k(x) ⇐⇒ `(x)T = k(x)T K−1,

where `(·) =
(
`1(·) · · · `N(·)

)T .

Moreover, in any alternate basis defined by (see [PS11])

v(x)T = k(x)T T, K = VT−1,

we have

`(x)T = k(x)T K−1

= v(x)T T−1TV−1

= v(x)T V−1.
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Computational Aspects

Examples of Alternate Bases

Newton basis [MS09, PS11]: via Cholesky factorization K = NNT

n(x)T = k(x)T N−T , V = N, T = N−T

SVD basis [PS11, DMS13]: via SVD K = QΣ2QT

v(x)T = k(x)T QΣ−1, V = QΣ, T = QΣ−1

HS-SVD basis [FM12]: via HS-SVD ΨΛ1ΦT
1 = K

ψ(x)T = φ(x)T
(

IN
Λ2ΦT

2 Φ−T
1 Λ−1

1

)
, V = Ψ, T = Φ−T

1 Λ−1
1

Remark
Can also use low rank approximate bases (see, e.g., [PS11, FM12]).
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Computational Aspects

Computing log det K

We compute determinants using logarithms to prevent underflow errors
that may/will arise for small enough values of the shape parameter.

Mathematically, computing log det K is straightforward and stable using
the Hilbert–Schmidt SVD K = ΨΛ1ΦT

1 , i.e.,

log det K = log det Ψ + log det Λ1 + log det ΦT
1 .

Computationally,
the very small eigenvalues can be handled safely by taking their
logarithms (since Λ1 is diagonal),
ΦT

1 gets inverted while forming the stable basis, and
Ψ gets inverted while computing an interpolant, so the cost of
computing log(det(K)) is negligible.
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Computational Aspects

Computing the Power Function

In addition to the ill-conditioning which may be present in the matrix K
(and so K−1), evaluation of the power function is susceptible to
numerical cancelation.

Consider

K̃ =

(
K (x ,x) k(x)T

k(x) K

)
,

so that

det(K̃) = det
((

1 k(x)T

0N K

)(
K (x ,x)− k(x)T K−1k(x) 0T

N
K−1k(x) IN

))

= det(K)(K (x ,x)− k(x)T K−1k(x)).

Therefore, the power function can be computed via [FWL04, Sch05]

PK ,X (x) =

√
det(K̃)

det(K)
.
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Computational Aspects

Computing the Power Function

In addition to the ill-conditioning which may be present in the matrix K
(and so K−1), evaluation of the power function is susceptible to
numerical cancelation.
Consider
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Numerical Illustrations

Outline

1 Deterministic and Statistical Views of Kernel Methods

2 Parametrization Criteria

3 Computational Aspects

4 Numerical Illustrations
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Numerical Illustrations

Computing the Power Function — Example

Analytic Chebyshev kernel K (x , z) =
∞∑

n=0

λnϕn(x)ϕn(z) on 11 Chebyshev points in [−1, 1]

λ0 =
1
2
, λn =

(1− b)bn

2b
, ϕn(x) =

√
2− δn0Tn(x),

K (x , z) =
1
2

+ (1− b)
b(1− b2)− 2b(x2 + z2) + (1 + 3b2)xz

(1− b2)2 + 4b
(
b(x2 + z2)− (1 + b2)xz

)
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Numerical Illustrations

Using various criteria and isotropic kernels to fit track
data [Dav14]

Interpolation with isotropic Gaussian kernel, ε = 6:

εGWopt = 7.3162, εCVopt = 4.2518, εMPLEopt = 5.0950
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Numerical Illustrations

Using CGW and anisotropic kernels to fit track data
[Dav14]

Interpolation with anisotropic tensor product C2 Matérn kernels:

ε1opt = 2.37ε2opt, ε1opt = 0.6803, ε2opt = 0.2875
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Numerical Illustrations

Summary
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Explained various criteria for choosing
“optimal” kernel parameters (including CGW,
based on error bound)

Reliable evaluation of these criteria requires

alternate (stable) bases
kriging variance with process variance
determinant formula for power function

Vast applications

function interpolation/approximation
numerical solution of PDEs (collocation, MFS,
MPS, RBF-FD)
machine learning (RBF network regression,
low-rank approximation for SVM classification)
...

Interdisciplinary Mathematical Sciences – Vol. 19

Vol. 19

World Scientific
www.worldscientific.com

ISBN 978-981-4630-13-9

9335 hc 

Gregory Fasshauer
Michael McCourt

Fasshauer 
McCourt

Interdisciplinary Mathematical Sciences – Vol. 19 

Kernel-based Approximation 
Methods using MATLAB

Kernel-based Approximation 
Methods using MATLAB

Kernel-based A
pproxim

ation M
ethods using M

ATLA
B

In an attempt to introduce application scientists and 
graduate students to the exciting topic of positive definite 
kernels and radial basis functions, this book presents 
modern theoretical results on kernel-based approximation 
methods and demonstrates their implementation in a variety 
of fields of application. With the aim of providing researchers 
involved in function approximation, boundary value 
problems, spatial statistics and machine learning with the 
flexible and high-order tools developed using kernels, the 
authors explore their historical context and explain recent 
advances as strategies to address long-standing problems.

The examples are drawn from fields as diverse as surrogate 
modeling, machine learning and finance, and researchers 
from those and other fields will be able to follow the 
examples on their own machines using the included 
MATLAB code accessible through the library online.

In combining the theoretical foundation of positive definite 
kernels with accessible experimentation from which to build 
on, the authors are empowering readers to use these 
powerful tools on their problems of interest.

MATLAB code available at
http://math.iit.edu/

~mccomic/gaussqr

http://math.iit.edu/~mccomic/gaussqr
http://math.iit.edu/~mccomic/gaussqr


Numerical Illustrations

One more inspiring perspective

Calanque
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Appendix References

Using CMPLE with universal kriging to fit glacier data
[Dav14]

Interpolation with anisotropic Wendland kernels and polynomials:

ε = (20 21), ε = (16 14), ε = (8 11), ε = (5 4)
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Appendix References

Using CMPLE with universal kriging to fit glacier data
[Dav14]

Interpolation with anisotropic “missing” Wendland kernels [Sch11]

κ3, 3
2
(r)

.
=

(
1− 7r2 − 81

4
r4
)√

1− r2− 15
4

r4(6+r2) log
(

r
1 +
√

1− r2

)
and polynomial trend

s(x) = k(x)T K−1(y − Pβ) + p(x)Tβ, β = (PT K−1P)−1PT K−1y .

ε = (5 4),deg = (0 0) ε = (20 21) ε = (20 21),deg = (8 8)
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Improved efficiency with hybrid/multiscale methods

ε degree density times (s)
K = LLT CMPLE(ε,p) eval

(20 21) 0 0.25% 0.59 0.03 0.32
(20 21) 8 0.59 0.21 0.33

(5 4) 0 4.17% 4.04 0.35 0.63
(5 4) 8 4.04 1.45 0.64

Handle
large-scale trends with polynomials (or global kernels)
small-scale features with compactly supported kernels.
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