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INTRODUCTION



Adaptive spline refinement

T-splines (Sederberg et al. 2003):
tensor-product B-splines defined on a mesh with T-junctions

PHT splines (Falai Chen, Jiansong Deng 2008):
algebraically complete basis for splines on a mesh with T-junctions

HB-splines, THB-Splines (Kraft 1997, Giannelli et al. 2012):
obtained by selecting B-splines from different levels in a hierarchy

LR Splines (Dokken et al. 2010):
constructed by repeatedly splitting tensor-product B-splines

This talk focuses on HB-splines.
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Motivation

Independent refinement strategies
; cannot be achieved with HB-splines.
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Motivation

State of the art: Hierarchical B-splines that use sequences of nested spline
spaces, V 0 ⊆ V 1 ⊆ . . . ⊆ V N .

Limits: Independent refinement strategies are not possible.

Possible application of independent refinement strategies:

� Modeling: designing objects with creases or similar features.

� IGA: using different refinement techniques (e.g., h- and p-refinement) in
different parts of the domain.

Goal: Generalization of the selection mechanism for hierarchical B-splines to
obtain sequences of partially nested hierarchical spline spaces.

3/31



Preliminaries

We consider:

� A finite sequence of bivariate tensor-product spline spaces:

V ` = spanB`, ` = 1, . . . , N.

� The spline bases B` consist of tensor-product B-splines.
� The index ` will be called level .
� Note: V ` not necessarily subspace of V `+1

� An associated sequence of open sets

π` ⊆ (0, 1)2, ` = 1, . . . , N.

� The sets are called patches.
� We assume that they are mutually disjoint, i.e., π` ∩ πk 6= ∅ ⇒ ` = k.
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Preliminaries

Patches and associated spline spaces.
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The PNH spline space

Collecting all patches results in the domain Ω, i.e.,

Ω = int
( N⋃
`=1

π`
)
⊆ (0, 1)2.

Now we define the partially nested hierarchical spline space (PNH spline
space):

H = {f ∈ Cs(Ω) : f |π` ∈ V `|π` ∀` = 1, . . . , N},

with the order of smoothness being

s = p− 1.
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The PNH spline space

H = {f ∈ Cs(Ω) : f |π` ∈ V `|π` ∀` = 1, . . . , N},

The partially nested hierarchical spline space.
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Constraining boundaries

For each patch there exists a constraining boundary

Γ` =

`−1⋃
k=1

πk ∩ π`,

i.e., that part of the boundary shared with patches of a lower level.

Constraining boundaries
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BASIS FUNCTIONS



Selection mechanism

Generalizing Kraft’s selection mechanism leads to a sequence of B-splines
from all levels `:

K` = {β` ∈ B` : β`|π` 6= 0 and β`|Γ` = 0}.

Definition: The partially nested hierarchical B-splines (PNHB-splines) are
obtained by forming the union over all levels,

K =
N⋃
`=1

K`.
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Selection mechanism

K` = {β` ∈ B` : β`|π` 6= 0 and β`|Γ` = 0}.

The selection mechanism for PNHB-splines (k < `).
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Shadow

We define the shadow of a patch π` as the union of all supports of the
selected basis functions,

π̂` = suppK` =
⋃

β`∈K`

suppβ`.
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Example

The knot lines of the spline space V ` define a mesh M ` of level `.

A partially nested hierarchical mesh (left), the shadows and selected basis functions of
two different patches (middle and right). Basis functions are represented by Greville
points.
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THE SPLINE SPACE



Assumptions

Assumption Acronym Used for

Shadow Ordering Assumption SOA proving linear independence

Shadow Compatibility Assumption SCA characterizing the space span K

Constrained Boundary Alignment CBA characterizing the space span K

Full Boundary Alignment FBA proving algebraic completeness

Support Intersection Condition SIC proving algebraic completeness

Assumptions and results.
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Shadow Ordering Assumption (SOA)

Assumption If the shadow π̂` of the patch of level ` intersects another patch
πk of level k, then the first level is lower than the second one,

π̂` ∩ πk 6= ∅ ⇒ ` ≤ k.

SOA not satisfied. SOA satisfied.

Theorem: The PNHB-splines are linearly independent on Ω if SOA holds.
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Shadow Compatibility Assumption (SCA)

Assumption If the shadow π̂` of the patch of level ` intersects another patch
πk of a different level k, then the first level precedes ? the second one,

π̂` ∩ πk 6= ∅ ⇒ ` ≤ k and V ` ⊆ V k.

SCA not satisfied. SCA satisfied.

?` < k and V ` ⊆ V k
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Constrained Boundary Alignment (CBA)

Assumption For each level `, the constraining boundary Γ` of the patch π` is
aligned with the knot lines of the spline space V `.

CBA not satisfied. CBA satisfied.
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Space characterization

Theorem The PNHB-splines span the partially nested hierarchical spline
space H if both SCA and CBA are satisfied.

Thus, we have two different characterizations of the PNH spline space:

H = {f ∈ Cs(Ω) : f |π` ∈ V `|π` ∀` = 1, . . . , N},

(“implicit” definition: space defined by properties of functions)

H = span
N⋃
`=1

{β` ∈ B` : β`|π` 6= 0 and β`|Γ` = 0}

(“constructive” definition: space defined as linear hull of basis functions)
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Completeness question: Is H = F ?

Recall: The PNH spline space is defined as

H = {f ∈ Cs(Ω) : f |π` ∈ V `|π` ∀` = 1, . . . , N}.

Question: Do PNHB-splines span the full spline space

F = {f ∈ Cs(Ω) : f |c ∈ Πp ∀c ∈ C` ∀` = 1, . . . , N},

of Cs smooth piecewise polynomial functions on the mesh?

It is clear that H ⊆ F . How about H ⊇ F?
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Completeness

Assumption (Full Boundary Alignment) All boundaries of the patches π`

are aligned with the mesh of level `.

Assumption (Support Intersection Condition) The support intersections of
the basis functions of level ` with the associated patches π` are all connected,

suppβ` ∩ π` is connected ∀β` ∈ B`, ` = 1, . . . , N.

Theorem: The PNHB-splines span the full spline space if SCA, FBA and
SIC are satisfied.
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TRUNCATION



Restoring partition of unity

Truncation mechanism
Kraft 1997→ Giannelli et al. 2012:
Hierarchical B-splines→ Truncated Hierarchical B-splines (THB-splines)

The recipe
Truncated function: "original function minus contribution of selected basis
functions from higher levels"

Is there a generalization to truncated PNHB-splines?

Yes!

For the truncated PNHB-splines we can show that

� they are linearly independent,

� they form a partition of unity and

� they span the partially nested spline space.

We could not prove non-negativity so far (but did not find negative
TPNHB-splines either).
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PNHB SPLINES IN SURFACE
APPROXIMATION



Example

We want to approximate the following function:

Function for approximation.
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Manual mesh generation

The meshes used for defining the approximating spline functions.

no. of dof % of dof max. error average error
tensor-product B-splines 2304 100% 3.39e-3 3.81e-5
HB-splines 1633 71 % 3.08e-3 4.37e-5
PNHB-splines 769 33 % 8.12e-4 1.89e-5

Numerical results of the least-squares approximation.
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Automatic mesh refinement

Determining the refinement direction with a local fitting-based method:

� Perform local fitting on patches π`.

� Try different refinement strategies, e.g., uniform knot refinement in x- vs.
in y-direction.

� The strategy that performs better, i.e., produces less error, determines
the refinement direction.

Advantages:

� No assumptions on data,

� simple.

Disadvantages:

� Could become slow if too many strategies are tested.
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Automatic mesh refinement - results

PNH spline mesh after 6 steps of adaptive refinement and resulting surface.

no. of dof % of dof max. error average error
HB-splines 1260 100 % 1.05e-3 6.14e-5
PNHB-splines 576 46 % 8.86e-4 6.79e-5

Numerical results of the least-squares approximation.
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SUMMARY AND OUTLOOK



Summary

� Generalization of a selection mechanism from hierarchical B-splines to
PNHB-splines

� Identification of certain assumptions for defining a hierarchical spline
basis

� Introduction of a truncation mechanism

� Derivation of a completeness result

� Application of PNHB-splines in surface approximation

� Presentation of a first automatic refinement algorithm for PNHB-spline
meshes

� PNHB splines need fewer degrees of freedom than HB splines
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Current work and outlook

� Generalization of the PNHB-splines to
� arbitrary dimension d,
� degrees p` = (p`1, . . . , p

`
d) and

� multiplicities m`i(xi) ≥ 1.

� Truncation: alternative construction
� Goal: proving non-negativity

� Implementation of the truncation mechanism

� Development of further automatic mesh refinement strategies

� Application in industry (e.g., fitting of structural components).
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