PARTIALLY NESTED HIERARCHICAL B-SPLINES

Nora Engleitner, Bert Jüttler and Urška Zore

Institute of Applied Geometry, Johannes Kepler University

INTRODUCTION

Adaptive spline refinement

T-splines (Sederberg et al. 2003):

tensor-product B-splines defined on a mesh with T-junctions

PHT splines (Falai Chen, Jiansong Deng 2008):

algebraically complete basis for splines on a mesh with T-junctions

HB-splines, THB-Splines (Kraft 1997, Giannelli et al. 2012): obtained by selecting B-splines from different levels in a hierarchy

LR Splines (Dokken et al. 2010): constructed by repeatedly splitting tensor-product B-splines

This talk focuses on *HB-splines*.

Motivation

Independent refinement strategies \sim cannot be achieved with HB-splines.

J⊼∩

Motivation

State of the art: Hierarchical B-splines that use sequences of nested spline spaces, $V^0 \subseteq V^1 \subseteq \ldots \subseteq V^N$.

Limits: Independent refinement strategies are not possible.

Possible application of independent refinement strategies:

- Modeling: designing objects with creases or similar features.
- IGA: using different refinement techniques (e.g., *h* and *p*-refinement) in different parts of the domain.

Goal: Generalization of the selection mechanism for hierarchical B-splines to obtain sequences of *partially nested hierarchical spline spaces*.

J⊼N

Preliminaries

We consider:

■ A finite sequence of bivariate tensor-product spline spaces:

$$V^{\ell} = \operatorname{span} B^{\ell}, \quad \ell = 1, \dots, N.$$

 \Box The spline bases B^{ℓ} consist of tensor-product B-splines.

 \Box The index ℓ will be called *level*.

 \Box Note: V^{ℓ} not necessarily subspace of $V^{\ell+1}$

An associated sequence of open sets

$$\pi^{\ell} \subseteq (0,1)^2, \quad \ell = 1, \dots, N.$$

□ The sets are called *patches*.

 \Box We assume that they are mutually disjoint, i.e., $\pi^{\ell} \cap \pi^{k} \neq \emptyset \Rightarrow \ell = k$.

Preliminaries

Patches and associated spline spaces.

The PNH spline space

Collecting all patches results in the *domain* Ω , i.e.,

$$\Omega = \operatorname{int}\left(\bigcup_{\ell=1}^N \overline{\pi^\ell}\right) \subseteq (0,1)^2.$$

Now we define the *partially nested hierarchical spline space* (PNH spline space):

$$H = \{ f \in \mathcal{C}^{\mathbf{s}}(\Omega) : f|_{\pi^{\ell}} \in V^{\ell}|_{\pi^{\ell}} \ \forall \ell = 1, \dots, N \},\$$

with the order of smoothness being

$$\mathbf{s} = \mathbf{p} - 1.$$

The PNH spline space

The partially nested hierarchical spline space.

For each patch there exists a constraining boundary

$$\Gamma^{\ell} = \bigcup_{k=1}^{\ell-1} \overline{\pi^k} \cap \overline{\pi^\ell},$$

i.e., that part of the boundary shared with patches of a lower level.

π^3	π^4		π^1
π^5		π^2	π^6

Constraining boundaries

For each patch there exists a constraining boundary

$$\Gamma^{\ell} = \bigcup_{k=1}^{\ell-1} \overline{\pi^k} \cap \overline{\pi^\ell},$$

i.e., that part of the boundary shared with patches of a lower level.

Constraining boundaries

For each patch there exists a constraining boundary

$$\Gamma^{\ell} = \bigcup_{k=1}^{\ell-1} \overline{\pi^k} \cap \overline{\pi^\ell},$$

i.e., that part of the boundary shared with patches of a lower level.

Constraining boundaries

For each patch there exists a constraining boundary

$$\Gamma^{\ell} = \bigcup_{k=1}^{\ell-1} \overline{\pi^k} \cap \overline{\pi^\ell},$$

i.e., that part of the boundary shared with patches of a lower level.

Constraining boundaries

BASIS FUNCTIONS

Selection mechanism

Generalizing Kraft's selection mechanism leads to a sequence of B-splines from all levels ℓ :

$$K^{\ell} = \{ \beta^{\ell} \in B^{\ell} : \beta^{\ell}|_{\pi^{\ell}} \neq 0 \quad \text{and} \quad \beta^{\ell}|_{\Gamma^{\ell}} = 0 \}.$$

Definition: The *partially nested hierarchical B-splines* (PNHB-splines) are obtained by forming the union over all levels,

$$K = \bigcup_{\ell=1}^{N} K^{\ell}.$$

Selection mechanism

$$K^{\ell} = \{ \beta^{\ell} \in B^{\ell} : \beta^{\ell} |_{\pi^{\ell}} \neq 0 \text{ and } \beta^{\ell} |_{\Gamma^{\ell}} = 0 \}.$$

The selection mechanism for PNHB-splines ($k < \ell$).

Shadow

We define the shadow of a patch π^ℓ as the union of all supports of the selected basis functions,

$$\hat{\pi}^{\ell} = \operatorname{supp} K^{\ell} = \bigcup_{\beta^{\ell} \in K^{\ell}} \operatorname{supp} \beta^{\ell}.$$

Example

The knot lines of the spline space V^{ℓ} define a *mesh* M^{ℓ} of level ℓ .

A partially nested hierarchical mesh (left), the shadows and selected basis functions of two different patches (middle and right). Basis functions are represented by Greville points.

J⊼N

THE SPLINE SPACE

Assumptions

Assumption	Acronym	Used for	
Shadow Ordering Assumption	SOA	proving linear independence	
Shadow Compatibility Assumption	SCA	characterizing the space span K	
Constrained Boundary Alignment	CBA	characterizing the space span K	
Full Boundary Alignment	FBA	proving algebraic completeness	
Support Intersection Condition	SIC	proving algebraic completeness	

Assumptions and results.

Shadow Ordering Assumption (SOA)

Assumption If the shadow $\hat{\pi}^{\ell}$ of the patch of level ℓ intersects another patch π^{k} of level *k*, then the first level is lower than the second one,

$$\pi^{1} + \frac{1}{1} + \frac{1}{1$$

$$\hat{\pi}^{\ell} \cap \pi^k \neq \emptyset \quad \Rightarrow \quad \ell \leq k.$$

J⊼∩

Shadow Ordering Assumption (SOA)

SOA not satisfied.

Assumption If the shadow $\hat{\pi}^{\ell}$ of the patch of level ℓ intersects another patch π^{k} of level *k*, then the first level is lower than the second one,

$$\pi^{1} + \pi^{2} \qquad \pi^{2} + \pi^{1}$$

 $\hat{\pi}^{\ell} \cap \pi^k \neq \emptyset \quad \Rightarrow \quad \ell \le k.$

Theorem: The PNHB-splines are *linearly independent* on Ω if SOA holds.

J⊼∩

SOA satisfied.

Assumptions

Assumption	Acronym	Used for	
Shadow Ordering Assumption	SOA	proving linear independence	
Shadow Compatibility Assumption	SCA	characterizing the space span	
Constrained Boundary Alignment	CBA	characterizing the space span K	
Full Boundary Alignment	FBA	proving algebraic completeness	
Support Intersection Condition	SIC	proving algebraic completeness	

Assumptions and results.

Shadow Compatibility Assumption (SCA)

Assumption If the shadow $\hat{\pi}^{\ell}$ of the patch of level ℓ intersects another patch π^{k} of a different level *k*, then the first level precedes * the second one,

* $\ell < k$ and $V^{\ell} \subseteq V^k$

J⊼N

Constrained Boundary Alignment (CBA)

Assumption For each level ℓ , the constraining boundary Γ^{ℓ} of the patch π^{ℓ} is aligned with the knot lines of the spline space V^{ℓ} .

CBA not satisfied.

CBA satisfied.

J⊼∩

Space characterization

Theorem The PNHB-splines span the partially nested hierarchical spline space H if both SCA and CBA are satisfied.

Thus, we have two different characterizations of the PNH spline space:

$$H = \{ f \in \mathcal{C}^{\mathbf{s}}(\Omega) : f|_{\pi^{\ell}} \in V^{\ell}|_{\pi^{\ell}} \ \forall \ell = 1, \dots, N \},\$$

("implicit" definition: space defined by properties of functions)

$$H = \operatorname{span} \bigcup_{\ell=1}^{N} \{ \beta^{\ell} \in B^{\ell} : \beta^{\ell}|_{\pi^{\ell}} \neq 0 \quad \text{and} \quad \beta^{\ell}|_{\Gamma^{\ell}} = 0 \}$$

("constructive" definition: space defined as linear hull of basis functions)

J⊼∩

Completeness question: Is H = F ?

Recall: The PNH spline space is defined as

$$H = \{ f \in \mathcal{C}^{\mathbf{s}}(\Omega) : f|_{\pi^{\ell}} \in V^{\ell}|_{\pi^{\ell}} \forall \ell = 1, \dots, N \}.$$

Question: Do PNHB-splines span the full spline space

$$F = \{ f \in \mathcal{C}^{\mathbf{s}}(\Omega) : f|_c \in \Pi_{\mathbf{p}} \ \forall c \in C^{\ell} \ \forall \ell = 1, \dots, N \},\$$

of C^s smooth piecewise polynomial functions on the mesh?

It is clear that $H \subseteq F$. How about $H \supseteq F$?

Assumptions

Assumption	Acronym	Used for	
Shadow Ordering Assumption	SOA	proving linear independence	
Shadow Compatibility Assumption	SCA	characterizing the space span K	
Constrained Boundary Alignment	CBA	characterizing the space span ${\cal K}$	
Full Boundary Alignment	FBA	proving algebraic completeness	
Support Intersection Condition	SIC	proving algebraic completeness	

Assumptions and results.

Assumption (Full Boundary Alignment) All boundaries of the patches π^{ℓ} are aligned with the mesh of level ℓ .

Assumption (Support Intersection Condition) The support intersections of the basis functions of level ℓ with the associated patches π^{ℓ} are all connected,

 $\operatorname{supp} \beta^{\ell} \cap \pi^{\ell} \quad \text{is connected} \quad \forall \beta^{\ell} \in B^{\ell}, \ \ell = 1, \dots, N.$

Assumption (Full Boundary Alignment) All boundaries of the patches π^{ℓ} are aligned with the mesh of level ℓ .

Assumption (Support Intersection Condition) The support intersections of the basis functions of level ℓ with the associated patches π^{ℓ} are all connected,

$$\mathsf{supp}\, eta^\ell \cap \pi^\ell \quad \mathsf{is \ connected} \quad orall eta^\ell \in B^\ell, \ \ell=1,\ldots,N_\ell$$

Theorem: The PNHB-splines span the full spline space if SCA, FBA and SIC are satisfied.

TRUNCATION

Restoring partition of unity

Truncation mechanism

Kraft 1997 \rightarrow Giannelli et al. 2012: Hierarchical B-splines \rightarrow Truncated Hierarchical B-splines (**THB-splines**)

The recipe

Truncated function: "original function *minus* contribution of selected basis functions from higher levels"

Is there a generalization to truncated PNHB-splines?

Restoring partition of unity

Truncation mechanism

Kraft 1997 \rightarrow Giannelli et al. 2012: Hierarchical B-splines \rightarrow Truncated Hierarchical B-splines (**THB-splines**)

The recipe

Truncated function: "original function *minus* contribution of selected basis functions from higher levels"

Is there a generalization to truncated PNHB-splines? Yes!

For the truncated PNHB-splines we can show that

- they are linearly independent,
- they form a **partition of unity** and
- they span the partially nested spline space.

We could not prove non-negativity so far (but did not find negative TPNHB-splines either).

J⊼N

PNHB SPLINES IN SURFACE APPROXIMATION

Example

We want to approximate the following function:

Function for approximation.

Manual mesh generation

The meshes used for defining the approximating spline functions.

	no. of dof	% of dof	max. error	average error
tensor-product B-splines	2304	100%	3.39e-3	3.81e-5
HB-splines	1633	71 %	3.08e-3	4.37e-5
PNHB-splines	769	33 %	8.12e-4	1.89e-5

Numerical results of the least-squares approximation.

Automatic mesh refinement

Determining the refinement direction with a *local fitting-based* method:

- Perform local fitting on patches π^{ℓ} .
- Try different refinement strategies, e.g., uniform knot refinement in x- vs. in y-direction.
- The strategy that performs better, i.e., produces less error, determines the refinement direction.

Advantages:

- No assumptions on data,
- simple.

Disadvantages:

■ Could become slow if too many strategies are tested.

Automatic mesh refinement - results

PNH spline mesh after 6 steps of adaptive refinement and resulting surface.

	no. of dof	% of dof	max. error	average error
HB-splines	1260	100 %	1.05e-3	6.14e-5
PNHB-splines	576	46 %	8.86e-4	6.79e-5

Numerical results of the least-squares approximation.

J⊼∩

SUMMARY AND OUTLOOK

Summary

- Generalization of a selection mechanism from hierarchical B-splines to PNHB-splines
- Identification of certain assumptions for defining a hierarchical spline basis
- Introduction of a truncation mechanism
- Derivation of a completeness result
- Application of PNHB-splines in surface approximation
- Presentation of a first automatic refinement algorithm for PNHB-spline meshes
- PNHB splines need fewer degrees of freedom than HB splines

Current work and outlook

Generalization of the PNHB-splines to

- \Box arbitrary dimension d,
- $\Box \; \operatorname{degrees} \mathbf{p}^\ell = (p_1^\ell, \dots, p_d^\ell)$ and
- \square multiplicities $m_i^{\ell}(x_i) \ge 1$.

Truncation: alternative construction

- □ Goal: proving non-negativity
- Implementation of the truncation mechanism
- Development of further automatic mesh refinement strategies
- Application in industry (e.g., fitting of structural components).