Tel-Aviv University School of Mathematical Sciences

Reconstruction of 3D Objects from 1D Cross-Sections by Piecewise Linear Interpolation

Nira Dyn, Elza Farkhi, Shirley Keinan

Contents

- 1. The reconstruction problem
- 2. Earlier work the CPP method
- 3. The 2D-PLI method
- 4. The 3D-PLI method
- 5. Approximation order of the 3D-PLI

The Reconstruction Problem

Reconstruction of a 3D object *M* from a collection of its parallel 1D cross-sections.

Representation of a 3D Object as a Set-Valued Function (SVF)

The sampling plane: $\{(q;0) \in \mathbb{R} \ 13 : q \in \mathbb{R} \ 12 \}$

 Ω – The orthogonal projection of *M* on the sampling plane

The Reconstruction Problem

Assumptions on *M*

M is bounded inside: Ω×[*M*↓*min*,*M*↓*max*]

The values of *F* can be written as:

 $F(q) \coloneqq Ui = 1 \uparrow I(q) \equiv [a \downarrow 2i - 1 \ (q), a \downarrow 2i \ (q)], \ a \downarrow 2i < a \downarrow 2i + 1, \ sup \downarrow q \in \Omega \ \{I(q)\} < \infty$

The Problem: Reconstruct the object *M* from a collection $\{F(V \downarrow l)\}$, l=1,...,l of its samples at the vertices of a triangulation T, $diam(T) \leq h$.

The symmetric difference metric:

 $dist(A,B) = \mu(A\Delta B)$

 $A\Delta B = (A \setminus B) \cup (B \setminus A)$

 $\mu(\mathcal{C})$ - measure of \mathcal{C}

- 1. Stable not affected by single points.
- 2. Every function that is continuous in the symmetric difference metric is continuous in the Hausdorff metric.
- 3. Approximation results can be obtained for a larger class of functions then when using the Hausdorff metric.

Earlier Works The CPP Method

Minkowski convex combination of intervals

 $\{ \lambda \downarrow 1 \ I \downarrow 1 + \lambda \downarrow 2 \ I \downarrow 2 + \lambda \downarrow 3 \ I \downarrow 3 \ | \underline{\sum} i = 1 \ \hat{I} 3 | \underline{\lambda} \downarrow i \ge 0 \}$

Canonization

Approximation order O(h)

b

 C_{2k}

C_{2k-1}

 a_{2i}

The PLI Methods Piecewise Linear Interpolant

• The 2D-PLI

• The 3D-PLI

The 2D-PLI Piecewise Linear Interpolant

The 2D-Basic Elements **Biconnected 2D-Basic element:** $[a \downarrow 2i - 1, a \downarrow 2i] \cap [b \downarrow 2i - 1, a \downarrow 2i]$ *b*√2*j*]≠Ø Singular 2D-Basic element:

 $[a\downarrow 2i-1, a\downarrow 2i] \subset (b\downarrow 2j, b\downarrow 2j+1)$

The 2D-PLI The Construction

For a bicconected 2D-basic element:

Tra($[a \downarrow 2i - 1, a \downarrow 2i], [b \downarrow 2j - 1, b \downarrow 2j]$ $b \downarrow 2j$]) For a singular 2D-basic element:

Tri([*a*↓2*i*−1,*a*↓2*i*],(*b*↓2*j*,*b*↓2*j*+1))

The 2D-PLI Properties

- 1. Interpolation
- 2. Duality of the construction
- 3. Continuity
- 4. Inclusion $q \in co\{V \downarrow 1, V \downarrow 2\}$ $F(V \downarrow 1) \cap F(V \downarrow 2) \subset F(q) \subset F(V \downarrow 1) \cup F(V \downarrow 2)$
- 5. Connectivity preservation
- 6. Topology preservation

The 3D-PLI The 3D-basic Elements

Canonical 3D-basic element: *[a↓2i−1,a↓2i]∩[b↓2j−1,b↓2j]∩[* $c \downarrow 2k - 1$, $c \downarrow 2k \not\models \emptyset$ Two-fold singular 3D-basic element: Х $[a\downarrow 2i-1,a\downarrow 2i] \subset (b\downarrow 2j,b\downarrow 2j+1)$ a↓ 2 $[a \downarrow 2i - 1, a \downarrow 2i] \subset (c \downarrow 2k, c \downarrow 2k + 1)$ VIA Pair singular 3D-basic element:

The 3D-PLI Reconstruction

We apply the appropriate reconstruction rule to each 3D-basic element of every

triangle in $\mathcal{T}.$ The union of these

polyhedrons over the triangles of ${\mathcal T}$ is the

3D-PLI object corresponding to the given

samples of M. We denote by **F** the 3D-PLI of F:

 $F(q) = \{z \in \mathbb{R} | (q; z) \in M \}.$

The 3D-PLI Reconstruction for the 3D-basic elements

A. Canonical 3D-basic element

 $\mathbf{PLI}((V \downarrow 1; [a \downarrow 2i - 1, a \downarrow 2i]), (V \downarrow 2; [b \downarrow 2j - 1, b \downarrow 2j]), (V \downarrow 3; [c \downarrow 2k - 1, c \downarrow 2k]))$

Inclusion property:

 $F(q) \subset [a \downarrow 2i - 1, a \downarrow 2i] \cup [b \downarrow 2j - 1, b \downarrow 2j] \cup [c \downarrow 2k - 1, c \downarrow 2k]$

 $F(q) \supset [a \downarrow 2i - 1, a \downarrow 2i] \cap [b \downarrow 2j - 1, b \downarrow 2j] \cap [c \downarrow 2k - 1, c \downarrow 2k]$

 $\forall q \in co\{V \downarrow 1, V \downarrow 2, V \downarrow 3\}$

Approximation order of the 3D-PLI Approximation Order of the 3D-PLI SVF dist(F(q),F(q))

Definition: A multifunction F is **Hölder continuous** if there exist

 $L \ge 0$ and $\alpha \in (0,1]$ such that for every $p,q \in \Omega$:

$dist(F(p),F(q)) \leq L ||p-q||\uparrow \alpha$.

Lemma: If F is Hölder continuous with constants L, α in Ω , then

for every p,q in a triangle T in J:

 $dist(F(p),F(q)) \leq 3Lh\uparrow\alpha$.

h=0.8

Conclusions

Properties of the Reconstruction Method

- 1. The reconstructed object **interpolates** the given samples.
- 2. The reconstructed object is **piecewise linear**, in the sense that on each triangle the object is a union of polyhedrons.
- 3. The reconstructed SVF is **continuous** in the symmetric difference metric.
- The method provides an approximation rate higher than O(h) for some types of objects / SVFs.

Future Work

- 1. Dealing with **noisy data**.
- Efficient computation of the surface of the approximating object and of the values of the corresponding SVF.
- 3. Improve the visual **appearance** and the **approximation order** of the basic interpolating polyhedrons.
- 4. Obtain a **subdivision scheme** of 1D sets yielding a smooth approximant.
- 5. Choosing **optimal sampling direction**.
- 6. Enhanced method based on **sampling in multiple directions**.

