Ole Christensen

HATA – DTU DTU Compute, Technical University of Denmark

HATA: Harmonic Analysis - Theory and Applications https://hata.compute.dtu.dk/ Ole Christensen Jakob Lemvig Mads Sielemann Jakobsen Marzieh Hasannasab Kamilla Haahr Nielsen Yavar Khedmati Jordy van Velthoven Otto Mønsted Visiting Professor, Fall 2016: Hans Feichtinger

September 20, 2016

Marseille 2016

< 3 > < 3 >

Plan for the talk

• Frames: If a sequence $\{f_k\}_{k=1}^{\infty}$ in a Hilbert spaces \mathcal{H} is a tight frame with frame bound A = 1, then

$$f = \sum_{k=1}^{\infty} \langle f, f_k \rangle f_k, f \in \mathcal{H}.$$
 General dual frames: $f = \sum_{k=1}^{\infty} \langle f, g_k \rangle f_k$

- Wavelet frames $\{2^{j/2}\psi(2^jx-k)\}_{j,k\in\mathbb{Z}}$ in $L^2(\mathbb{R})$
 - The unitary extension principle by Ron & Shen;
- The unitary extension principle on locally compact abelian (LCA) groups, e.g., ℝ, ℤ, ͳ, ℤ_N.
 - Explicit constructions, typically based on B-splines.

Key point: The unitary extension principle can be generalized to LCA groups, as well on the theoretical level as on the level of concrete constructions.

Frames

Definition: A sequence $\{f_k\}_{k=1}^{\infty}$ in \mathcal{H} is a *frame* if

$$\exists A, B > 0: \ A ||f||^2 \leq \sum_{k=1}^{\infty} |\langle f, f_k \rangle|^2 \leq B ||f||^2, \ \forall f \in \mathcal{H}.$$

• If $\{f_k\}_{k=1}^{\infty}$ be a frame with frame operator $S : \mathcal{H} \to \mathcal{H}$, $Sf = \sum \langle f, f_k \rangle f_k$,

$$f = \sum_{k=1}^{\infty} \langle f, S^{-1}f_k \rangle f_k, \ \forall f \in \mathcal{H}.$$

• If the frame $\{f_k\}_{k=1}^{\infty}$ is tight, A = B, then S = AI and

$$f = \frac{1}{A} \sum_{k=1}^{\infty} \langle f, f_k \rangle f_k, \ \forall f \in \mathcal{H}.$$

• If $\{f_k\}_{k=1}^{\infty}$ is overcomplete, there exist frames $\{g_k\}_{k=1}^{\infty} \neq \{S^{-1}f_k\}_{k=1}^{\infty}$ s.t. $f = \sum \langle f, g_k \rangle f_k = \sum \langle f, S^{-1}f_k \rangle f_k, \ \forall f \in \mathcal{H}.$

Key tracks in frame theory:

- Frames in finite-dimensional spaces;
- Frames in general separable Hilbert spaces
- Concrete frames in concrete Hilbert spaces:
 - Gabor frames in $L^2(\mathbb{R}), L^2(\mathbb{R}^d)$;
 - Wavelet frames;
 - Shift-invariant systems, generalized shift-invariant (GSI) systems;
 - Shearlets, etc.
- Frames in Banach spaces;
- (GSI) Frames on LCA groups
- Frames via integrable group representations, coorbit theory.

Key tracks in frame theory:

- Frames in finite-dimensional spaces;
- Frames in general separable Hilbert spaces
- Concrete frames in concrete Hilbert spaces:
 - Gabor frames in $L^2(\mathbb{R}), L^2(\mathbb{R}^d)$;
 - Wavelet frames;
 - Shift-invariant systems, generalized shift-invariant (GSI) systems;
 - Shearlets, etc.
- Frames in Banach spaces;
- (GSI) Frames on LCA groups
- Frames via integrable group representations, coorbit theory.

Research Group HATA DTU (Harmonic Analysis - Theory and Applications, Technical University of Denmark),

https://hata.compute.dtu.dk/

Key tracks in frame theory:

- Frames in finite-dimensional spaces;
- Frames in general separable Hilbert spaces
- Concrete frames in concrete Hilbert spaces:
 - Gabor frames in $L^2(\mathbb{R}), L^2(\mathbb{R}^d)$;
 - Wavelet frames;
 - Shift-invariant systems, generalized shift-invariant (GSI) systems;
 - Shearlets, etc.
- Frames in Banach spaces;
- (GSI) Frames on LCA groups
- Frames via integrable group representations, coorbit theory.

Research Group HATA DTU (Harmonic Analysis - Theory and Applications, Technical University of Denmark),

https://hata.compute.dtu.dk/

An Introduction to Frames and Riesz bases, 2.edition, Birkhäuser 2016

Operators on $L^2(\mathbb{R})$

Translation by $a \in \mathbb{R}$: $T_a : L^2(\mathbb{R}) \to L^2(\mathbb{R}), \ (T_a f)(x) = f(x - a).$ Modulation by $b \in \mathbb{R}$: $E_b : L^2(\mathbb{R}) \to L^2(\mathbb{R}), \ (E_b f)(x) = e^{2\pi i b x} f(x).$ Dyadic scaling: $D : L^2(\mathbb{R}) \to L^2(\mathbb{R}), \ (Df)(x) = 2^{1/2} f(2x).$ All these operators are unitary on $L^2(\mathbb{R})$, and

$$T_a E_b = e^{-2\pi i b a} E_b T_a, \ T_{b/2} D = D T_b, \ D E_{b/2} = E_b D$$

For $f \in L^1(\mathbb{R})$, the *Fourier transform* is defined by

$$\mathcal{F}f(\gamma) = \hat{f}(\gamma) := \int_{-\infty}^{\infty} f(x)e^{-2\pi ix\gamma} dx, \ \gamma \in \mathbb{R}.$$

The Fourier transform can be extended to a unitary operator on $L^2(\mathbb{R})$, and

$$\mathcal{F}T_a = E_{-a}\mathcal{F}, \quad \mathcal{F}E_a = T_a\mathcal{F},$$

$$\mathcal{F}D^{-1} = D\mathcal{F}, \quad \mathcal{F}D = D^{-1}\mathcal{F}.$$

Construction of wavelet ONB via MRA

Theorem: Let $\phi \in L^2(\mathbb{R})$, and assume that the following conditions hold: (i) $\inf_{\gamma \in]-\epsilon,\epsilon[} |\hat{\phi}(\gamma)| > 0$ for some $\epsilon > 0$;

(ii) The scaling equation

$$\hat{\phi}(2\gamma) = H_0(\gamma)\hat{\phi}(\gamma),$$

is satisfied for a bounded 1-periodic function H_0 ;

(iii) $\{T_k\phi\}_{k\in\mathbb{Z}}$ is an orthonormal system.

Then ϕ generates a multiresolution analysis, and the function ψ given by

 $\widehat{\psi}(2\gamma) = H_1(\gamma)\widehat{\phi}(\gamma)$

(with $H_1(\gamma) = \overline{H_0(\gamma + 1/2)}e^{-2\pi i\gamma}$) generates an orthonormal basis $\{D^j T_k \psi\}_{j,k\in\mathbb{Z}} = \{2^{j/2}\psi(2^j x - k)\}_{j,k\in\mathbb{Z}}$. Alternatively, for any $j_0 \in \mathbb{Z}$,

 $\{D^{j_0}T_k\phi\}_{k\in\mathbb{Z}}\cup\{D^jT_k\psi\}_{k\in\mathbb{Z},j\geq j_0}$

is an ONB.

イロト イポト イヨト イヨト 一日

Spline wavelets B_N

• The B-splines B_N , $N \in \mathbb{N}$, are given by

$$B_1 = \chi_{[-1/2,1/2]}, \ B_{N+1} = B_N * B_1.$$

• One can consider even order splines B_N and define associated multiresolution analyses, which leads to wavelets of the type

$$\psi(x) = \sum_{k \in \mathbb{Z}} c_k B_N(2x+k).$$

- These wavelets are called Battle-Lemarié wavelets.
- Only shortcoming: all coefficients c_k are non-zero, which implies that the wavelet ψ has support equal to ℝ.
- Chui & He & Stöckler: There does not exists an ONB or even a tight frame $\{D^j T_k \psi\}_{j,k \in \mathbb{Z}}$ for $L^2(\mathbb{R})$ generated by a finite linear combination

$$\psi(x) = \sum c_k B_N(2x+k).$$

The unitary extension principle by Ron & Shen (1997)

Solution: consider systems of the wavelet-type, but generated by more than one function.

Setup for construction of tight wavelet frames by Ron & Shen: Let $\psi_0 \in L^2(\mathbb{R})$ and assume that

(i) There exists a function $H_0 \in L^{\infty}(\mathbb{T})$ such that

 $\widehat{\psi}_0(2\gamma) = H_0(\gamma)\widehat{\psi}_0(\gamma).$

(ii) $\lim_{\gamma \to 0} \widehat{\psi}_0(\gamma) = 1$. Further, let $H_1, \ldots, H_n \in L^{\infty}(\mathbb{T})$, and define $\psi_1, \ldots, \psi_n \in L^2(\mathbb{R})$ by

$$\widehat{\psi_{\ell}}(2\gamma) = H_{\ell}(\gamma)\widehat{\psi}_0(\gamma), \ \ell = 1, \dots, n.$$

The unitary extension principle

•
$$\widehat{\psi}_0(2\gamma) = H_0(\gamma)\widehat{\psi}_0(\gamma).$$

•
$$\widehat{\psi_{\ell}}(2\gamma) = H_{\ell}(\gamma)\widehat{\psi}_0(\gamma), \ \ell = 1, \dots, n.$$

• We want to find conditions on the functions H_1, \ldots, H_n such that ψ_1, \ldots, ψ_n generate a tight multiwavelet frame for $L^2(\mathbb{R})$.

• Then

$$f = \sum_{\ell=1}^{n} \sum_{j,k \in \mathbb{Z}} \langle f, D^{j} T_{k} \psi_{\ell} \rangle D^{j} T_{k} \psi_{\ell}, \, \forall f \in L^{2}(\mathbb{R}).$$

• Let *H* denote the $(n + 1) \times 2$ matrix-valued function defined by

$$H(\gamma) = \begin{pmatrix} H_0(\gamma) & H_0(\gamma + 1/2) \\ H_1(\gamma) & H_1(\gamma + 1/2) \\ \cdot & \cdot \\ \cdot & \cdot \\ H_n(\gamma) & H_n(\gamma + 1/2) \end{pmatrix}, \ \gamma \in \mathbb{R}.$$

The unitary extension principle

Theorem (Ron and Shen, 1997): Let $\{\psi_{\ell}, H_{\ell}\}_{\ell=0}^{n}$ be as in the general setup, and assume that $H(\gamma)^*H(\gamma) = I$ for a.e. $\gamma \in \mathbb{T}$. Then the multiwavelet system $\{D^jT_k\psi_\ell\}_{j,k\in\mathbb{Z},\ell=1,...,n}$ constitutes a tight frame for $L^2(\mathbb{R})$ with frame bound equal to 1. Alternatively, for any $j_0 \in \mathbb{Z}$,

$$\{D^{j_0}T_k\psi_0\}_{k\in\mathbb{Z}}\cup\{D^jT_k\psi_\ell\}_{k\in\mathbb{Z},\ell=1,...,n,j\geq j_0}$$

is a tight frame with frame bound 1.

Oblique extension principle (2001): equivalent to the UEP, but provides more natural constructions of frames with high approximation orders and optimal number of vanishing moments. Developed by

Daubechies & Han & Ron & Shen, and Chui & He & Stöckler

The unitary extension principle and B-splines

Exmple: For any m = 1, 2, ..., we consider the (centered) *B*-spline

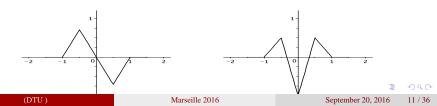
$$\psi_0 := B_{2m}$$

of order 2m. Then

$$\widehat{\psi}_0(\gamma) = \left(\frac{\sin(\pi\gamma)}{\pi\gamma}\right)^{2m}, \ \lim_{\gamma \to 0} \widehat{\psi}_0(\gamma) = 1, \ \widehat{\psi}_0(2\gamma) = \cos^{2m}(\pi\gamma)\widehat{\psi}_0(\gamma).$$

The condition $H(\gamma)^*H(\gamma) = I$ is satisfied with

$$H_{\ell}(\gamma) = \sqrt{\left(\begin{array}{c} 2m \\ \ell \end{array}
ight)} \sin^{\ell}(\pi\gamma) \cos^{2m-\ell}(\pi\gamma), \ell = 1, \dots, 2m.$$



Applications to image analysis (restoring, deblurring, inpainting) by Cai, Osher & Shen (2009-2015).

- Cai, J. F., Osher, S., and Shen, Z.: *Split Bregman methods and frame based image restoration*. Multiscale Model. Simul., **8** (2009), 337–369.
- Cai, J. F., Dong, B., Osher, S., and Shen, Z.: *Image restoration: Total variation, wavelet frames, and beyond.* J. Amer. Math. Soc. 25 (2012), 1033–1089.

Pseudosplines

Pseudosplines (Daubechies & Han & Ron & Shen): based on the filter

$$H_0(\gamma) := (\cos^2)^m \pi \gamma \sum_{k=0}^{\ell} {m+\ell \choose k} \sin^{2k} \pi \gamma \, \cos^{2(\ell-k)} \pi \gamma, \, \gamma \in \mathbb{R},$$

where $\ell < m$ are nonnegative integers. and the associated refinable function ψ_0 such that

$$\widehat{\psi_0}(2\gamma) = H_0(\gamma)\widehat{\psi_0}(\gamma).$$

Generalization to Complex pseudosplines (Massopust & Forster & C., 2015), by replacing $m \in \mathbb{N}$ by $z \in \mathbb{C}$ with $\alpha := Re(z) \ge 1$ and $0 \le \ell \le \lfloor \alpha \rfloor - 1$. Wavelet frames can be obtained in a similar fashion via the UEP. Motivation for the generalization (B. Forster): Real-valued transforms can only provide a symmetric spectrum and are therefore unable to separate positive and negative frequency bands. Moreover, real-valued transforms are not applicable in the context of phase retrieval. Here, complex-valued transforms and frames are indispensably needed.

(DTU)

Marseille 2016

• The unitary extension principle provides conditions for a set of functions

$$\{D^{j}T_{k}\psi_{\ell}\}_{j,k\in\mathbb{Z},\ell=1,...,n} = \{2^{j/2}\psi_{\ell}(2^{j}x-k)\}_{j,k\in\mathbb{Z},\ell=1,...,n}$$

to form a tight frame for $L^2(\mathbb{R})$.

- Let G be a locally compact abelian (LCA) group with Haar measure μ .
 - Typical examples: $\mathbb{R}, \mathbb{R}^s, \mathbb{Z}, \mathbb{T}, \mathbb{Z}_N$;
 - The operator T_a immediately generalizes to $L^2(G)$; $T_a f(x) = f(x a)$
 - The operator E_b has a generalization to $L^2(G)$;
 - The operator D^j is not well defined for j < 0: $D^{-1}f(x) = 2^{-1/2}f(x/2)$???

How can the unitary extension principle be generalized to LCA groups?

Frames on LCA groups

Advantages of the LCA approach:

- Applying various groups (ℝ, T, ℤ, ℤ_N), frames in L²(ℝ), ℓ²(ℤ), L²(0, 1) and ℂ^N are obtained as manifestations of a single theory.
- Wavelet frames on $L^2(\mathbb{R})$ and periodic wavelet frames are covered by the same approach
- The group \mathbb{Z} is covered, which leads to frames in $\ell^2(\mathbb{Z})$.
- Generalizations to higher dimensions are provided without any additional notational complication.
- [Gabor case: uniform treatment of various cases treated separatly in the literature]

• Assume that $\{D^{j}T_{k}\psi_{\ell}\}_{j,k\in\mathbb{Z},\ell=1,...,n}$ is a frame. Applying the Fourier transform we obtain the frame

$$\{\mathcal{F}D^{j}T_{k}\psi_{\ell}\}_{j,k\in\mathbb{Z},\ell=1,\ldots,n}=\{E_{k/2^{j}}\mathcal{F}D^{j}\psi_{\ell}\}_{j,k\in\mathbb{Z},\ell=1,\ldots,n}$$

Letting $\Lambda_j := 2^{-j}\mathbb{Z}, \Psi_j^{\ell} := \mathcal{F}D^j\psi_{\ell}$, we arrive at the frame

$$\{ \mathcal{F} D^{j} T_{k} \psi_{\ell} \}_{j,k \in \mathbb{Z}, \ell=1,\dots,n} = \{ E_{\lambda} \Psi_{j}^{\ell} \}_{\lambda \in \Lambda_{j}, j \in \mathbb{Z}, \ell=1,\dots,n}$$

= $\{ E_{\lambda} \Psi_{k}^{\ell} \}_{\lambda \in \Lambda_{k}, k \in \mathbb{Z}, \ell=1,\dots,n}$

 This form can be generalized to LCA groups: indeed, the sets
 Λ_k = 2^{-k}ℤ are lattices in the LCA group ℝ, and multiplication with E_λ
 is a special case of multiplication with a character.

イロト イポト イヨト イヨト 二日

• Let *G* denote a locally compact abelian (LCA) group, with group operation denoted by "+." Assume that *G* is a countable union of compact sets and metrizable, which implies that *L*²(*G*) is separable.

• • • • • • • • • • • •

Let *G* denote a locally compact abelian (LCA) group, with group operation denoted by "+." Assume that *G* is a countable union of compact sets and metrizable, which implies that *L*²(*G*) is separable. Examples: ℝ, ℤ, ͳ, ℤ_N, the *p*-adic numbers

- Let *G* denote a locally compact abelian (LCA) group, with group operation denoted by "+." Assume that *G* is a countable union of compact sets and metrizable, which implies that *L*²(*G*) is separable. Examples: ℝ, ℤ, ͳ, ℤ_N, the *p*-adic numbers
- A *character* on *G* is a function $\gamma : G \to \mathbb{T} := \{z \in \mathbb{C} \mid |z| = 1\}$, for which $\gamma(x + y) = \gamma(x)\gamma(y), \forall x, y \in G$.

- Let *G* denote a locally compact abelian (LCA) group, with group operation denoted by "+." Assume that *G* is a countable union of compact sets and metrizable, which implies that *L*²(*G*) is separable. Examples: ℝ, ℤ, ͳ, ℤ_N, the *p*-adic numbers
- A character on G is a function γ : G → T := {z ∈ C | |z| = 1}, for which γ(x + y) = γ(x)γ(y), ∀x, y ∈ G.
 Example: for G = ℝ, γ(x) = e^{2πibx}, b ∈ ℝ [b ∈ T if G = ℤ]

- Let *G* denote a locally compact abelian (LCA) group, with group operation denoted by "+." Assume that *G* is a countable union of compact sets and metrizable, which implies that *L*²(*G*) is separable. Examples: ℝ, ℤ, ͳ, ℤ_N, the *p*-adic numbers
- A *character* on G is a function γ : G → T := {z ∈ C | |z| = 1}, for which γ(x + y) = γ(x)γ(y), ∀x, y ∈ G.
 Example: for G = ℝ, γ(x) = e^{2πibx}, b ∈ ℝ [b ∈ T if G = Z]
- The set of continuous characters is denoted by \widehat{G} , and also forms a LCA group, the *dual group* of *G*, when equipped with an appropriate topology and the composition

$$(\gamma + \gamma')(x) := \gamma(x)\gamma'(x), \ \gamma, \gamma' \in \widehat{G}, x \in G.$$

- Let *G* denote a locally compact abelian (LCA) group, with group operation denoted by "+." Assume that *G* is a countable union of compact sets and metrizable, which implies that *L*²(*G*) is separable. Examples: ℝ, ℤ, ͳ, ℤ_N, the *p*-adic numbers
- A *character* on G is a function γ : G → T := {z ∈ C | |z| = 1}, for which γ(x + y) = γ(x)γ(y), ∀x, y ∈ G. Example: for G = ℝ, γ(x) = e^{2πibx}, b ∈ ℝ [b ∈ T if G = Z]
- The set of continuous characters is denoted by \widehat{G} , and also forms a LCA group, the *dual group* of *G*, when equipped with an appropriate topology and the composition

$$(\gamma + \gamma')(x) := \gamma(x)\gamma'(x), \ \gamma, \gamma' \in \widehat{G}, x \in G.$$

Example: $\widehat{\mathbb{R}} = \mathbb{R}$, and $\widehat{\mathbb{Z}} = \mathbb{T}$.

• Can prove: $\widehat{\widehat{G}} = G$.

γ(x) can either be interpreted as the action of γ ∈ G on x ∈ G, or as the action of x ∈ G

 G
 in γ ∈ G
 in γ ∈ G
 in γ ∈ G
 in γ

$$(x,\gamma):=\gamma(x), x\in G, \gamma\in \widehat{G}.$$

Example: for $G = \mathbb{R}$, $(x, y) = e^{2\pi i x y}$, $x, y \in \mathbb{R}$

- Can prove: $\widehat{\widehat{G}} = G$.
- γ(x) can either be interpreted as the action of γ ∈ G on x ∈ G, or as the action of x ∈ G

 G
 in γ ∈ G
 in γ ∈ G
 in γ ∈ G
 in γ

$$(x,\gamma):=\gamma(x), x\in G, \gamma\in \widehat{G}.$$

Example: for $G = \mathbb{R}$, $(x, y) = e^{2\pi i x y}$, $x, y \in \mathbb{R}$

• A *lattice* in G is a discrete subgroup Λ for which G/Λ is compact.

- Can prove: $\widehat{\widehat{G}} = G$.
- γ(x) can either be interpreted as the action of γ ∈ G on x ∈ G, or as the action of x ∈ G

 G
 in γ ∈ G
 in γ ∈ G
 in γ ∈ G
 in γ

$$(x,\gamma) := \gamma(x), x \in G, \gamma \in \widehat{G}.$$

Example: for $G = \mathbb{R}$, $(x, y) = e^{2\pi i x y}$, $x, y \in \mathbb{R}$

• A *lattice* in *G* is a discrete subgroup Λ for which G/Λ is compact. Example: for $G = \mathbb{R}$, $\Lambda = b\mathbb{Z}$, b > 0 [$b \in \mathbb{N}$ if $G = \mathbb{Z}$]

• Can prove: $\widehat{\widehat{G}} = G$.

γ(x) can either be interpreted as the action of γ ∈ G on x ∈ G, or as the action of x ∈ G

 G
 in γ ∈ G
 in γ ∈ G
 in γ ∈ G
 in γ

$$(x,\gamma):=\gamma(x), x\in G, \gamma\in \widehat{G}.$$

Example: for $G = \mathbb{R}$, $(x, y) = e^{2\pi i x y}$, $x, y \in \mathbb{R}$

- A *lattice* in G is a discrete subgroup Λ for which G/Λ is compact. Example: for $G = \mathbb{R}$, $\Lambda = b\mathbb{Z}$, b > 0 [$b \in \mathbb{N}$ if $G = \mathbb{Z}$]
- The *annihilator* Λ^{\perp} of Λ is defined by

$$\Lambda^{\perp} := \{ \gamma \in \widehat{G} \mid (x, \gamma) = 1, \ \forall x \in \Lambda \}.$$

The annihilator Λ^{\perp} is a closed subgroup of \widehat{G} .

- Can prove: $\widehat{\widehat{G}} = G$.
- γ(x) can either be interpreted as the action of γ ∈ G on x ∈ G, or as the action of x ∈ G

 G
 in γ ∈ G
 in γ ∈ G
 in γ ∈ G
 in γ

$$(x,\gamma):=\gamma(x), x\in G, \gamma\in \widehat{G}.$$

Example: for $G = \mathbb{R}$, $(x, y) = e^{2\pi i x y}$, $x, y \in \mathbb{R}$

- A *lattice* in *G* is a discrete subgroup Λ for which G/Λ is compact. Example: for $G = \mathbb{R}$, $\Lambda = b\mathbb{Z}$, b > 0 [$b \in \mathbb{N}$ if $G = \mathbb{Z}$]
- The *annihilator* Λ^{\perp} of Λ is defined by

$$\Lambda^{\perp} := \{ \gamma \in \widehat{G} \mid (x, \gamma) = 1, \ \forall x \in \Lambda \}.$$

The annihilator Λ^{\perp} is a closed subgroup of \widehat{G} . Example: for $G = \mathbb{R}$, and $\Lambda = b\mathbb{Z}$, we have $\Lambda^{\perp} = b^{-1}\mathbb{Z}$

Recall: Via the Fourier transform, a frame $\{D^j T_k \psi_\ell\}_{j,k \in \mathbb{Z}, \ell=1,...,n}$ was turned into the frame

$$\{\mathcal{F}D^{j}T_{k}\psi_{\ell}\}_{j,k\in\mathbb{Z},\ell=1,\ldots,n}=\{E_{\lambda}\Psi_{k}^{\ell}\}_{\lambda\in\Lambda_{k},k\in\mathbb{Z},\ell=1,\ldots,n},$$

where

$$\Lambda_k = 2^{-k} \mathbb{Z}, \Psi_k^{\ell} = \mathcal{F} D^k \psi_{\ell}.$$

Interpretation: The operators E_{λ} are multiplications with characters in the LCA group \mathbb{R} , and the sets Λ_k are lattices! More generally: exactly the same procedure turns a frame

$$\{D^{j_0}T_k\psi_0\}_{k\in\mathbb{Z}}\cup\{D^jT_k\psi_\ell\}_{j,k\in\mathbb{Z},\ell=1,...,n,j\geq j_0}$$

into a frame $\{E_{\lambda}\Phi_{k_0}\}_{\lambda\in\Lambda_{k_0}}\cup\{E_{\lambda}\Psi_k^\ell\}_{\lambda\in\Lambda_k,k\geq k_0,\ell=1,\dots,n}$, where

$$\Phi_k = \mathcal{F} D^k \psi_0.$$

Note: by the scaling equation $D\widehat{\psi}_0(\gamma) = 2^{1/2}H_0(\gamma)\widehat{\psi}_0(\gamma)$, so

$$\begin{split} \Phi_k(\gamma) &= D^{-k} \mathcal{F} \psi_0(\gamma) = D^{-k-1} D \widehat{\psi_0}(\gamma) &= 2^{1/2} D^{-k-1} \left(H_0 \widehat{\psi_0} \right)(\gamma) \\ &= H_{k+1}(\gamma) \Phi_{k+1}(\gamma), \end{split}$$

where $H_{k+1}(\gamma) := 2^{1/2}H_0(\gamma/2^{k+1})$ satisfies that

$$H_{k+1}(\gamma + \omega) = H_{k+1}(\gamma), \ \omega \in 2^{k+1}\mathbb{Z}.$$

Interpretation: The function H_k is periodic with respect to the lattice $2^k \mathbb{Z} = \Lambda_k^{\perp}$, the annihilator of the lattice $\Lambda_k = 2^{-k} \mathbb{Z}$ indexing the frame

$$\{E_{\lambda}\Phi_{k_0}\}_{\lambda\in\Lambda_{k_0}}\cup\{E_{\lambda}\Psi_k^\ell\}_{\lambda\in\Lambda_k,k\geq k_0,\ell=1,\ldots,n},$$

i.e.,

$$H_{k+1}(\gamma + \omega) = H_{k+1}(\gamma), \ \omega \in \Lambda_{k+1}^{\perp}.$$

- Consider the space $L^2(\widehat{G})$, where the integration is with respect to the Haar measure $\mu_{\widehat{G}}$ on \widehat{G} .
- For $\lambda \in G$, consider the unitary operator

$$\mathcal{M}_{\lambda}: L^{2}(\widehat{G}) \to L^{2}(\widehat{G}), \ (\mathcal{M}_{\lambda}f)(\gamma):=(\lambda,\gamma)f(\gamma).$$

The operator \mathcal{M}_{λ} generalizes the modulation operator

$$E_b: L^2(\mathbb{R}) \to L^2(\mathbb{R}), \ E_b f(x) = e^{2\pi i b x} f(x).$$

General setup:

• Let $\{\Lambda_k\}_{k=k_0}^{\infty}$ be a nested sequence of lattices in G, i.e.,

$$\Lambda_k \subset \Lambda_{k+1}, \ \forall k \ge k_0.$$

• Let V_k denote a fundamental domain associated with the lattice Λ_k^{\perp} in \widehat{G} , i.e., we have

$$\widehat{G} = \bigcup_{\omega \in \Lambda_k^{\perp}} (\omega + V_k), \quad (\omega + V_k) \cap (\omega' + V_k) = \emptyset \text{ for } \omega \neq \omega', \, \omega, \omega' \in \Lambda_k^{\perp}.$$

Let {Φ_k}[∞]_{k=k0} be a sequence of functions in L²(G) (the "scaling functions"). For the UEP on ℝ we had Φ_k = FD^kψ₀, but now the functions Φ_k might not be related, i.e., the nonstationary case is included.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Assume that for some periodic functions $H_{k+1} \in L^{\infty}(V_{k+1})$ (with $H_{k+1}(\gamma + \omega) = H(\gamma)$ for $\gamma \in \widehat{G}$, $\omega \in \Lambda_{k+1}^{\perp}$),

 $\Phi_k(\gamma) = H_{k+1}(\gamma) \, \Phi_{k+1}(\gamma), \ \gamma \in \widehat{G}.$

Given periodic functions $G_{k+1}^{(m)} \in L^{\infty}(V_{k+1}), m = 1, \dots, \rho_k$, define the functions $\Psi_k^{(m)} \in L^2(\widehat{G}), m = 1, \dots, \rho_k$, by

$$\Psi_k^{(m)}(\gamma) := G_{k+1}^{(m)}(\gamma) \,\Phi_{k+1}(\gamma), \ \gamma \in \widehat{G}.$$
(1)

Our goal is to identify conditions on the filters H_k and $G_k^{(m)}$ such that the functions

$$\{\mathcal{M}_{\lambda}\Phi_{k_{0}}\}_{\lambda\in\Lambda_{k_{0}}}\bigcup\{\mathcal{M}_{\lambda}\Psi_{k}^{(m)}\}_{k\geq k_{0},\,\lambda\in\Lambda_{k},m=1,\ldots,\rho_{k}}\tag{2}$$

form a tight frame for $L^2(\widehat{G})$ with frame bound 1.

Technical conditions: For every compact set $S \subset \widehat{G}$ and any $\epsilon > 0$ there exists K such that for all $k \geq K$,

$$|\mu(V_k)|\Phi_k(\gamma)|^2 - 1| \le \epsilon, \ \forall \gamma \in S.$$

and

$$\operatorname{card}\{(\Lambda_k^{\perp}+\gamma)\cap S\}\leq 1,\,\forall\,\gamma\in V_k.$$

• • • • • • • • • • • •

Note:

• The assumption

 $\Lambda_0\subset\Lambda_1\subset\Lambda_2\subset\cdots$

implies that

$$\cdots \Lambda_2^{\perp} \subset \Lambda_1^{\perp} \subset \Lambda_0^{\perp}.$$

• For each $k \ge k_0$ we can choose a sequence $\{\nu_{k,\ell}\}_{\ell=1,\dots,d_k} \subset \widehat{G}$ such that $\nu_{k,1} = 0$ and

$$\Lambda_k^{\perp} = \bigcup_{\ell=1}^{d_k} (\nu_{k,\ell} + \Lambda_{k+1}^{\perp}), \ (\nu_{k,\ell} + \Lambda_{k+1}^{\perp}) \cap (\nu_{k,\ell'} + \Lambda_{k+1}^{\perp}) = \emptyset \text{ for } \ell \neq \ell'.$$

The unitary extension principle on LCA groups

For $k \ge k_0$, consider the $(\rho_k + 1) \times d_k$ matrix-valued function P_k defined by

Theorem: (C. & Goh, 2014–2016) In addition to the general setup, assume that for $k \ge k_0$, the matrix-valued function P_k satisfies that

$$P_k(\gamma)^*P_k(\gamma) = rac{\mu(V_{k+1})}{\mu(V_k)} I_{d_k}, a.e. \gamma \in V_k.$$

Then the collection

$$\{\mathcal{M}_{\lambda}\Phi_{k_0}\}_{\lambda\in\Lambda_{k_0}}\bigcup\{\mathcal{M}_{\lambda}\Psi_k^{(m)}\}_{k\geq k_0,\lambda\in\Lambda_k,m=1,\ldots,\rho_k}$$

form a tight frame for $L^2(\widehat{G})$ with frame bound 1.

(DTU)

The unitary extension principle on LCA groups

Alternatively, the generalized shift-invariant system

$$\{T_{\lambda}\mathcal{F}^{-1}\Phi_{k_0}\}_{\lambda\in\Lambda_{k_0}}\bigcup\{T_{\lambda}\mathcal{F}^{-1}\Psi_k^{(m)}\}_{k\geq k_0,\lambda\in\Lambda_k,m=1,\ldots,\rho_k}$$

forms a tight frame for $L^2(G)$ with frame bound 1.

• • • • • • • • • • • •

Key steps in the proof of the UEP

Lemma For any $F \in C_c(\widehat{G})$ and any $\epsilon > 0$, there is a $K \in \mathbb{N}$ such that for $k \ge K$,

$$(1-\epsilon) \|F\|^2 \le \sum_{\lambda \in \Lambda_{k+1}} |\langle F, \mathcal{M}_{\lambda} \Phi_k \rangle|^2 \le (1+\epsilon) \|F\|^2.$$

Lemma In addition to the general setup, assume that for some $k \ge k_0$, the matrix-valued function P_k satisfies that

$$P_k(\gamma)^* P_k(\gamma) = rac{\mu(V_{k+1})}{\mu(V_k)} I_{d_k}, \ a.e. \ \gamma \in V_k.$$

Then for all $F \in C_c(\widehat{G})$,

$$\sum_{\lambda \in \Lambda_{k+1}} |\langle F, \mathcal{M}_{\lambda} \Phi_{k+1} \rangle|^2 = \sum_{\lambda \in \Lambda_k} |\langle F, \mathcal{M}_{\lambda} \Phi_k \rangle|^2 + \sum_{m=1}^{\rho_k} \sum_{\lambda \in \Lambda_k} |\langle F, \mathcal{M}_{\lambda} \Psi_k^{(m)} \rangle|^2.$$

B-splines on LCA groups

- Dahlke, Tikhomirov, 1994: definition of B-splines on LCA-groups.
- Extension to a definition of weighted splines (C. & Goh, 2014)

Definition Let Λ denote a lattice in the LCA group G, with associated fundamental domain Q, i.e.,

$$G = \bigcup_{\lambda \in \Lambda} (\lambda + Q) \text{ and } (\lambda + Q) \cap (\lambda' + Q) = \emptyset, \ \lambda \neq \lambda'.$$

Let $r \in \mathbb{N}$. Given functions $g_1, \ldots, g_r \in L^2(Q)$ the function defined by the *r*-fold convolution

$$W_r := g_1 \chi_Q * g_2 \chi_Q * \cdots * g_r \chi_Q$$

is called a weighted B-spline of order r.

• • • • • • • • • • • •

B-splines on LCA groups

Lemma (C. & Goh, 2014) Let Λ denote a lattice in the LCA group G, with associated fundamental domain Q. Given functions $g_1, \ldots, g_r \in L^2(Q)$, the weighted B-spline

$$W_r := g_1 \chi_Q * g_2 \chi_Q * \cdots * g_r \chi_Q$$

has the following properties:

- (i) $\{T_{\lambda}W_r\}_{\lambda\in\Lambda}$ is a Bessel sequence with bound $\prod_{j=1}^r ||g_j||_{L^2(O)}^2$.
- (ii) supp $W_r \subseteq \overline{rQ}$
- (iii) If $r \ge 2$, then $W_r \in C_c(G)$; in particular, $W_r \in L^p(G)$ for all $p \ge 1$.
- (iv) If $g_j > 0$ on int(Q) for j = 1, ..., r, then $W_r > 0$ on int(rQ);
- (v) If $g_j = C$ for some j = 1, ..., r, then W_r satisfies the partition of unity condition up to a constant, i.e.,

$$\sum_{\lambda \in \Lambda} W_r(x-\lambda) = \frac{1}{\mu_G(Q)} \prod_{j=1}^r \int_Q g_j(x) \, dx.$$

Extra information for the "Atoll of spline lovers"

Theorem (C. & Goh, 2014) Given a lattice Γ in \widehat{G} , let $\Omega \subset \widehat{G}$ denote a fundamental domain, i.e.,

$$\widehat{G} = \bigcup_{\gamma \in \Gamma} (\gamma + \Omega). \qquad \qquad [\mathbb{R} = \bigcup_{n \in \mathbb{Z}} (nb + [0, b[)]$$

• For a fixed $r \in \mathbb{N}$, consider the function

$$W_r := g_1 \chi_{\Omega} * g_2 \chi_{\Omega} * \cdots * g_r \chi_{\Omega},$$

with the assumption that $g_j > 0$ and $g_j = C$ for at least one index j = 1, ..., r.

Given a lattice Λ in G, and assume that the fundamental domain V associated with Λ[⊥] satisfies that rΩ ⊆ V.

Then $\{\mathcal{M}_{\lambda}T_{k}W_{r}\}_{\lambda\in\Lambda,k\in\Gamma}$ is a frame for $L^{2}(\widehat{G})$.

Extra information for the "Atoll of spline lovers"

Example Consider a Gabor system $\{E_{mb}T_nB_N\}_{m,n\in\mathbb{Z}}$ in $L^2(\mathbb{R})$, which corresponds to $\{\mathcal{M}_{\lambda}T_kW_r\}_{\lambda\in\Lambda,k\in\Gamma}$ with $\Lambda = b\mathbb{Z}, \Gamma = \mathbb{Z}$. Then

•
$$\Lambda^{\perp} = \frac{1}{b}\mathbb{Z}, V = [0, 1/b[;$$

- $\Omega = [0, 1[;$
- The condition rΩ ⊆ V means that [0, r[⊆ [0, 1/b[, i.e., r ≤ 1/b; this is exactly the classical Gabor condition:

Corollary: $\{E_{mb}T_nB_N\}_{m,n\in\mathbb{Z}}$ is a frame for $L^2(\mathbb{R})$ if $b \leq 1/N$.

The UEP on LCA groups and B-splines

Given the fundamental domain Q_k associated with the lattice Λ_k , define the B-spline of *N*th order on level *k* by the *N*-fold convolution

$$\phi_k := \mu(\mathcal{Q}_k)^{-N+1/2} \chi_{\mathcal{Q}_k} * \cdots * \chi_{\mathcal{Q}_k}.$$

Consider the functions Φ_k defined by

$$\Phi_k(\gamma) := \widehat{\phi}_k(\gamma) = \mu(\mathcal{Q}_k)^{-N+1/2} \left(\int_{\mathcal{Q}_k} (-x,\gamma) \, dx \right)^N.$$

Lemma The function Φ_k satisfies the scaling equation

 $\Phi_k(\gamma) = H_{k+1}(\gamma)\Phi_{k+1}(\gamma),$

where $H_{k+1} \in L^{\infty}(V_{k+1})$ is given by

$$H_{k+1}(\gamma) = \frac{1}{2^{N-1/2}} \left(1 + (-\eta_k, \gamma) \right)^N$$

for some $\eta_k \in G$.

The UEP on LCA groups and B-splines

For the B-spline case:

• Provided that the group *G* has "enough lattices," there is a canonical way of choosing the filters $G_k^{(m)}$ such that

$$P_k(\gamma)^*P_k(\gamma)=rac{\mu(V_{k+1})}{\mu(V_k)}\,I_{d_k},\,a.e.\,\gamma\in V_k.$$

- For $G = \mathbb{R}$, the classical UEP is obtained and leads to a tight frame with wavelet structure.
- All the technical conditions are satisfied for G = Z, leading to a tight frame for ℓ²(Z) consisting of modulates of a finite collection of functions.

< ロ > < 同 > < 回 > < 回 > < 回 >

The UEP on LCA groups and B-splines

For the B-spline case:

• Provided that the group G has "enough lattices," there is a canonical way of choosing the filters $G_k^{(m)}$ such that

$$P_k(\gamma)^*P_k(\gamma) = rac{\mu(V_{k+1})}{\mu(V_k)} I_{d_k}, \ a.e. \ \gamma \in V_k.$$

- For $G = \mathbb{R}$, the classical UEP is obtained and leads to a tight frame with wavelet structure.
- All the technical conditions are satisfied for G = Z, leading to a tight frame for ℓ²(Z) consisting of modulates of a finite collection of functions.

Alternative construction:

- Shannon-type constructions, i.e., $\Phi_k = \chi_{\Omega_k}$ for some sets Ω_k in \widehat{G} ;
- Concrete applications to all the elementary LCA groups $\mathbb{R}, \mathbb{Z}, \mathbb{T}, \mathbb{Z}_N$.

Conclusion

The UEP can be generalized to LCA groups, as well as the level of deriving the theorem as on the level of applications to B-splines and characteristic functions.

LCA groups

Lemma Let G be a LCA group and Λ a lattice in G. Then the following hold:

(i) There exists a relatively compact set $Q \subseteq G$ such that

$$G = \bigcup_{\lambda \in \Lambda} (\lambda + Q), \qquad (\lambda + Q) \cap (\lambda' + Q) = \emptyset \text{ for } \lambda \neq \lambda'.$$

The set *Q* is called a *fundamental domain* for the lattice Λ . Example: $\mathbb{R} = \bigcup_{n \in \mathbb{Z}} (nb + [0, b[))$

(ii) The set Λ^{\perp} is a lattice in \widehat{G} , and there exists a relatively compact set $V \subseteq \widehat{G}$ such that

$$\widehat{G} = \bigcup_{\omega \in \Lambda^{\perp}} (\omega + V), \qquad (\omega + V) \cap (\omega' + V) = \emptyset \text{ for } \omega \neq \omega'.$$

Example: $\widehat{\mathbb{R}} = \mathbb{R} = \bigcup_{n \in \mathbb{Z}} (n/b + [0, 1/b[))$