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Plan for the talk

• Frames:If a sequence{fk}∞k=1 in a Hilbert spacesH is a tight frame with
frame boundA = 1, then

f =
∞∑

k=1

〈f , fk〉fk, f ∈ H. General dual frames:f =
∞∑

k=1

〈f ,gk〉fk

• Wavelet frames{2j/2ψ(2jx− k)}j,k∈Z in L2(R)
• The unitary extension principle by Ron & Shen;

• The unitary extension principle on locally compact abelian(LCA)
groups, e.g.,R,Z,T,ZN.

• Explicit constructions, typically based on B-splines.

Key point: The unitary extension principle can be generalized to LCA groups,
as well on the theoretical level as on the level of concrete constructions.
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Frames

Definition: A sequence{fk}∞k=1 in H is aframeif

∃A,B> 0 : A ||f ||2 ≤
∞∑

k=1

|〈f , fk〉|
2 ≤ B ||f ||2, ∀f ∈ H.

• If {fk}∞k=1 be a frame with frame operatorS : H → H, Sf =
∑

〈f , fk〉fk,

f =
∞∑

k=1

〈f ,S−1fk〉fk, ∀f ∈ H.

• If the frame{fk}∞k=1 is tight, A = B, thenS= A I and

f =
1
A

∞∑

k=1

〈f , fk〉fk, ∀f ∈ H.

• If {fk}∞k=1 is overcomplete, there exist frames{gk}
∞
k=1 6= {S−1fk}∞k=1 s.t.

f =
∑

〈f ,gk〉fk =
∑

〈f ,S−1fk〉fk, ∀f ∈ H.
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Key tracks in frame theory:

• Frames in finite-dimensional spaces;
• Frames in general separable Hilbert spaces
• Concrete frames in concrete Hilbert spaces:

• Gabor frames inL2(R), L2(Rd);
• Wavelet frames;
• Shift-invariant systems, generalized shift-invariant (GSI) systems;
• Shearlets, etc.

• Frames in Banach spaces;
• (GSI) Frames on LCA groups
• Frames via integrable group representations, coorbit theory.
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Operators onL2(R)

Translation by a∈ R: Ta : L2(R) → L2(R), (Taf )(x) = f (x− a).

Modulation by b∈ R : Eb : L2(R) → L2(R), (Ebf )(x) = e2πibxf (x).

Dyadic scaling: D: L2(R) → L2(R), (Df )(x) = 21/2f (2x).

All these operators are unitary onL2(R), and

TaEb = e−2πibaEbTa, Tb/2D = DTb, DEb/2 = EbD

For f ∈ L1(R), theFourier transformis defined by

F f (γ) = f̂ (γ) :=
∫ ∞

−∞

f (x)e−2πixγ dx, γ ∈ R.

The Fourier transform can be extended to a unitary operator on L2(R), and

FTa = E−aF , FEa = TaF ,

FD−1 = DF , FD = D−1F .
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Construction of wavelet ONB via MRA

Theorem:Let φ ∈ L2(R), and assume that the following conditions hold:

(i) infγ∈]−ǫ,ǫ[ |φ̂(γ)| > 0 for someǫ > 0;
(ii) The scaling equation

φ̂(2γ) = H0(γ)φ̂(γ),

is satisfied for a bounded 1-periodic functionH0;
(iii) {Tkφ}k∈Z is an orthonormal system.

Thenφ generates a multiresolution analysis, and the functionψ given by

ψ̂(2γ) = H1(γ)φ̂(γ)

(with H1(γ) = H0(γ + 1/2)e−2πiγ) generates an orthonormal basis
{DjTkψ}j,k∈Z = {2j/2ψ(2jx− k)}j,k∈Z. Alternatively, for anyj0 ∈ Z,

{Dj0Tkφ}k∈Z ∪ {DjTkψ}k∈Z,j≥j0

is an ONB.
(DTU ) Marseille 2016 September 20, 2016 6 / 36



Spline waveletsBN

• The B-splinesBN, N ∈ N, are given by

B1 = χ[−1/2,1/2], BN+1 = BN ∗ B1.

• One can consider even order splinesBN and define associated
multiresolution analyses, which leads to wavelets of the type

ψ(x) =
∑

k∈Z

ckBN(2x+ k).

• These wavelets are calledBattle–Lemaríe wavelets.
• Only shortcoming:all coefficientsck are non-zero, which implies that

the waveletψ has support equal toR.
• Chui & He & Stöckler: There does not exists an ONB or even a tight

frame{DjTkψ}j,k∈Z for L2(R) generated by a finite linear combination

ψ(x) =
∑

ckBN(2x+ k).
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The unitary extension principle by Ron & Shen (1997)

Solution:consider systems of the wavelet-type, but generated by morethan
one function.

Setup for construction of tight wavelet frames by Ron & Shen:
Letψ0 ∈ L2(R) and assume that

(i) There exists a functionH0 ∈ L∞(T) such that

ψ̂0(2γ) = H0(γ)ψ̂0(γ).

(ii) limγ→0 ψ̂0(γ) = 1.

Further, letH1, . . . ,Hn ∈ L∞(T), and defineψ1, . . . , ψn ∈ L2(R) by

ψ̂ℓ(2γ) = Hℓ(γ)ψ̂0(γ), ℓ = 1, . . . ,n.
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The unitary extension principle

• ψ̂0(2γ) = H0(γ)ψ̂0(γ).

• ψ̂ℓ(2γ) = Hℓ(γ)ψ̂0(γ), ℓ = 1, . . . ,n.
• We want to find conditions on the functionsH1, . . . ,Hn such that
ψ1, . . . , ψn generate a tight multiwavelet frame forL2(R).

• Then

f =
n∑

ℓ=1

∑

j,k∈Z

〈f ,DjTkψℓ〉D
jTkψℓ, ∀f ∈ L2(R).

• Let H denote the(n+ 1)× 2 matrix-valued function defined by

H(γ) =




H0(γ) H0(γ + 1/2)
H1(γ) H1(γ + 1/2)

· ·
· ·

Hn(γ) Hn(γ + 1/2)



, γ ∈ R.
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The unitary extension principle

Theorem (Ron and Shen, 1997):Let{ψℓ,Hℓ}
n
ℓ=0 be as in the general setup,

and assume thatH(γ)∗H(γ) = I for a.e.γ ∈ T. Then the multiwavelet system
{DjTkψℓ}j,k∈Z,ℓ=1,...,n constitutes a tight frame for L2(R) with frame bound
equal to1. Alternatively, for any j0 ∈ Z,

{Dj0Tkψ0}k∈Z ∪ {DjTkψℓ}k∈Z,ℓ=1,...,n,j≥j0

is a tight frame with frame bound 1.
Oblique extension principle (2001):equivalent to the UEP, but provides more
natural constructions of frames with high approximation orders and optimal
number of vanishing moments. Developed by

Daubechies & Han & Ron & Shen, and Chui & He & Stöckler
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The unitary extension principle and B-splines

Exmple:For anym= 1,2, . . . , we consider the (centered)B-spline

ψ0 := B2m

of order 2m. Then

ψ̂0(γ) =

(
sin(πγ)
πγ

)2m

, lim
γ→0

ψ̂0(γ) = 1, ψ̂0(2γ) = cos2m(πγ)ψ̂0(γ).

The conditionH(γ)∗H(γ) = I is satisfied with

Hℓ(γ) =

√(
2m
ℓ

)
sinℓ(πγ) cos2m−ℓ(πγ), ℓ = 1, . . . ,2m.

K2 K1 0 1 2

K1

1

K2 K1 0 1 2

K1

1
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Wavelets and B-splines

Applications to image analysis (restoring, deblurring, inpainting) by Cai,
Osher & Shen (2009-2015).

Cai, J. F., Osher, S., and Shen, Z.:Split Bregman methods and frame
based image restoration.Multiscale Model. Simul.,8 (2009), 337–369.

Cai, J. F., Dong, B., Osher, S., and Shen, Z.:Image restoration: Total
variation, wavelet frames, and beyond.J. Amer. Math. Soc.25 (2012),
1033–1089.
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Pseudosplines

Pseudosplines (Daubechies & Han & Ron & Shen):based on the filter

H0(γ) := (cos2)mπγ

ℓ∑

k=0

(
m+ ℓ

k

)
sin2k πγ cos2(ℓ−k) πγ, γ ∈ R,

whereℓ < mare nonnegative integers. and the associated refinable function
ψ0 such that

ψ̂0(2γ) = H0(γ)ψ̂0(γ).

Generalization to Complex pseudosplines (Massopust & Forster & C., 2015),
by replacingm∈ N by z∈ C with α := Re(z) ≥ 1 and 0≤ ℓ ≤ ⌊α⌋ − 1.
Wavelet frames can be obtained in a similar fashion via the UEP.
Motivation for the generalization (B. Forster): Real-valued transforms can
only provide a symmetric spectrum and are therefore unable to separate
positive and negative frequency bands. Moreover, real-valued transforms are
not applicable in the context of phase retrieval. Here, complex-valued
transforms and frames are indispensably needed.
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Towards a generalization of the unitary extension principle

• The unitary extension principle provides conditions for a set of functions

{DjTkψℓ}j,k∈Z,ℓ=1,...,n = {2j/2ψℓ(2
jx− k)}j,k∈Z,ℓ=1,...,n

to form a tight frame forL2(R).

• Let G be a locally compact abelian (LCA) group with Haar measureµ.
• Typical examples:R,Rs,Z,T,ZN;
• The operatorTa immediately generalizes toL2(G); Taf (x) = f (x− a)
• The operatorEb has a generalization toL2(G);
• The operatorDj is not well defined forj < 0 : D−1f (x) = 2−1/2f (x/2)???

How can the unitary extension principle be generalized to LCA groups?
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Frames on LCA groups

Advantages of the LCA approach:

• Applying various groups (R,T,Z,ZN), frames inL2(R), ℓ2(Z),L2(0,1)
andCN are obtained as manifestations of a single theory.

• Wavelet frames onL2(R) and periodic wavelet frames are covered by the
same approach

• The groupZ is covered, which leads to frames inℓ2(Z).

• Generalizations to higher dimensions are provided withoutany
additional notational complication.

• [Gabor case: uniform treatment of various cases treated separatly in the
literature]
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Towards a generalization of the unitary extension principle

• Assume that{DjTkψℓ}j,k∈Z,ℓ=1,...,n is a frame. Applying the Fourier
transform we obtain the frame

{FDjTkψℓ}j,k∈Z,ℓ=1,...,n = {Ek/2jFDjψℓ}j,k∈Z,ℓ=1,...,n.

LettingΛj := 2−j
Z,Ψℓ

j := FDjψℓ, we arrive at the frame

{FDjTkψℓ}j,k∈Z,ℓ=1,...,n = {EλΨ
ℓ
j }λ∈Λj ,j∈Z,ℓ=1,...,n

= {EλΨ
ℓ
k}λ∈Λk,k∈Z,ℓ=1,...,n.

• This form can be generalized to LCA groups: indeed, the sets
Λk = 2−k

Z are lattices in the LCA groupR, and multiplication withEλ

is a special case of multiplication with a character.
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LCA groups

• Let G denote a locally compact abelian (LCA) group, with group
operation denoted by “+.” Assume thatG is a countable union of
compact sets and metrizable, which implies thatL2(G) is separable.
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LCA groups

• Can prove:̂̂G = G.

• γ(x) can either be interpreted as the action ofγ ∈ Ĝ onx ∈ G, or as the

action ofx ∈
̂̂G = G onγ ∈ Ĝ; thus, we will use the notation

(x, γ) := γ(x), x ∈ G, γ ∈ Ĝ.

Example: forG = R, (x, y) = e2πixy, x, y ∈ R
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Towards a generalization of the unitary extension principle

Recall:Via the Fourier transform, a frame{DjTkψℓ}j,k∈Z,ℓ=1,...,n was turned
into the frame

{FDjTkψℓ}j,k∈Z,ℓ=1,...,n = {EλΨ
ℓ
k}λ∈Λk,k∈Z,ℓ=1,...,n,

where

Λk = 2−k
Z,Ψℓ

k = FDkψℓ.

Interpretation:The operatorsEλ are multiplications with characters in the
LCA groupR, and the setsΛk are lattices!
More generally:exactly the same procedure turns a frame

{Dj0Tkψ0}k∈Z ∪ {DjTkψℓ}j,k∈Z,ℓ=1,...,n,j≥j0

into a frame{EλΦk0}λ∈Λk0
∪ {EλΨ

ℓ
k}λ∈Λk,k≥k0,ℓ=1,...,n, where

Φk = FDkψ0.
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Towards a generalization of the unitary extension principle

Note: by the scaling equationDψ̂0(γ) = 21/2H0(γ)ψ̂0(γ), so

Φk(γ) = D−kFψ0(γ) = D−k−1Dψ̂0(γ) = 21/2D−k−1
(

H0ψ̂0

)
(γ)

= Hk+1(γ)Φk+1(γ),

whereHk+1(γ) := 21/2H0(γ/2k+1) satisfies that

Hk+1(γ + ω) = Hk+1(γ), ω ∈ 2k+1
Z.

Interpretation:The functionHk is periodic with respect to the lattice
2k
Z = Λ⊥

k , the annihilator of the latticeΛk = 2−k
Z indexing the frame

{EλΦk0}λ∈Λk0
∪ {EλΨ

ℓ
k}λ∈Λk,k≥k0,ℓ=1,...,n,

i.e.,
Hk+1(γ + ω) = Hk+1(γ), ω ∈ Λ⊥

k+1.

(DTU ) Marseille 2016 September 20, 2016 20 / 36



Towards a generalization of the unitary extension principle

• Consider the spaceL2(Ĝ), where the integration is with respect to the
Haar measureµĜ on Ĝ.

• Forλ ∈ G, consider the unitary operator

Mλ : L2(Ĝ) → L2(Ĝ), (Mλf )(γ) := (λ, γ) f (γ).

The operatorMλ generalizes the modulation operator

Eb : L2(R) → L2(R), Ebf (x) = e2πibxf (x).
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The unitary extension principle on LCA groups

General setup:

• Let {Λk}
∞
k=k0

be a nested sequence of lattices inG, i.e.,

Λk ⊂ Λk+1, ∀k ≥ k0.

• Let Vk denote a fundamental domain associated with the latticeΛ⊥
k in Ĝ,

i.e., we have

Ĝ =
⋃

ω∈Λ⊥

k

(ω + Vk), (ω + Vk) ∩ (ω′ + Vk) = ∅ for ω 6= ω′, ω, ω′ ∈ Λ⊥
k .

• Let {Φk}
∞
k=k0

be a sequence of functions inL2(Ĝ) (the “scaling
functions”). For the UEP onR we hadΦk = FDkψ0, but now the
functionsΦk might not be related, i.e., the nonstationary case is included.
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The unitary extension principle on LCA groups

Assume that for some periodic functionsHk+1 ∈ L∞(Vk+1) (with
Hk+1(γ + ω) = H(γ) for γ ∈ Ĝ, ω ∈ Λ⊥

k+1),

Φk(γ) = Hk+1(γ)Φk+1(γ), γ ∈ Ĝ.

Given periodic functionsG(m)
k+1 ∈ L∞(Vk+1), m= 1, . . . ρk, define the

functionsΨ(m)
k ∈ L2(Ĝ), m= 1, . . . , ρk, by

Ψ
(m)
k (γ) := G(m)

k+1(γ)Φk+1(γ), γ ∈ Ĝ. (1)

Our goal is to identify conditions on the filtersHk andG(m)
k such that the

functions

{MλΦk0}λ∈Λk0

⋃
{MλΨ

(m)
k }k≥k0, λ∈Λk,m=1,...,ρk (2)

form a tight frame forL2(Ĝ) with frame bound 1.
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The unitary extension principle on LCA groups

Technical conditions: For every compact setS⊂ Ĝ and anyǫ > 0 there exists
K such that for allk ≥ K,

|µ(Vk) |Φk(γ)|
2 − 1| ≤ ǫ, ∀γ ∈ S.

and

card{(Λ⊥
k + γ) ∩ S} ≤ 1, ∀ γ ∈ Vk.
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The unitary extension principle on LCA groups

Note:

• The assumption

Λ0 ⊂ Λ1 ⊂ Λ2 ⊂ · · ·

implies that

· · ·Λ⊥
2 ⊂ Λ⊥

1 ⊂ Λ⊥
0 .

• For eachk ≥ k0 we can choose a sequence{νk,ℓ}ℓ=1,...,dk ⊂ Ĝ such that
νk,1 = 0 and

Λ⊥
k =

dk⋃

ℓ=1

(νk,ℓ + Λ⊥
k+1), (νk,ℓ + Λ⊥

k+1) ∩ (νk,ℓ′ + Λ⊥
k+1) = ∅ for ℓ 6= ℓ′.
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The unitary extension principle on LCA groups

For k ≥ k0, consider the(ρk + 1)× dk matrix-valued functionPk defined by

Pk(γ) :=




Hk+1(γ + νk,1) · · · Hk+1(γ + νk,dk)

G(1)
k+1(γ + νk,1) · · · G(1)

k+1(γ + νk,dk)

· · · · ·
· · · · ·

G(ρk)
k+1(γ + νk,1) · · · G(ρk)

k+1(γ + νk,dk)



, γ ∈ Vk.

Theorem:(C. & Goh, 2014–2016) In addition to the general setup, assume
that fork ≥ k0, the matrix-valued functionPk satisfies that

Pk(γ)
∗Pk(γ) =

µ(Vk+1)

µ(Vk)
Idk,a.e. γ ∈ Vk.

Then the collection

{MλΦk0}λ∈Λk0

⋃
{MλΨ

(m)
k }k≥k0,λ∈Λk,m=1,...,ρk

form a tight frame forL2(Ĝ) with frame bound 1.
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The unitary extension principle on LCA groups

Alternatively, the generalized shift-invariant system

{TλF
−1Φk0}λ∈Λk0

⋃
{TλF

−1Ψ
(m)
k }k≥k0,λ∈Λk,m=1,...,ρk

forms a tight frame forL2(G) with frame bound 1.
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Key steps in the proof of the UEP

LemmaFor anyF ∈ Cc(Ĝ) and anyǫ > 0, there is aK ∈ N such that for
k ≥ K,

(1− ǫ) ‖F‖2 ≤
∑

λ∈Λk+1

|〈F,MλΦk〉|
2 ≤ (1+ ǫ) ‖F‖2.

LemmaIn addition to the general setup, assume that for somek ≥ k0, the
matrix-valued functionPk satisfies that

Pk(γ)
∗Pk(γ) =

µ(Vk+1)

µ(Vk)
Idk, a.e. γ ∈ Vk.

Then for allF ∈ Cc(Ĝ),

∑

λ∈Λk+1

|〈F,MλΦk+1〉|
2 =

∑

λ∈Λk

|〈F,MλΦk〉|
2 +

ρk∑

m=1

∑

λ∈Λk

|〈F,MλΨ
(m)
k 〉|2.
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B-splines on LCA groups

• Dahlke, Tikhomirov, 1994: definition of B-splines on LCA-groups.

• Extension to a definition of weighted splines (C. & Goh, 2014)

Definition LetΛ denote a lattice in the LCA groupG, with associated
fundamental domainQ, i.e.,

G =
⋃

λ∈Λ

(λ+ Q) and (λ+ Q) ∩ (λ′ + Q) = ∅, λ 6= λ′.

Let r ∈ N. Given functionsg1, . . . ,gr ∈ L2(Q) the function defined by the
r-fold convolution

Wr := g1χQ ∗ g2χQ ∗ · · · ∗ grχQ

is called aweighted B-spline of order r.
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B-splines on LCA groups

Lemma(C. & Goh, 2014) LetΛ denote a lattice in the LCA groupG, with
associated fundamental domainQ. Given functionsg1, . . . ,gr ∈ L2(Q), the
weighted B-spline

Wr := g1χQ ∗ g2χQ ∗ · · · ∗ grχQ

has the following properties:
(i) {TλWr}λ∈Λ is a Bessel sequence with bound

∏r
j=1 ||gj ||

2
L2(Q)

.

(ii) suppWr ⊆ rQ
(iii) If r ≥ 2, thenWr ∈ Cc(G); in particular,Wr ∈ Lp(G) for all p ≥ 1.
(iv) If gj > 0 on int(Q) for j = 1, . . . , r, thenWr > 0 on int(rQ);
(v) If gj = C for somej = 1, . . . , r, thenWr satisfies the partition of unity

condition up to a constant, i.e.,

∑

λ∈Λ

Wr(x− λ) =
1

µG(Q)

r∏

j=1

∫

Q
gj(x)dx.
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Extra information for the ”Atoll of spline lovers”

Theorem(C. & Goh, 2014) Given a latticeΓ in Ĝ, let Ω ⊂ Ĝ denote a
fundamental domain, i.e.,

Ĝ =
⋃

γ∈Γ

(γ +Ω). [R =
⋃

n∈Z

(nb+ [0,b[)]

• For a fixedr ∈ N, consider the function

Wr := g1χΩ ∗ g2χΩ ∗ · · · ∗ grχΩ,

with the assumption thatgj > 0 andgj = C for at least one index
j = 1, . . . , r.

• Given a latticeΛ in G, and assume that the fundamental domainV
associated withΛ⊥ satisfies thatrΩ ⊆ V.

Then{MλTkWr}λ∈Λ,k∈Γ is a frame forL2(Ĝ).
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Extra information for the ”Atoll of spline lovers”

ExampleConsider a Gabor system{EmbTnBN}m,n∈Z in L2(R), which
corresponds to{MλTkWr}λ∈Λ,k∈Γ with Λ = bZ,Γ = Z. Then

• Λ⊥ = 1
b Z,V = [0,1/b[;

• Ω = [0,1[;

• The conditionrΩ ⊆ V means that[0, r[⊆ [0,1/b[, i.e., r ≤ 1/b; this is
exactly the classical Gabor condition:

Corollary: {EmbTnBN}m,n∈Z is a frame forL2(R) if b ≤ 1/N.
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The UEP on LCA groups and B-splines

Given the fundamental domainQk associated with the latticeΛk, define the
B-spline ofNth orderon levelk by theN-fold convolution

φk := µ(Qk)
−N+1/2χQk ∗ · · · ∗ χQk.

Consider the functionsΦk defined by

Φk(γ) := φ̂k(γ) = µ(Qk)
−N+1/2

(∫

Qk

(−x, γ)dx

)N

.

LemmaThe functionΦk satisfies the scaling equation

Φk(γ) = Hk+1(γ)Φk+1(γ),

whereHk+1 ∈ L∞(Vk+1) is given by

Hk+1(γ) =
1

2N−1/2
(1+ (−ηk, γ))

N

for someηk ∈ G.
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The UEP on LCA groups and B-splines

For the B-spline case:

• Provided that the groupG has “enough lattices,” there is a canonical way
of choosing the filtersG(m)

k such that

Pk(γ)
∗Pk(γ) =

µ(Vk+1)

µ(Vk)
Idk, a.e. γ ∈ Vk.

• ForG = R, the classical UEP is obtained and leads to a tight frame with
wavelet structure.

• All the technical conditions are satisfied forG = Z, leading to a tight
frame forℓ2(Z) consisting of modulates of a finite collection of
functions.
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The UEP on LCA groups and B-splines

For the B-spline case:

• Provided that the groupG has “enough lattices,” there is a canonical way
of choosing the filtersG(m)

k such that

Pk(γ)
∗Pk(γ) =

µ(Vk+1)

µ(Vk)
Idk, a.e. γ ∈ Vk.

• ForG = R, the classical UEP is obtained and leads to a tight frame with
wavelet structure.

• All the technical conditions are satisfied forG = Z, leading to a tight
frame forℓ2(Z) consisting of modulates of a finite collection of
functions.

Alternative construction:

• Shannon–type constructions, i.e.,Φk = χΩk for some setsΩk in Ĝ;

• Concrete applications to all the elementary LCA groupsR,Z,T,ZN.
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Conclusion

The UEP can be generalized to LCA groups, as well as the level of deriving
the theorem as on the level of applications to B-splines and characteristic
functions.
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LCA groups

LemmaLet G be a LCA group andΛ a lattice inG. Then the following hold:

(i) There exists a relatively compact setQ ⊆ G such that

G =
⋃

λ∈Λ

(λ+ Q), (λ+ Q) ∩ (λ′ + Q) = ∅ for λ 6= λ′.

The setQ is called afundamental domainfor the latticeΛ.
Example:R =

⋃
n∈Z(nb+ [0,b[)

(ii) The setΛ⊥ is a lattice inĜ, and there exists a relatively compact set
V ⊆ Ĝ such that

Ĝ =
⋃

ω∈Λ⊥

(ω + V), (ω + V) ∩ (ω′ + V) = ∅ for ω 6= ω′.

Example:R̂ = R =
⋃

n∈Z(n/b+ [0,1/b[)
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