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N
Plan for the talk

e Framesif a sequencdfy }2 ; in a Hilbert space${ is a tight frame with
frame boundA = 1, then

Z (f,fiofe, e H. General dual framesf = Z(f,gk>fk
k=1 k=1

o Wavelet frameg2/2¢)(2x — k) }j kez in L3(R)
e The unitary extension principle by Ron & Shen;
e The unitary extension principle on locally compact abe(iaGA)
groups, e.gR,Z, T, Zn.
e Explicit constructions, typically based on B-splines.

Key point: The unitary extension principle can be generalized to LCaugs,
as well on the theoretical level as on the level of concretssttactions.
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N
Frames

Definition: A sequencefy}2 ; in H is aframeif

JAB>0: AJIf|P < D [(f,fi)? < BJIf| |2, vf € A

k=1
o If {fi}22, be a frame with frame operat&: H — #, Sf = > (f, fi)fy,
f=> (f,S Mk, Vfen
k=1

e If the frame{fy}°, istight, A= B, thenS= Al and

1 o0
f= Zkz_:1<f,fk>fk, Vi e H.

o If {fc}2°, is overcomplete, there exist framggk o, # {S i }22, s.t.
f=> (fa0f =) (f,SHif, Vf € A
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Key tracks in frame theory:

Frames in finite-dimensional spaces;
Frames in general separable Hilbert spaces
Concrete frames in concrete Hilbert spaces:
o Gabor frames in2(R), L2(RY);
e Wavelet frames;
e Shift-invariant systems, generalized shift-invarians(issystems;
e Shearlets, etc.
Frames in Banach spaces;
(GSI) Frames on LCA groups
Frames via integrable group representations, coorbiryheo
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-
Operators oh.%(R)

Translation by ac R: T, : L2(R) — L%(R), (Taf)(X) = f(x — a).
Modulation by be R: Ep: L%(R) — L%(R), (Epf)(X) = ™0 (x).
Dyadic scaling: D: L2(R) — L%(R), (Df)(x) = 2Y/2f(2x).
All these operators are unitary @3(R), and

TaEp = € 2", T,, Ty/oD = DTp, DEpjp = EyD
Forf € LY(R), theFourier transformis defined by

oo

Fi(y) =f(y) := / f(x)e 2™V dx, v € R.

The Fourier transform can be extended to a unitary operatb?@®), and
FTa — E_a.F7 .FEa:Ta.F7
FD! = DF, FD=D"1F.
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N
Construction of wavelet ONB via MRA

Theorem:Let ¢ € L2(R), and assume that the following conditions hold:
(i) inf,e)_c|6(~)| > O for somee > 0;
(i) The scaling equation

A~ A~

?(2y) = Ho(7)o(7),

is satisfied for a bounded 1-periodic functidlp;
(i) {Tk¢}kez is an orthonormal system.
Then¢ generates a multiresolution analysis, and the funatigiven by

~

»(27) = Hi1(7)$(7)

(with Ha(vy) = Ho(y + 1_/2)e—2’“7) generates an orthonormal basis

{DITk}jkez = {272(2x — K)}j kez- Alternatively, for anyjo € Z,
{DPTid ez U {DITit ez izio

is an ONB.
(DTU) Marseille 2016 September 20, 2016 6/ 3¢



-
Spline wavelet8y

e The B-splineBy, N € N, are given by

B1 = X[-1/21/2 Bn+1=Bn*Bu.

One can consider even order splifggand define associated
multiresolution analyses, which leads to wavelets of tipety

B(X) = Bn(2x+K).

keZ

These wavelets are call&httle—Lemar wavelets.

Only shortcomingall coefficientsc, are non-zero, which implies that
the wavelet) has support equal t&.

Chui & He & Stockler: There does not exists an ONB or even lttig
frame{DI Tyt }j kez for L2(R) generated by a finite linear combination

$(X) =) aBn(2x+K).
Marseille 2016 September 20, 2016 7/ 3¢
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The unitary extension principle by Ron & Shen (1997)

Solution: consider systems of the wavelet-type, but generated by thare
one function.

Setup for construction of tight wavelet frames by Ron & Shen:
Letyo € L2(R) and assume that

() There exists a functioklp € L>°(T) such that

bo(27) = Ho()o ().

(i) lim,—oto(y) = 1.
Further, letHs, ..., Hp € L>(T), and defina)y, ...,y € L3(R) by

$e(27) = He(do(7), £=1,...,n.

Marseille 2016 September 20, 2016 8/ 3¢



-
The unitary extension principle

* J0(2y) = Ho(7)¢(7).
o Yu(2y) = He(v)dbo(7), £=1,...,n.

e We want to find conditions on the functiohk, . .., H, such that
Y1,...,1n generate a tight multiwavelet frame fof(R).
e Then

f=>"> " (f, DTih)DiTicthy, Vf € LA(R).

(=1].keZ

¢ LetH denote thén + 1) x 2 matrix-valued function defined by

Ho(y) Ho(y +1/2)
Hi(v) Hi(y +1/2)
H(F}/) = ' ' , V€ R.
Hn(7)  Hn(y +1/2)
Marseille 2016 September 20, 2016 9/ 3¢



-
The unitary extension principle

Theorem (Ron and Shen, 1991kt {vy, H,},_, be as in the general setup,
and assume that (y)*H(v) = | for a.e.y € T. Then the multiwavelet systen
{Dkawg}j,kemzlwn constitutes a tight frame for4(R) with frame bound
equal tol. Alternatively, for anyq € Z,

{DoTiwho ez U {D Tty keze=1....nj>io

is a tight frame with frame bound 1.

Oblique extension principle (2001¢quivalent to the UEP, but provides more
natural constructions of frames with high approximatioders and optimal
number of vanishing moments. Developed by

Daubechies & Han & Ron & Shen, and Chui & He & Stockler
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-
The unitary extension principle and B-splines

Exmple:Foranym= 12, ..., we consider the (centereB}spline

o := Bom
of order 2n. Then
~ sin(ry)\*" .~ ~ o ~
o) = (ZEZ2) ™, i o) = 1. o(22) = om0l
™y v—0
The conditionH (y)*H(v) = | is satisfied with

He(y) = ( 22] > sinf () co™ (1), £ = 1,...,2m.

Marseille 2016 : September 20, 2016 11/ 3



-
Wavelets and B-splines

Applications to image analysis (restoring, deblurringpaimting) by Cai,
Osher & Shen (2009-2015).

[@ Cai, J. F., Osher, S., and Shen, Zplit Bregman methods and frame
based image restoratiodMultiscale Model. Simul.8 (2009), 337—369.

@ Cai, J.F.,, Dong, B., Osher, S., and Shen|@age restoration: Total
variation, wavelet frames, and beyordd Amer. Math. Soc25 (2012),
1033-1089.
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-
Pseudosplines

Pseudosplines (Daubechies & Han & Ron & Shdrgsed on the filter

¢

AN

Ho(7) := (cos)Mry Z <m: > si 7y cof "N v, v € R,
k=0

wherel < mare nonnegative integers. and the associated refinableédnnc

1o such that

¥0(2y) = Ho(7)¢0(7).

Generalization to Complex pseudosplines (Massopust &€&o&sC., 2015),
by replacingme Nbyze Cwith o := Rgz) > 1and 0< ¢ < || — 1.
Wavelet frames can be obtained in a similar fashion via th.UE
Motivation for the generalization (B. Forster): Real-vaduransforms can
only provide a symmetric spectrum and are therefore unaldeparate
positive and negative frequency bands. Moreover, realechatransforms are
not applicable in the context of phase retrieval. Here, derapalued
transforms and frames are indispensably needed,
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Towards a generalization of the unitary extension primcip

e The unitary extension principle provides conditions foeaaf functions

(D' Tithe}ikezi=1...n = {2/%0(2X — K) }j kezt=1...n

to form a tight frame fot.2(R).
e Let G be alocally compact abelian (LCA) group with Haar meagure
e Typical examplesR, RS, Z, T, Zx;
e The operatol, immediately generalizes 1G(G); Taf (X) = f(x — &)
 The operatoE, has a generalization 1&(G);
e The operatoD’ is not well defined fof < 0: D~ (x) = 27Y/2f (x/2)?7?

How can the unitary extension principle be generalized té\lgtoups?
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-
Frames on LCA groups

Advantages of the LCA approach:

Applying various groupsK, T, Z, Zy), frames inL2(R), /?(Z), L?(0, 1)
andCN are obtained as manifestations of a single theory.

Wavelet frames oh?(R) and periodic wavelet frames are covered by tl
same approach

The groupZ is covered, which leads to frames#f(Z).

Generalizations to higher dimensions are provided witlaoyt
additional notational complication.

[Gabor case: uniform treatment of various cases treateataidpin the
literature]
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-
Towards a generalization of the unitary extension primcip

e Assume tha‘{Dka’(ﬁg}LkeZ7g:17m7n is a frame. Applying the Fourier
transform we obtain the frame

{FD Tie}jkez b=1,...n = {Ei/a FO'Pr Y kez o=1,...n

Letting Aj := 271Z, U} := FDlyy, we arrive at the frame

{(FDI' T }jkezo=1,.n = {E)\\Ilje})\eAj,jGZ,Z:l,...,n

= {E\U{}reAkez,i=1,...n-

e This form can be generalized to LCA groups: indeed, the sets
Ay = 27¥Z are lattices in the LCA grouR, and multiplication withE
is a special case of multiplication with a character.

(DTU) Marseille 2016 September 20, 2016 16/ 3



-
LCA groups

e Let G denote a locally compact abelian (LCA) group, with group
operation denoted by-.” Assume that is a countable union of
compact sets and metrizable, which implies I&G) is separable.
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LCA groups

e Can proveG = G.
« ~(x) can either be interpreted as the actionyaf G onx € G, or as the
action ofx € G = G on~ € G; thus, we will use the notation

(x7) = (), x€ G, 7 € &.

Example: forG = R, (x,y) = ™ xy e R
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Towards a generalization of the unitary extension primcip

Recall: Via the Fourier transform, a fran{@kal/}g}j’k€Z7g:1,...7n was turned
into the frame

{ijTkW}j,keZ,ezl,...,n = {E)\\Ilﬁ}AeAk,kez,zzl,...,na
where
Ak = 2_kZ, \I/e == ./T"Dkwf'

Interpretation:The operator&, are multiplications with characters in the
LCA groupR, and the setdy are lattices!
More generally:exactly the same procedure turns a frame

{D°Ttbotkez U {D' Tktl¢ }j kez,=1,....nj>io
into a frame{Ex P, }rea,, U {ExVE} rea koko b=1,...n, Where
k
®y = FDXyp.
Marseille 2016 September 20,2016 19/ 3



-
Towards a generalization of the unitary extension primcip

Note: by the scaling equatioBo(7) = 2%/2Ho(v)to(7), SO
@(y) = D™ Fuo(y) = D™ Dio(r) = 242D (Hoto) (+)
= Hir1(7)Pur1(7),

whereHy, 1(7) := 2Y2Hq(vy/2k+1) satisfies that
Hipa(y +w) = Higa(7), w € 2412,

Interpretation:The functionHy is periodic with respect to the lattice
27 = A, the annihilator of the latticdx = 27¥Z indexing the frame

{Ex®iobren, U {EAV rcAkoko t=1, .0

Hip1(y +w) = Higa(y), w e AkL+1-

(DTU) Marseille 2016 September 20, 2016 20/ 3



-
Towards a generalization of the unitary extension primcip

e Consider the spadez(é), where the integration is with respect to the

~

Haar measurgg onG.
e For\ € G, consider the unitary operator

My L2(G) = L2(G), (Maf)(7) == (A, ) f(7)-
The operatorM ,, generalizes the modulation operator

Ep : L2(R) — L2(R), Epf (x) = €% (x).

(DTU) Marseille 2016 September 20, 2016 21/ 3



The unitary extension principle on LCA groups

General setup:

o Let {Ax}p2,, be anested sequence of lattice&iri.e.,
Ak C Aks1, VK> ko.

e Let Vi denote a fundamental domain associated with the lattjeén G,
i.e., we have

G= U (w4 Vi), (W4+Vi)N (W + V) =0forw+#uw, w,w e Apr.
weAL

o Let{®y}p2, be asequence of functionsl’u%(é) (the “scaling

functions”). For the UEP orR we had®, = FDXy, but now the
functions®y might not be related, i.e., the nonstationary case is imdud

(DTU) Marseille 2016 September 20, 2016 22/ 3



-
The unitary extension principle on LCA groups

Assume that for some perio@c functioHg 1 € L (Vk+1) (with
Hir1(y +w) =H(y) fory € G, w € Aﬁ;l),

~

Pr(y) = Hig1(7) Prg1(7), v € G.

Given periodic functionSEl((T)1 € L®(Vis1), m=1,... px, define the
functions¥™ € L2(G), m=1,..., p, by

~

(7)== Gy (7) ®uia(7), 7 € G. @)

Our goal is to identify conditions on the filtek andGi((m) such that the
functions

{Ma®ihreng UIMAT™ Hslo A mt.... )

form a tight frame folL?(G) with frame bound 1.
Marseille 2016 September 20,2016 23/ 3



The unitary extension principle on LCA groups

Technical conditions: For every compact Set Gand anye > 0 there exists
K such that for alk > K,

(V) [@k(7))2 =1 <€, Yy €S

and

card{ (A +79) NSy <1, Vye W

(DTU) Marseille 2016 September 20, 2016 24/ 3



-
The unitary extension principle on LCA groups

Note:

e The assumption
ACACAC---
implies that
Ay C Ay C Ap.

e For eactk > kg we can choose a sequengg ¢} ¢—1..4, C G such that

w1 = 0and
dx

A = U+ Aga)s (e + Aga) 0 (e + Ajq) = D for £ # ¢
=1

(DTU) Marseille 2016 September 20, 2016 25/ 3



-
The unitary extension principle on LCA groups

Fork > ko, consider the px + 1) x dx matrix-valued functiorP defined by

Hipa(y + 1) - - o Hia(r + vkd)
1 1
G|(<+)1(7 + 1) o Gﬁﬁl(v + Vkd)
Pk(’)/) = . e . , Y c Vk'
Gl N E
k+1(’Y + 1) k+1(’Y + k)

Theorem:(C. & Goh, 2014-2016) In addition to the general setup, agsum
that fork > kg, the matrix-valued functio?, satisfies that

Pu()"Pi() = )

Then the collection
{Ma®ioheng M htorenem=1..n

form a tight frame foiL?(G) with frame bound 1.
Marseille 2016 September 20,2016 26/ 3
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-
The unitary extension principle on LCA groups

Alternatively, the generalized shift-invariant system
{TF 0 hen, U TF ™ hekrenomt...o

forms a tight frame fot.2(G) with frame bound 1.

(DTU) Marseille 2016 September 20, 2016 271 3
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Key steps in the proof of the UEP

~

LemmaFor anyF € C.(G) and anye > 0, there is & & N such that for
k>K,

L= lFIP< > [(F,M@P< (14 ||
)\GAK+1
Lemmaln addition to the general setup, assume that for sbmekg, the

matrix-valued functiorPy satisfies that

* N(Vk-i-l)
P P = lg., ae vy € k.
k(7)"P(7) Vi) v € Vk

Then for allF € CC(G),

Pk
Y I F M) = S IFMEOP+ Y Y [(F M) 2

AEAKt1 AEAK m=1XeAg

(DTU) Marseille 2016 September 20, 2016 28/ 3



-
B-splines on LCA groups

e Dahlke, Tikhomirov, 1994: definition of B-splines on LCAeyps.
e Extension to a definition of weighted splines (C. & Goh, 2014)

Definition Let A denote a lattice in the LCA group, with associated
fundamental domai@, i.e.,

G=JA+Q andA+ QNN +Q) =0 A#NX.

AEA

Letr € N. Given functionsgy, .. ., g € L?(Q) the function defined by the
r-fold convolution

Wi := 01 xQ * G2XxQ * - - * OrXQ

is called aweighted B-spline of order.r

(DTU) Marseille 2016 September 20, 2016 29/ 3



-
B-splines on LCA groups

Lemma(C. & Goh, 2014) LetA denote a lattice in the LCA group, with

associated fundamental dom&n Given functionsys, . .., gr € L2(Q), the
weighted B-spline

Wr = 01 xQ * O2XQ * - - * OrXQ
has the following properties:
() {TAWr}AEAls a Bessel sequence with bou]:ﬁ:1 gl |EZ(Q).
(i) suppwW; C rQ
(i) If r > 2, thenW; € C¢(G); in particular,W; € LP(G) forallp > 1.
(iv) If gg > 0onint@Q) forj=1,...,r,thenW; > 0 on int(Q);

(v) If g =Cforsomej =1,...,r, thenW; satisfies the partition of unity
condition up to a constant, i.e.,

1 r
> wix— ) = —MG@)E/QQJ'(X)O'X

(DTU) Marseille 2016 September 20, 2016 30/ 3¢



Extra information for the "Atoll of spline lovers”

Theorem(C. & Goh, 2014) Given a latticE in G, let 2 c G denote a
fundamental domain, i.e.,

G=J+9. R = | J(nb+ [0,b])]

~yel neZ

e Forafixedr € N, consider the function
W := 01 xa * G2xa * -+ * OrXQ,

with the assumption thaj; > 0 andg; = C for at least one index
j=1....r.

e Given a latticeA in G, and assume that the fundamental domain
associated witthh - satisfies thatQ C V.

Then{ M)\TiW }rea ker is a frame forL?(G).
Marseille 2016 September 20,2016  31/3
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Extra information for the "Atoll of spline lovers”

ExampleConsider a Gabor systefEmpTnBn fmnez in L?(R), which
corresponds tQ M\ TkW, }aca ker With A = bZ,T' = 7Z. Then

o At =17,V =101/0];
e Q=101
e The conditionrQ2 C V means thaf0, r[C [0, 1/b[, i.e.,r < 1/b; this is
exactly the classical Gabor condition:
Corollary: {EmpTnBn }mnez is a frame forlL2(R) if b < 1/N.

(DTU) Marseille 2016 September 20, 2016 32/ 3¢



-
The UEP on LCA groups and B-splines

Given the fundamental doma(@y associated with the latticky, define the
B-spline ofNth orderon levelk by theN-fold convolution

= 1(Q) N2 xg - X
Consider the function®y defined by

N
() = () = p(Q) Y2 ( /Q (—x7) dx) |

LemmaThe function®y satisfies the scaling equation

Pr(v) = Hierr (7) Put2(7)s
whereHy 1 € L (V1) is given by
1
Hita(v) = N_1/2 (14 (= )N

for someny € G.
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The UEP on LCA groups and B-splines

For the B-spline case:
e Provided that the grou@ has “enough lattices,” there is a canonical we
of choosing the filterﬁsl((m) such that

V]
P(7)*Px(7) = (Vi 1) lg., 3.7 € Vk.

(Vi)
e ForG = R, the classical UEP is obtained and leads to a tight frame wi
wavelet structure.

¢ All the technical conditions are satisfied iGr= Z, leading to a tight
frame for¢?(Z) consisting of modulates of a finite collection of
functions.

(DTU) Marseille 2016 September 20, 2016 34/ 3¢



-
The UEP on LCA groups and B-splines

For the B-spline case:
e Provided that the grou@ has “enough lattices,” there is a canonical we
of choosing the filterﬁsl((m) such that

V]
P(7)*Px(7) = (Vi 1) lg., 3.7 € Vk.

(Vi)

e ForG = R, the classical UEP is obtained and leads to a tight frame wi
wavelet structure.

¢ All the technical conditions are satisfied iGr= Z, leading to a tight
frame for¢?(Z) consisting of modulates of a finite collection of
functions.

Alternative construction:
e Shannon-type constructions, i., = xq, for some set$) in @;
e Concrete applications to all the elementary LCA groRp., T, Zy.
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Conclusion

The UEP can be generalized to LCA groups, as well as the Iéwldriving

the theorem as on the level of applications to B-splines &uagacteristic
functions.
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LCA groups

Lemmalet G be a LCA group and\ a lattice inG. Then the following hold:
(i) There exists a relatively compact €2tC G such that
G=J+Q), A+Q NN +Q)=0forx=#N.
AEA

The setQ is called afundamental domaifor the latticeA.
Example:R = J,,cz(nb+ [0, b])

(i) The sAetAl is a lattice in@, and there exists a relatively compact set
V C G such that

G=|J w+V), (w+ V)N (W +V) =0forw#w.

weAL
ExampleR = R = Unez(n/b+[0,1/b)
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