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Algebraic multigrid



Algebraic multigrid (Ruge, Stüben (1980-...)) is an iterative
method for solving linear systems

Ax = b, A ∈ C
n×n, b ∈ C

n, n ∈ N,

with A symmetric, positive definite, sparse, and λmin(A) ≈ 0.



Algebraic multigrid (Ruge, Stüben (1980-...)) is an iterative
method for solving linear systems

Ax = b, A ∈ C
n×n, b ∈ C

n, n ∈ N,

with A symmetric, positive definite, sparse, and λmin(A) ≈ 0.

There are other capable iterative solvers, e.g., ω-Jacobi

x [ℓ+1] = (I −
ω

2
A)x [ℓ] +

ω

2
b, ℓ ∈ N0, 0 < ω ≤ 1.

Drawback of ω-Jacobi: slow convergence. If λmin(A) ≈ 0, then

λmax(I −
ω

2
A) ≈ 1.
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◮ Multigrid philosophy: keep the solver simple and accelerate its
convergence by multilevel error correction

x ≈ x [2] + e1 + e2 + . . .+ ek , k ≤ log(n).
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Oversimplified idea of multilevel error correction

n =
n

2
+

n

4
+

n

8
+ . . .

allows us to compute

x ≈ x [2] + e1 + e2 + . . .+ ek , k ≤ log(n),

in O(n) computational steps.



Algebraic multigrid (Ruge, Stüben (1980-...)):

◮ complexity of one iteration is O(n), due to multilevel error
correction

size e.g. n = 2k : A0 = A, x̃ [0] = x [2] (two steps of ω-Jacobi)

for j = 1, . . . , k

size 2−jn:

{

Aj = PT
j Aj−1Pj

Solve Aj ẽj = PT
j · · ·PT

1 (b − A x̃ [j−1])

size n: ej = P1 · · ·Pj ẽj and x̃ [j] = x̃ [j−1] + ej

end
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◮ complexity of one iteration is O(n), due to multilevel error
correction

size e.g. n = 2k : A0 = A, x̃ [0] = x [2] (two steps of ω-Jacobi)

for j = 1, . . . , k

size 2−jn:

{

Aj = PT
j Aj−1Pj

Solve Aj ẽj = PT
j · · ·PT

1 (b − A x̃ [j−1])

size n: ej = P1 · · ·Pj ẽj and x̃ [j] = x̃ [j−1] + ej

end

◮ operator-dependent: Pj depend on the properties of A.

Goal: define full rank, sparse Pj , j = 1, . . . , k , such that

lim
L→∞

‖x − x̃ [k,L]‖A = 0, x̃ [k,L] = x [2,L] + e1,L + . . .+ ek,L,

and number of iterations L for reaching TOL is independent of n.



Multigrid and subdivision (Ch., Donatelli, Romani, Turati (2016))



Multigrid and subdivision in a nutshell:

◮ multilevel error correction with wavelet flavor (Brandt (1986):
for ω = 1

2 the error is smooth)

x ≈ x [2]
︸︷︷︸

oscillatory

+ e1 + . . .+ ek
︸ ︷︷ ︸

smooth error
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Properties of A dictated by applications (e.g. elliptic PDEs):

◮ A = T (f ) is (block) Toeplitz with symbol

◮ 2-dim Laplacian (finite differences)

f (x , y) =
2− cos x − cos y + c(2− cos(x + y)− cos(x − y))

2 + 2c
, c ≥ 0,

or
f (x , y) = (1− cos x) + b(1− cos(y)), b > 0.

◮ 1-dim Laplacian (isogeometric approach with µ-th order B-splines)

fµ(x) = (2− 2 cos x)hµ(x), hµ > 0 trig. polynomial.

◮ A is symmetric and sparse (f real trigonometric polynomial)

◮ A positive definite, λmin(A) ≈ 0 (f (0) = 0, f > 0 otherwise)



Multigrid and subdivision in a nutshell:

◮ multilevel error correction with wavelet flavor (Brandt (1986):
for ω = 1

2 the error is smooth)

x ≈ x [2]
︸︷︷︸

oscillatory

+ e1 + . . .+ ek
︸ ︷︷ ︸

smooth error

.

◮ for Toeplitz A = T (f ) with f (0) = 0, subdivision task is
coarse-to-fine propagation of smooth errors

Pj : R
2−jn → R

2−j+1n, ej = P1 · · ·Pj ẽj , j = 1, . . . , k .



Multigrid and subdivision in a nutshell:

◮ multilevel error correction with wavelet flavor (Brandt (1986):
for ω = 1

2 the error is smooth)

x ≈ x [2]
︸︷︷︸

oscillatory

+ e1 + . . .+ ek
︸ ︷︷ ︸

smooth error

.

◮ for Toeplitz A = T (f ) with f (0) = 0, subdivision task is
coarse-to-fine propagation of smooth errors

Pj : R
2−jn → R

2−j+1n, ej = P1 · · ·Pj ẽj , j = 1, . . . , k .

◮ Convergence and optimality of multigrid are influenced by
properties of subdivision.

(Optimality: number of iterations for reaching TOL is independent of n.)



Subdivision (de Rahm (1956)):

◮ iterative method for local and smoothing mesh refinement.

◮ Application: computer animation.

. . .

c ∈ R
N0×3 Pjc ∈ R

N1×3 P1 · · · Pjc ∈ R
Nj×3

◮ Multigrid error propagation via subdivision

Pj : R
2−jn → R

2−j+1n, ej = P1 · · ·Pj ẽj , j = 1, . . . , k ,

where sparse and full rank Pj is a rectangular sub-matrix of Pj .



A Toeplitz matrix A = T (f ) is defined by symbol f , e.g.

T (f ) =







2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2







, f (x) = −e−ix + 2− e ix .

Subdivision step consists of up-sampling and convolution. E.g.

Pj = Tj(p)
︸ ︷︷ ︸

Toeplitz
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with symbol p(x) = 1
2

(
e−ix + 2 + e ix

)
. Goal: match f and p.



Not all f and p match. For Toeplitz A = T (f ) with

f =
(
−e−ix + 2− e ix

)2
, x ∈ [0, 2π),

we get

Subdivision scheme n = 210 n = 211 n = 212

defining Pj iter iter iter

Linear Bspline 617 744 801

Cubic Bspline 40 43 45

Interp. 6-point 13 13 14

Multigrid is convergent, but is not optimal for linear B-spline subdivision
scheme. Why?



(For simplicity, a univariate version.)

Theorem: (Ch, Donatelli, Romani, Turati (2016)):

Assume that the symbol of the system matrix A = T (f ) satisfies

Dmf (0) = 0, m = 0, . . . ,M, and f (x) 6= 0, x ∈ (0, 2π).

If

(i) Dmp(π) = 0, m = 0, . . . ,M, (polynomial generation)

and

(ii) |p(x)| > 0 for x ∈ [−π
2 ,

π
2 ], (stability)

then multigrid is convergent and optimal.



Not all f and p match. For Toeplitz A = T (f ) with

f =
(
−e−ix + 2− e ix

)2
, x ∈ [0, 2π),

that has a double zero at 0 (i.e. M = 1), we get

Subdivision scheme n = 210 n = 211 n = 212

defining Pj iter iter iter

Linear Bspline 617 744 801

Cubic Bspline 40 43 45

Interp. 6-point 13 13 14

Multigrid is convergent, but is not optimal for linear B-spline subdivision
scheme. Reason: the corresponding symbol

p(x) =
1

2
(e−ix + 2 + e ix), x ∈ [0, 2π),

has a simple zero at π.



(For simplicity, univariate version (several zeroes of f ).)

Theorem: (Ch, Donatelli, Romani, Turati (2016)):

Assume that the symbol f of the system matrix A = T (f ) satisfies

{

Dmf (y) = 0, y ∈ {0, π}, m = 0, . . . ,M, M ∈ N0,

f (x) 6= 0, x ∈ (0, π) ∪ (π, 2π).

If

(i) Dmp(2π3 ) = 0, Dmp(4π3 ) = 0, m = 0, . . . ,M,

and

(ii) |p(x)| > 0 for x ∈ [−π
3 ,

π
3 ],

then multigrid is convergent and optimal.



Isogeometric approach with µ-th order B-splines (Donatelli, Garoni,
Manni, Serra-Capizzano, Spellers (2015)) deals with A = T (fµ),

fµ =
(
−e−ix + 2− e ix

)
hµ(x), lim

µ→∞

hµ(π) = 0.

We get

Subdivision scheme µ = 3 µ = 10 µ = 16

defining Pj iter iter iter

Binary, interp. 6-point 8 13 126

Ternary, interp. 4-point 30 17 49

Ternary schemes remove the singularity at π.



Sketch of the proof

How to match f and p for multigrid convergence and optimality



Fiorentino, Serra (1991), Böttcher et. al. (2006)

In our case, implementation of algebraic multigrid

◮ is done with positive definite (block) Toeplitz A = T (f )

Analysis of algebraic multigrid

◮ is done for (block) circulant semi-positive definite A = C (f )

◮ Circulant matrices form a matrix algebra (Aj = C (fj))

◮ Circulant matrices are diagonalizable via Fourier transform

Aj = C (fj) = Fj diag

(

fj(xr ) : xr =
2πr

2−jn

)

F ∗
j

Pj = Cj(p)Kj = Fj diag

(

p(xr ) : xr =
2πr

2−jn

)

F ∗
j Kj

◮ Circulant matrices approximate Toeplitz matrices well



Algebraic two grid method yields x ≈ x [2] + e1, where

size n : x [2] = two steps of ω-Jacobi

size n
2
:

{

A1 = PTAP

ẽ1 = A−1
1 PT (b − Ax [2])

size n : e1 = Pẽ1

via subdivision
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◮ Exact solution x = x [2] + e, iff x − x [2] ∈ Range(P). Due to

x − x [2] − e = (I − PA−1
1 PTA

︸ ︷︷ ︸
orthogonal projection

w.r.t (A·,·)

)(x − x [2]).
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‖e − Pẽ‖A for all e ∈ C

n.



Algebraic two grid method yields x ≈ x [2] + e1, where

size n : x [2] = two steps of ω-Jacobi

size n
2
:

{

A1 = PTAP

ẽ1 = A−1
1 PT (b − Ax [2])

size n : e1 = Pẽ1

via subdivision

◮ Exact solution x = x [2] + e, iff x − x [2] ∈ Range(P). Due to

x − x [2] − e = (I − PA−1
1 PTA

︸ ︷︷ ︸
orthogonal projection

w.r.t (A·,·)

)(x − x [2]).

◮ Best approximation (Ruge, Stuben):

‖e − PA−1
1 PTA e‖A = min

ẽ∈Cn/2
‖e − Pẽ‖A for all e ∈ C

n.

Match f and p: ∃C > 0 independent of n such that

‖(I − PA−1
1 PTA)(I −

ω

2
A)‖A = C < 1.



Similarly, for multigrid.

Theorem (Ruge, Stuben 1987)

Let A be positive definite. If, for all j = 1, . . . , k,

(i) “iteration matrices I − 1
4Aj are contractive w.r.t. ‖ · ‖Aj

and
their contraction constants are independent of n“,

(ii) coarse grid correction operators are uniformly bounded, i.e.
∃γj > 0 independent of n such that

‖(I − PjA
−1
j+1P

T
j Aj) x‖Aj

≤ γj‖x‖A2
j

∀x ,

then multigrid is convergent and optimal.



(ii) After the Fourier transform and algebraic manipulations, it is
left to show that ∃γj > 0, j = 0, . . . , k , independent of n and

sup
x∈[0,2π)

|p(x + π)|2fj(x + π)
(

|p(x)|2fj(x) + |p(x + π)|2fj(x + π)
)

fj(x)
≤ γj

and

sup
x∈[0,2π)

p(x)p(x + π)

|p(x)|2fj(x) + |p(x + π)|2fj(x + π)
≤ γj .

The choice of p:

◮ For fj(0) = 0 choose p such that p(0) 6= 0 and p(π) = 0.

◮ To ensure fj(0) = 0 choose p to satisfy

|p(x)|2 + |p(x + π)|2 > 0, x ∈ [0, 2π).



What do coarse-to-fine operators Pj really do?
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Good subdivision schemes (that define Pj) improve the
conditioning of

Aj = PT
j Aj−1Pj , j = 1, . . . , k .
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Summary:

◮ Algebraic properties of multivariate subdivision symbols
influence convergence and optimality of multigrid for system
matrices A = T (f ), f (0) = 0.

◮ The choice of associated dilation Matrix influences the
conditioning of multigrid.

◮ Still to do:
◮ dual subdivision and face-centered discretizations of PDE’s
◮ anisotropic dilations and semi-coarsening
◮ . . .
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Thank you for your attention!


