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Preamble

Good Polynomial Interpolation Points

(Berman-Boucksom) For K C RY compact (non pluripolar), arrays
of “good” points for total degree polynomial interpolation converge
weak-* to the equilibrium measure of Pluripotential Theory.
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Preamble

Good Interpolation Points

CHALLENGE: Find explicit arrays of points with minimal growth
of the Lebesgue Constant.

Univariate Example: Chebyshev Points.

Only few multivariate examples known.
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Preamble

Padova Points

Padova Points for n=5
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Preamble

Equally Spaced Triangle Points

Equally Spaced Points for n=5
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Preamble

Equally Spaced Padova Type Points

Equally Spaced Padova Type Points for n=5
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Preamble

A 3d Lissajous Curve

x=cos(n2*n3*t), y=cos(n1*n3*t), z=cos(n1*n2*t): n1=4, n2=5, n3=7




cos(33t)

)
2
=
L
°
-
£
g
]
S
=
S
S
3]
-4
0
P
S
H
H
5]
(4]

cos(31t), y=cos(32t), z

X=I

(]
>
<
=
)
(2]
>
(@)
=
T
9]
R0
—
e
o
—
(D)
=
-
(@)
[
<



Whittaker-Shannon Sampling and Berrut

Whittaker-Shannon Sampling

Suppose that f € C(R) N L(R) and that f(w) = 0 for |w| > h/2.
Then

f(x)= > f(kh)sinc (;(x—kh)>. (1)

k=—0c0

sin(mx)

sinc(x) :=
X

is the sinc function and we define the Fourier transform

flw) = / h e 2T £ () dx.

—0o0
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Whittaker-Shannon Sampling and Berrut

Truncated Whittaker-Shannon Sampling

In the case of f with domain restricted to some compact
subinterval of R, say to [0, 1], the formula (1) of course no longer
makes sense. However, taking h = 1/n, we may consider the
partial sum

f(x) & Fa(x) := Y _ f(k/n)sinc (n(x — k/n))
k=0

n

= f(xx)sinc (n(x — xx)) (2)
k=0

where we have set x := k/n, 0 < k < n.
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Whittaker-Shannon Sampling and Berrut

Truncated Whittaker-Shannon Sampling Example Plots for
f(x) = x?

0 0.5 1 0 0.5 1

Fll F41
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Whittaker-Shannon Sampling and Berrut

Truncated Whittaker-Shannon Sampling 2

Although (2) no longer reproduces f(x) for all x € [0,1], it is an
interpolant in that

Falg) = F(x5). 0<j<n, ()

as easily follows from the cardinality property of the translated sinc
functions, i.e.,
1 ifj=k
sinc(n(x;j — xx)) =
0 ifj#k
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Whittaker-Shannon Sampling and Berrut

Truncated Whittaker-Shannon Sampling 3

This interpolant F, was already studied by de la Vallée Poussin
(1908) who showed that under some weak regularity conditions on
f(x),

lim F,(x) = f(x), x €[0,1],

n—oo
with error essentially of O(1/n). The reader interested in further
details may find them in the excellent survey by Butzer and Stens
(1992).
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Whittaker-Shannon Sampling and Berrut

Berrut's Improvement

In order to alleviate the poor approximation quality of F, Berrut
(1989) suggested normalizing the formula (2) for F, to obtain

Z f(xx)sinc (n(x — xx))
By(x) := *=2 : (4)

Z sinc (n(x — xx))
k=0

As is easily seen, B, remains an interpolant of f at the nodes xy,
k =0,---,n but has the advantage of reproducing constants, i.e.,
if f(x) =1 then B,(x) = 1.
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Whittaker-Shannon Sampling and Berrut

Simplified Formula - Berrut’s First Interpolant

Notice that

. _ 1k _sin(nmx)
sinc(n(x — xx) = (—1) =)

Hence,

> ro F(xx)sine (n(x — xk))
Bn(x) = Y ko sinc (n(x — x))
B sin(nWX)ZZ:o(_l)ki%g
N Sin(n?TX)ZZZO(_]‘)kXEXk
S oD/ )

=TS D k) )
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Whittaker-Shannon Sampling and Berrut

2

Berrut's First Interpolant Sample Plots for f(x) = x

0 0.5 1 0 0.5 1
11 41
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Whittaker-Shannon Sampling and Berrut

Berrut's First Interpolant — Lebesgue Constants

Besides being an improved approximant, B, is also numerically
stable as its associated Lebesgue constant has O(log(n)) growth,
as was shown by B., De Marchi and Hormann (2011)
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Whittaker-Shannon Sampling and Berrut

Floater-Hormann Extension

n

SR F () (x — xe)

FHp(x) := *=2 . (6)

n

S0k (x - xi)

k=0

o Weights ﬁ,((d) are chosen so that FH,, reproduces polynomials
of degree at most d
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Whittaker-Shannon Sampling and Berrut

Floater-Hormann Extension 2

In the specific case of equally spaced nodes their formula for the
ﬂ,((d) reduces to

Bn—k n—d<k<n

where n > 2d, by assumption.

For d = 1 this is Berrut's second interpolant.
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Whittaker-Shannon Sampling and Berrut

Floater-Hormann Polynomial Reproduction

Theorem

[Floater and Hormann (2007)] Consider the Floater-Hormann
inerpolant FH, with weights Bf{d) given by (7), n > 2d, and

equally spaced nodes xx = k/n. Then if f(x) is a polynomial of
degree at most d,
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Whittaker-Shannon Sampling and Berrut

Lebesgue Constants

Besides having improved approximation properties, the
Floater-Hormann remains numerically stable as its associated
Lebesgue constant is also of logarithmic growth in n, as is shown
in the recent paper by B., De Marchi, Hormann and Klein.
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Whittaker-Shannon Sampling and Berrut

Back to Sampling

The Berrut-Floater-Hormann interpolant for equally spaced is a
simple improvement on the sampling operator.
Indeed,

Z Bk (xk)sinc(n(x — xx))
FHp(x) =

Z 5,( sinc(n(x — xx))

k=0

The weights ﬁ,((d) are constant except for the first d and last d and
hence (for small d) are only a small modification of the normalized
sampling operator B,(x), but FH, reproduces polynomials of
degree d and yet enjoys a Lebesgue constant of minimal growth.
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Whittaker-Shannon Sampling and Berrut

2

Berrut Examples for f(x) = x

0 0.5 1 0 0.5 1

B, B2, ford=1
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More Lebesgue Functions

Lebesgue Function 1

The Lebesgue function is defined to be:
n
An(x) = > [b(x)]
k=0

The Lebesgue constant is

An = max Ap(x)

0<x<1

It is the norm of the interpolation operator

F(x) — > F(xi)be(x)

k=0
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More Lebesgue Functions

Lebesgue Function for Equally Spaced Points

Lebesgue function for n=25 equally spaced points

2.8 1

241 1

16

14

1.2f
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More Lebesgue Functions

Lebesgue Function for Extended Chebyshev Points

Lebesgue function for n=25 extended Chebyshev points
3.5 . . . .

25 f

15
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More Lebesgue Functions

Lebesgue Function 2

Theorem (B., Hormann and De Marchi)

Suppose that the nodes are generated as x; = F(k/n) where
F : [0,1] — [0,1] is a regular distribution function. Then the
Lebesgue constants for B,,, Berrut's first interpolant, have
logarithmic growth in n.

Definition

An increasing function F : [0,1] — [0,1] is said to be a regular
distribution function if F € C1[0,1] and F’ has a finite number of
zeros in [0, 1] of at most algebraic order.
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More Lebesgue Functions

Function F(t) C* flat at t = 1/2

Graph of the distribution function F(t)
1 T T T . .

0.8} 1

0.7f 1

0.5F 1

0.3f 1

0.2F 1
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More Lebesgue Functions

Lebesgue Function F(t) C™ flat at t = 1/2 ODD number

of points

Lebesgue function for 21 $C$ flat points

0.5 0.6 0.7 0.8 0.9 1
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More Lebesgue Functions

Lebesgue Function F(t) C* flat at t = 1/2 EVEN number

of points

Lebesgue function for 20 $C$ flat points
300 T T T T T T

250+ B

200+ B

150 B

100+ B

50 B
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Berrut in two dimensions

Bivariate Whittaker-Shannon Sampling

Set x; :==i/nand y; :=j/n

y) = Z Z f(xi, yj)sinc(n(x — x;))sinc(n(y — y;))

iI=—00 j=—00

Truncate triangularly

Fo(x,y) Z f(xi, yj)sinc(n(x — x;)) sinc(n(y — y;))
0<i+j<n
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Berrut in two dimensions

Bivariate Whittaker-Shannon Sampling 2

Normalize:

B y) o Zosisiza F0s ) sinc(nx = x))sinc(nly ;)
n(X,y): ZOSi+j§n sinc(n(x — x;)) sinc(n(y — y;))
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Berrut in two dimensions

Berrut One in Two Dimensions

Simplify:

i+j iy
> o<itj<n(—1) +Jm

Bh(x,y) = —
Yo<ivicn(—D™ ==
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Berrut in two dimensions

Berrut One in Two Dimensions

Problem: The Denominator has real zeros!!

1
(x =x)(y = %))

Dufxoy) = wa(Jwaly) 3 (-1

0<i+j<n

is zero at (%,%) forO0<a,<nanda+p>n
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Berrut in two dimensions

Berrut One 2D for f(x,y) = x>+ y?

Berrut One for n= 13 Berrut One for n= 27
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Berrut in two dimensions

Berrut Two 2D for f(x,y) = x> + y?

Berrut Two forn=13 Berrut Two for n=27
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Merci e au revoir!!
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