RAtional Geometric Splines: construction and applications in the representation of smooth surfaces

Carolina Beccari¹ and Mike Neamtu²

¹ Department of Mathematics, University of Bologna, Bologna, Italy

² Department of Mathematics, Vanderbilt University, Nashville, TN

Multivariate Approximation and Interpolation with Applications MAIA 2016 Luminy, France September 18-23 イロト イポト イラト イラト

$$S_n^m(\Delta) := \{ f \in C^m(\Delta); f |_T \in \pi_n, T \in \Delta \}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Bivariate splines on planar triangulations

$$S^m_n(\Delta) := \{f \in C^m(\Delta); f|_T \in \pi_n, T \in \Delta\}$$

► $S_n^m(\Delta)$ is a linear space of C^m (scalar or parametric) piecewise polynomial functions of degree *n* (typically *n* has to be sufficiently large compared to *m* for the space to be useful)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

$$S^m_n(\Delta) := \{f \in C^m(\Delta); f|_T \in \pi_n, T \in \Delta\}$$

- ► $S_n^m(\Delta)$ is a linear space of C^m (scalar or parametric) piecewise polynomial functions of degree *n* (typically *n* has to be sufficiently large compared to *m* for the space to be useful)
- ▶ well-developed theory [Lai, Schumaker '07]
 - dimension results
 - local/stable bases
 - approximation of functions in Sobolev spaces

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

$$S^m_n(\Delta) := \{f \in C^m(\Delta); f|_T \in \pi_n, T \in \Delta\}$$

- ► $S_n^m(\Delta)$ is a linear space of C^m (scalar or parametric) piecewise polynomial functions of degree *n* (typically *n* has to be sufficiently large compared to *m* for the space to be useful)
- ▶ well-developed theory [Lai, Schumaker '07]
 - dimension results
 - local/stable bases
 - approximation of functions in Sobolev spaces
- a plethora of available methods based on such splines for data fitting, geometric modeling, finite elements, etc.

$$S^m_n(\Delta) := \{f \in C^m(\Delta); f|_{\mathcal{T}} \in \pi_n, \, \mathcal{T} \in \Delta\}$$

- ► $S_n^m(\Delta)$ is a linear space of C^m (scalar or parametric) piecewise polynomial functions of degree *n* (typically *n* has to be sufficiently large compared to *m* for the space to be useful)
- ▶ well-developed theory [Lai, Schumaker '07]
 - dimension results
 - local/stable bases
 - approximation of functions in Sobolev spaces
- a plethora of available methods based on such splines for data fitting, geometric modeling, finite elements, etc.
- our objective is to define a generalization of $S_n^m(\Delta)$ for 3D triangulations Δ

- Spline spaces $S_n^m(\Delta)$ are effective in the problem of interpolating/approximating
 - functional data (x_i, y_i, z_i) , where $(x_i, y_i) \in \Omega$, $\Omega \subset \mathbb{R}^2$, i.e. in finding a spline $s \in S_n^m(\Delta)$ such that $s(x_i, y_i) = z_i \in \mathbb{R}$

scalar functions $f : \Omega \to \mathbb{R}$, i.e., $s \approx f$ on Ω .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

– Spline spaces $S^m_n(\Delta)$ are effective in the problem of interpolating/approximating

functional data (x_i, y_i, z_i) , where $(x_i, y_i) \in \Omega$, $\Omega \subset \mathbb{R}^2$, i.e. in finding a spline $s \in S_n^m(\Delta)$ such that $s(x_i, y_i) = z_i \in \mathbb{R}$

scalar functions $f : \Omega \to \mathbb{R}$, i.e., $s \approx f$ on Ω .

- Spaces $S_n^m(\Delta)$ are also effective in the setting where one wants to interpolate/approximate 3D data $(x_i, y_i, z_i) \in \mathbb{R}^3$ that are known to belong to a surface that is homeomorphic to a planar domain $\Omega \subset \mathbb{R} \Rightarrow$ parametric splines (e.g. triangular parametric Bézier- or quadrilateral patches, NURBS)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

– Spline spaces $S^m_n(\Delta)$ are effective in the problem of interpolating/approximating

functional data (x_i, y_i, z_i) , where $(x_i, y_i) \in \Omega$, $\Omega \subset \mathbb{R}^2$, i.e. in finding a spline $s \in S_n^m(\Delta)$ such that $s(x_i, y_i) = z_i \in \mathbb{R}$

scalar functions $f : \Omega \to \mathbb{R}$, i.e., $s \approx f$ on Ω .

- Spaces S^m_n(Δ) are also effective in the setting where one wants to interpolate/approximate 3D data (x_i, y_i, z_i) ∈ ℝ³ that are known to belong to a surface that is homeomorphic to a planar domain Ω ⊂ ℝ ⇒ parametric splines (e.g. triangular parametric Bézier- or quadrilateral patches, NURBS)
- What if the sought-for surface cannot be parameterized by a planar domain?

– Spline spaces $S^m_n(\Delta)$ are effective in the problem of interpolating/approximating

functional data (x_i, y_i, z_i) , where $(x_i, y_i) \in \Omega$, $\Omega \subset \mathbb{R}^2$, i.e. in finding a spline $s \in S_n^m(\Delta)$ such that $s(x_i, y_i) = z_i \in \mathbb{R}$

scalar functions $f : \Omega \to \mathbb{R}$, i.e., $s \approx f$ on Ω .

- Spaces $S_n^m(\Delta)$ are also effective in the setting where one wants to interpolate/approximate 3D data $(x_i, y_i, z_i) \in \mathbb{R}^3$ that are known to belong to a surface that is homeomorphic to a planar domain $\Omega \subset \mathbb{R} \Rightarrow$ parametric splines (e.g. triangular parametric Bézier- or quadrilateral patches, NURBS)
- What if the sought-for surface cannot be parameterized by a planar domain?

 Classical problem in CAGD [mainly '80s and '90s]: given 3D points, find a free-form smooth interpolating/approximating spline surface (a composite surface consisting of triangular/quadrilateral polynomial/rational patches) - Spline spaces $S_n^m(\Delta)$ are effective in the problem of interpolating/approximating

functional data (x_i, y_i, z_i) , where $(x_i, y_i) \in \Omega$, $\Omega \subset \mathbb{R}^2$, i.e. in finding a spline $s \in S_n^m(\Delta)$ such that $s(x_i, y_i) = z_i \in \mathbb{R}$

scalar functions $f : \Omega \to \mathbb{R}$, i.e., $s \approx f$ on Ω .

- Spaces $S_n^m(\Delta)$ are also effective in the setting where one wants to interpolate/approximate 3D data $(x_i, y_i, z_i) \in \mathbb{R}^3$ that are known to belong to a surface that is homeomorphic to a planar domain $\Omega \subset \mathbb{R} \Rightarrow$ parametric splines (e.g. triangular parametric Bézier- or quadrilateral patches, NURBS)
- What if the sought-for surface cannot be parameterized by a planar domain?

 Alternative methods such as implicit surfaces, manifold splines, subdivision surfaces, T-splines, ambient B-splines, < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ □ ● ◆ ○ ○ ○

$$\begin{array}{c} ?? \\ S_n^m(\Delta) := \{f \in \pmb{C}^m(\Delta); f | \tau \in \rho_n^{\mathsf{T}}, \, T \in \Delta\} \end{array}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Splines on 3D triangulations of arbitrary genus

$$\begin{array}{ccc} ?? & ??\\ S_n^m(\Delta) := \{f \in \boldsymbol{C}^m(\Delta); f | \tau \in \rho_n^{\mathsf{T}}, \, \mathcal{T} \in \Delta\} \end{array}$$

► To define C^m(Δ), first equip Δ with a C^m- (or even C[∞]-) structure, i.e. define how triangles of Δ are "glued" together

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

$$?? \qquad ?? \\ S_n^m(\Delta) := \{ f \in C^m(\Delta); f | \tau \in \rho_n^T, T \in \Delta \}$$

- ► To define C^m(Δ), first equip Δ with a C^m- (or even C[∞]-) structure, i.e. define how triangles of Δ are "glued" together
- ► for all pairs of adjacent triangles, T, T', define C^m -transition maps $\phi_{T',T}$ that are compatible around each vertex of Δ

$$\begin{array}{ccc} ?? & ??\\ S_n^m(\Delta) := \{f \in \boldsymbol{C}^m(\Delta); f | \tau \in \rho_n^T, \, T \in \Delta\} \end{array}$$

- ► To define C^m(Δ), first equip Δ with a C^m- (or even C[∞]-) structure, i.e. define how triangles of Δ are "glued" together
- ► for all pairs of adjacent triangles, T, T', define C^m -transition maps $\phi_{T',T}$ that are compatible around each vertex of Δ
- ▶ define the space of functions $C^m(\Delta)$ as a space of geometrically continuous functions $f : \Delta \to \mathbb{R}$ (or \mathbb{R}^d , d > 1), such that for all such pairs T, T', $f|_{T'}$ and $f|_T \circ \phi_{T',T}$ join with ordinary C^m continuity along common edge ⓐ DeRose '85, Haas '89, Peters 2002, etc.]

$$\mathbf{S}_n^m(\Delta) := \{ f \in \mathbf{C}^m(\Delta); f | \tau \in \rho_n^\mathsf{T}, \mathsf{T} \in \Delta \}$$

- ► To define C^m(Δ), first equip Δ with a C^m- (or even C[∞]-) structure, i.e. define how triangles of Δ are "glued" together
- ► for all pairs of adjacent triangles, T, T', define C^m -transition maps $\phi_{T',T}$ that are compatible around each vertex of Δ
- ▶ define the space of functions $C^m(\Delta)$ as a space of geometrically continuous functions $f : \Delta \to \mathbb{R}$ (or \mathbb{R}^d , d > 1), such that for all such pairs T, T', $f|_{T'}$ and $f|_T \circ \phi_{T',T}$ join with ordinary C^m continuity along common edge [DeRose '85, Haas '89, Peters 2002, etc.]
- ▶ for fixed transition maps, $C^{m}(\Delta)$ is a linear space, hence so is $S_{n}^{m}(\Delta)$, assuming ρ_{n}^{T} are chosen as linear spaces [DeRose '85, Höllig-Mogerle '90, Goodman '91, Prautzsch '97, Reif '98, Peters '02, papers on manifold splines, etc.]

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

RAGS - rational geometric splines [B., Gonsor, Neamtu '14]

 $S_n^m(\Delta) := \{ f \in C^m(\Delta); f |_T \in \rho_n^T, T \in \Delta \}$

$$S_n^m(\Delta) := \{ f \in C^m(\Delta); f |_T \in \rho_n^T, T \in \Delta \}$$

$$v'_{3}$$

 $v' = b'_{1}v_{1} + b'_{2}v_{2} + b'_{2}v'_{3}$
 v_{1}
 T
 v'_{1}
 v'_{2}
 v_{3}
 T , T' - adjacent 3D triangles

1

RAGS - rational geometric splines [B., Gonsor, Neamtu '14]

$$S_n^m(\Delta) := \{ f \in \boldsymbol{C}^m(\Delta); f |_T \in \rho_n^T, T \in \Delta \}$$

$$v_1$$

 v_1
 v_2
 v_3
 $v_1 + b'_2 v_2 + b'_2 v'_3$
 v_2
 v_3
 $T, T' - adjacent 3D triangles$

• $\phi_{T',T}$ are defined as linear rational transformations:

$$\phi_{T',T}: b'(v') \mapsto b(v) = \frac{\Lambda_{T',T}b'(v')}{\mathbf{1}\Lambda_{T',T}b'(v')}, \ \Lambda_{T',T} = \begin{pmatrix} 1 & 0 & \lambda_1 \\ 0 & 1 & \lambda_2 \\ 0 & 0 & \lambda_3 \end{pmatrix}, \ \mathbf{1} \coloneqq (1,1,1),$$

 $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}, \lambda_3 < 0$, such that they define a C^{∞} differentiable structure on Δ (i.e. the $\phi_{T',T}$ have to be compatible around each vertex.)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

$$S_n^m(\Delta) := \{ f \in \boldsymbol{C}^m(\Delta); f |_T \in \rho_n^T, T \in \Delta \}$$

$$v_1$$

 v_2
 v_1
 v_2
 v_2
 v_2
 v_1
 v_2
 v_2
 v_1
 v_2
 v_3
 v_2
 v_2
 v_3
 v_2
 v_2
 v_3
 v_3
 v_2
 v_3
 v_3
 v_2
 v_3
 v_3

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• $\phi_{T',T}$ are defined as linear rational transformations:

$$\phi_{T',T}: b'(v') \mapsto b(v) = \frac{\Lambda_{T',T}b'(v')}{1\Lambda_{T',T}b'(v')}, \ \Lambda_{T',T} = \begin{pmatrix} 1 & 0 & \lambda_1 \\ 0 & 1 & \lambda_2 \\ 0 & 0 & \lambda_3 \end{pmatrix}, \ \mathbf{1} \coloneqq (1, 1, 1),$$

 $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}, \lambda_3 < 0$, such that they define a C^{∞} differentiable structure on Δ (i.e. the $\phi_{T',T}$ have to be compatible around each vertex.)

• ρ_n^T are defined as spaces of rational functions of type n/n:

$$r^{T} = \frac{\sum_{i+j+k=n} c_{ijk}^{T} B_{ijk}^{n}}{\sum_{i+j+k=n} w_{ijk}^{T} B_{ijk}^{n}}$$

$$S_n^m(\Delta) := \{ f \in \boldsymbol{C}^m(\Delta); f |_{\mathcal{T}} \in \rho_n^{\mathcal{T}}, \, \mathcal{T} \in \Delta \}$$

$$v_1 = b_1'v_1 + b_2'v_2 + b_2'v_3'$$

$$v_1 = b_1'v_1 + b_2'v_2 + b_2'v_3'$$

$$v_2 = b_1'v_1 + b_2'v_2 + b_2'v_3'$$

$$v_1 = b_1'v_1 + b_2'v_2 + b_2'v_3'$$

$$v_2 = b_1'v_1 + b_2'v_2 + b_2'v_3'$$

$$v_1 = b_1'v_1 + b_2'v_2 + b_2'v_3'$$

$$v_2 = b_1'v_1 + b_2'v_2 + b_2'v_3'$$

$$v_1 = b_1'v_1 + b_2'v_2 + b_2'v_3'$$

$$v_2 = b_1'v_1 + b_2'v_2 + b_2'v_3'$$

$$v_1 = b_1'v_1 + b_2'v_2 + b_2'v_3'$$

$$v_2 = b_1'v_1 + b_2'v_2 + b_2'v_3'$$

$$v_3 = b_1'v_1 + b_2'v_2 + b_2'v_3'$$

$$v_4 = b_1'v_1 + b_2'v_2 + b_2'v_3'$$

$$v_5 = b_1'v_1 + b_2'v_2 + b_2'v_3'$$

$$v_5 = b_1'v_1 + b_2'v_2 + b_2'v_3'$$

$$v_5 = b_1'v_1 + b_2'v_2 + b_2'v_3'$$

• $\phi_{T',T}$ are defined as linear rational transformations:

$$\phi_{T',T}: b'(v') \mapsto b(v) = \frac{\Lambda_{T',T}b'(v')}{1\Lambda_{T',T}b'(v')}, \ \Lambda_{T',T} = \begin{pmatrix} 1 & 0 & \lambda_1 \\ 0 & 1 & \lambda_2 \\ 0 & 0 & \lambda_3 \end{pmatrix}, \ \mathbf{1} \coloneqq (1,1,1),$$

 $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}, \lambda_3 < 0$, such that they define a C^{∞} differentiable structure on Δ (i.e. the $\phi_{T',T}$ have to be compatible around each vertex.)

• ρ_n^T are defined as spaces of rational functions of type n/n:

$$r^{T} = \frac{\sum_{i+j+k=n} c_{ijk}^{T} B_{ijk}^{n}}{\sum_{i+j+k=n} w_{ijk}^{T} B_{ijk}^{n}}$$

► composition of rational functions of type n/n with a linear rational transformation of type 1/1 is again of type n/n.

$$S_n^m(\Delta) := \{ f \in \boldsymbol{C}^m(\Delta); f |_{\mathcal{T}} \in \rho_n^{\mathcal{T}}, \, \mathcal{T} \in \Delta \}$$

$$v_1$$

 v_1
 v_2
 v_2
 v_1
 v_2
 v_1
 v_2
 v_1
 v_2
 v_1
 v_2
 v_1
 v_2
 v_3
 v_2
 v_2
 v_3
 v_3

• $\phi_{T',T}$ are defined as linear rational transformations:

$$\phi_{T',T}: b'(v') \mapsto b(v) = \frac{\Lambda_{T',T}b'(v')}{1\Lambda_{T',T}b'(v')}, \ \Lambda_{T',T} = \begin{pmatrix} 1 & 0 & \lambda_1 \\ 0 & 1 & \lambda_2 \\ 0 & 0 & \lambda_3 \end{pmatrix}, \ \mathbf{1} \coloneqq (1,1,1),$$

 $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}, \lambda_3 < 0$, such that they define a C^{∞} differentiable structure on Δ (i.e. the $\phi_{T',T}$ have to be compatible around each vertex.)

• ρ_n^T are defined as spaces of rational functions of type n/n:

$$r^{T} = \frac{\sum_{i+j+k=n} C_{ijk}^{T} B_{ijk}^{n}}{\sum_{i+j+k=n} w_{ijk}^{T} B_{ijk}^{n}} = \frac{\sum_{i+j+k=n} d_{ijk}^{T} w_{ijk}^{T} B_{ijk}^{n}}{\sum_{i+j+k=n} w_{ijk}^{T} B_{ijk}^{n}}$$

► composition of rational functions of type n/n with a linear rational transformation of type 1/1 is again of type n/n.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Why RAGS?

the RAGS space generalizes the classical space of piecewise polynomials on planar triangulations (i.e. space obtained by taking λ₁, λ₂, λ₃ to be the barycentric coordinates of v₃' w.r.t. v₁, v₂, v₃.)

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Why RAGS?

- the RAGS space generalizes the classical space of piecewise polynomials on planar triangulations (i.e. space obtained by taking λ₁, λ₂, λ₃ to be the barycentric coordinates of v₃' w.r.t. v₁, v₂, v₃.)
- if we want the generalized spline space S^m_n(Δ) to mimic basic properties of the standard bivariate space (such as the Bernstein-Bézier representation for functions in ρ^T_n or refinability), the RAGS space is the only reasonable choice

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Why RAGS?

- the RAGS space generalizes the classical space of piecewise polynomials on planar triangulations (i.e. space obtained by taking λ₁, λ₂, λ₃ to be the barycentric coordinates of v'₃ w.r.t. v₁, v₂, v₃.)
- if we want the generalized spline space S^m_n(Δ) to mimic basic properties of the standard bivariate space (such as the Bernstein-Bézier representation for functions in ρ^T_n or refinability), the RAGS space is the only reasonable choice
- ► continuity conditions between rational patches r^T , $r^{T'}$ are formally the same as for planar splines:

$$C^{1} \text{ conditions } (i + j = n - 1):$$

$$c'_{ij1} = \lambda_{1}c_{i+1,j,0} + \lambda_{2}c_{i,j+1,0} + \lambda_{3}c_{i,j,1}$$

$$w'_{ij1} = \lambda_{1}w_{i+1,j,0} + \lambda_{2}w_{i,j+1,0} + \lambda_{3}w_{i,j,1}$$

$$\lambda_{1} + \lambda_{2} + \lambda_{3} \text{ is not necessarily } 1$$

Why RAGS?

- the RAGS space generalizes the classical space of piecewise polynomials on planar triangulations (i.e. space obtained by taking λ₁, λ₂, λ₃ to be the barycentric coordinates of v'₃ w.r.t. v₁, v₂, v₃.)
- if we want the generalized spline space S^m_n(Δ) to mimic basic properties of the standard bivariate space (such as the Bernstein-Bézier representation for functions in ρ^T_n or refinability), the RAGS space is the only reasonable choice
- continuity conditions between rational patches r^T , $r^{T'}$ are formally the same as for planar splines: c_{300}

$$C^{1} \text{ conditions } (i + j = n - 1):$$

$$c'_{ij1} = \lambda_{1}c_{i+1,j,0} + \lambda_{2}c_{i,j+1,0} + \lambda_{3}c_{i,j,1}$$

$$w'_{ij1} = \lambda_{1}w_{i+1,j,0} + \lambda_{2}w_{i,j+1,0} + \lambda_{3}w_{i,j,1}$$

$$\lambda_{1} + \lambda_{2} + \lambda_{3} \text{ is not necessarily } 1$$

 standard interpolation/approximation methods can be extended to 3D triangulations (no need to invent brand new methods)

Construction of RAGS via homogeneous geometry

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Construction of RAGS via homogeneous geometry

1 Construct a triangulation Δ_H in one of the three homogeneous geometries (spherical, affine, hyperbolic), which is combinatorially equivalent to Δ (the type of geometry will depend on the genus of Δ)

Construction of RAGS via homogeneous geometry

- 1 Construct a triangulation Δ_H in one of the three homogeneous geometries (spherical, affine, hyperbolic), which is combinatorially equivalent to Δ (the type of geometry will depend on the genus of Δ)
- ² Δ_H gives rise to linear rational transition maps $\phi_{T',T}$, corresponding to parameters $\lambda_1, \lambda_2, \lambda_3$, given by [\blacksquare B. & Neamtu '16]

$$\begin{split} \lambda_1 &= \frac{\sin(\alpha_2 + \alpha_2')\sin\alpha_1\sin\alpha_1'}{\sin\alpha_3'\sin\alpha_1\sin\alpha_2}\\ \lambda_2 &= \frac{\sin(\alpha_1 + \alpha_1')\sin\alpha_2\sin\alpha_2'}{\sin\alpha_3'\sin\alpha_1\sin\alpha_2}\\ \lambda_3 &= -\frac{\sin\alpha_3\sin\alpha_1'\sin\alpha_2'}{\sin\alpha_3'\sin\alpha_1\sin\alpha_2} \end{split}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Construction of RAGS via homogeneous geometry

- **1** Construct a triangulation Δ_H in one of the three homogeneous geometries (spherical, affine, hyperbolic), which is combinatorially equivalent to Δ (the type of geometry will depend on the genus of Δ)
- 2 Δ_H gives rise to linear rational transition maps $\phi_{T',T}$, corresponding to parameters $\lambda_1, \lambda_2, \lambda_3$, given by $[\square B. \& Neamtu '16]$

³ Define spaces of homogeneous splines:

$$S_n^m(\Delta_H) \coloneqq \{s \in C^m(\Delta_H) : s|_{\mathcal{T}} \in \pi_n|_{\mathcal{T}}, \mathcal{T} \in \Delta_H\}$$

 $\pi_n|_{\mathcal{T}}$ – trivariate homogeneous polynomials of total degree $\leq n$, restricted to triangle $\mathcal{T} \in \Delta_H$. ▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Construction of RAGS via homogeneous geometry

$$S^m_n(\Delta_H) \coloneqq \{s \in C^m(\Delta_H) : s|_\mathcal{T} \in \pi_n|_\mathcal{T}, \mathcal{T} \in \Delta_H\}$$

4 function p ∈ π_n|_T can be written in terms of (homogeneous) barycentric coordinates w.r.t. T:

$$p(u) = \sum_{i+j+k=n} c_{ijk} B^n_{ijk}(u), \quad u \in \mathcal{T}, \quad B^n_{ijk}(u) = \frac{n!}{i!j!k!} b^i_1(u) b^j_2(u) b^k_3(u),$$

where $b = (b_1(u), b_2(u), b_3(u))$ are the homogeneous barycentric coordinates of u w.r.t. vertices of T.

.

$$S^m_n(\Delta_H) \coloneqq \{s \in C^m(\Delta_H) : s|_\mathcal{T} \in \pi_n|_\mathcal{T}, \mathcal{T} \in \Delta_H\}$$

4 function p ∈ π_n|_T can be written in terms of (homogeneous) barycentric coordinates w.r.t. T:

$$p(u) = \sum_{i+j+k=n} c_{ijk} B_{ijk}^n(u), \quad u \in \mathcal{T}, \quad B_{ijk}^n(u) = \frac{n!}{i!j!k!} b_1^i(u) b_2^j(u) b_3^k(u),$$

where $b = (b_1(u), b_2(u), b_3(u))$ are the homogeneous barycentric coordinates of u w.r.t. vertices of T.

⁵ Parametrize $S_n^m(\Delta_H)$ by Δ to obtain $S_n^m(\Delta)$. For $T \in \Delta \leftrightarrow T \in \Delta_H$, $v \in T \leftrightarrow u \in T$:

$$r_{H}^{T}(b(u)) = \frac{\sum c_{ijk}^{T} B_{ijk}^{n,T}(u)}{\sum w_{ijk}^{T} B_{ijk}^{n,T}(u)} = \frac{\sum c_{ijk}^{T} (b_{1} + b_{2} + b_{3})^{n} B_{ijk}^{n,T}(v)}{\sum w_{ijk}^{T} (b_{1} + b_{2} + b_{3})^{n} B_{ijk}^{n,T}(v)}$$
$$= \frac{\sum c_{ijk}^{T} B_{ijk}^{n,T}(v)}{\sum w_{ijk}^{T} B_{ijk}^{n,T}(v)} \eqqcolon r^{T}(\bar{b}(v)),$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Parametrization - determining Δ_H

Since elements of Δ_H are equivalence classes of congruent triangles, we can represent Δ_H as a collection of triples of angles:

$$\Delta_{H} = \{ \langle \alpha_{1}^{T}, \alpha_{2}^{T}, \alpha_{3}^{T} \rangle, T \in \Delta \}, \quad \alpha_{1}^{T}, \alpha_{3}^{T}, \alpha_{3}^{T} \in (0, \pi) \}$$

Any triple α_1^T , α_2^T , $\alpha_3^T \in (0, \pi)$ gives rise to a unique triangle (up to congruence) in one of the three homogeneous geometries:

$$\begin{aligned} &\alpha_1^T + \alpha_2^T + \alpha_3^T < \pi \text{ (hyperbolic)} \\ &\alpha_1^T + \alpha_2^T + \alpha_3^T = \pi \text{ (affine)} \\ &\alpha_1^T + \alpha_2^T + \alpha_3^T > \pi \text{ (spherical)} \end{aligned}$$

Necessary and sufficient conditions for a consistent triangulation Δ_H :

- the sum of angles around each vertex is 2π ;
- common sides of adjacent triangles have equal lengths:

$$\frac{\cos\alpha_1^T\cos\alpha_2^T+\cos\alpha_3^T}{\sin\alpha_1^T\sin\alpha_2^T} = \frac{\cos\alpha_1^{T'}\cos\alpha_2^{T'}+\cos\alpha_3^T}{\sin\alpha_1^{T'}\sin\alpha_2^{T'}}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Weights and control points

Instances of RAGS have been obtained before:
 [a] Liu, Schumaker '96, Wallner '96, Pottmann, Wallner '97, He, Gu, Qin '06]

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Weights and control points

- Instances of RAGS have been obtained before:
 [a] Liu, Schumaker '96, Wallner '96, Pottmann, Wallner '97, He, Gu, Qin '06]
- Fixing appropriate weights w_{ijk}:

- for any other (even) degree, use the identity $1 \equiv w^{n/2}$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Weights and control points

- Instances of RAGS have been obtained before:
 [a] Liu, Schumaker '96, Wallner '96, Pottmann, Wallner '97, He, Gu, Qin '06]
- Fixing appropriate weights w_{ijk}:

- for any other (even) degree, use the identity $1 \equiv w^{n/2}$

- Specific interpolation methods can be implemented as a direct extension of bivariate methods. Examples are:
 - Powell-Sabin macro-element methods (local and global)
 - energy-minimizing interpolating splines

Example: $S_2^1(\Delta_{PS})$ local interpolation

Example: $S_2^1(\Delta_{PS})$ interpolation & energy min.

Example: $S_6^2(\Delta)$ interpolation & energy min.

E nac

Example: $S_6^2(\Delta)$ interpolation & energy min.

Example: $S_{10}^4(\Delta)$ interpolation & energy min.

