Karel Netočný

Nonequilibrium: Physics, Stochastics and Dynamical Systems CIRM, 18 Jan 2016

<ロト <回ト < 注ト < 注ト = 注

Motivating example

Myosin molecular motor [R. Dean Astumian, Biophysical Journal (2010) 2401]

c Stochastic branching model with irreversible chemistry

Figure: Chemical cycle for Myosin V stepping

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Collaboration

Christian Maes, Winny O'Kelly de Galway (KU Leuven) Alexandre Lazarescu (University of Luxembourg) Jiří Pešek (FZU AS CR & BIOSYST-MeBioS, KU Leuven)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

General issues

- Many open thermodynamic systems can be modeled as stochastic (even Markovian) processes
- Lack of general "statistical" theory for far-from-equilibrium processes
- Even the structure of nonequilibrium steady states is to a large extent unexplored
- Details of dynamics seem to play an essential role
- Need for exact symmetries and simplifying asymptotic schemes
- Link between equilibrium thermodynamic description and nonequilibrium transport properties still not clear

Praha

Stochastic models

Markovian dynamics - Master equation

$$\frac{\partial \rho_t(x)}{\partial t} + \sum_y j_t(x, y) = 0, \qquad j_t(x, y) = \rho_t(x)\lambda(x, y) - \rho_t(y)\lambda(y, x)$$

- constitutive relation between time-dependent occupation probabilities and local currents
- dynamics encoded in transition rates $\lambda(x, y)$
- states x may represent either single-body or many-body discrete states of system
- linear algebraic problem

$$\frac{\partial \hat{\rho_t}}{\partial t} = \hat{W} \hat{\rho_t}$$

ション ふゆ アメリア メリア しょうくの

Thermodynamic versus kinetic aspects

Local detailed balance principle

• Asymmetry of transition rates \leftrightarrow Dissipation along transition channel

$$\lambda(y \to x) = \lambda(x \to y) e^{-\Delta S_{env}(x \to y)}$$

- symmetric factors (= local time-scales) depend on kinetic details
 - Kramers theory etc. but no general guiding principle!

Equilibrium systems - global detailed balance

$$\log \frac{\lambda(x, y)}{\lambda(y, x)} = \Delta S_{\text{env}} = \beta Q(x, y) = \beta [E(x) - E(y)]$$

Nonequilibrium - nonpotential structure of dissipation functions

$$Q(x,y) = E(x) - E(y) + W(x,y), \text{ or } \beta(x,y) \neq \beta$$

Thermodynamic versus kinetic aspects

Questions to be discussed

- 1. What is the role of kinetics in stationary properties of the system?
- 2. How to describe the NESS in general?
- 3. How to find low-temperature patterns analogous to ground states in equilibrium and what would be corresponding phase diagrams?
- 4. How to compute relevant currents in such a low-temperature asymptotics, e.g., for the ratchets?
- 5. How to go beyond stationarity, in particular, how to see quasistatic responses to changes of thermodynamic parameters (e.g., the steady heat capacity)?

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Heat bounds, ordering and Blowtorch theorem

Questions:

- 1. How much the kinetic details actually matter out of equilibrium?
- 2. What can we say about stationary occupations from the heat function Q(x, y) alone?

Result: From Boltzmann weights to general heat bounds

$$\exp\Bigl[-\beta \max_{D: x \to y} Q(D)\Bigr] \leq \frac{\rho(x)}{\rho(y)} \leq \exp\Bigl[-\beta \min_{D: x \to y} Q(D)\Bigr]$$

- ▶ If $Q(D) \ge 0$ along all non-intersecting paths $D : x \to y$ then $\rho(x) \le \rho(y)$ independently of kinetic details
 - partial ordering of states in terms of the heat function alone
 - \blacktriangleright strictly positive dissipation for all $D: x \to y$ yields separation of occupations exponentially in β

Heat bounds, ordering and blowtorch theorem

We can prove it from the algebraic Matrix-tree theorem which yields the tree-graph representation of stationary distributions

$$\rho(x) = \frac{1}{Z} \underbrace{\sum_{T} \prod_{(y,y') \in T_x} \lambda(y,y')}_{w(T_x)} \qquad T_x - \text{oriented spanning in-tree to } x$$

with the local detailed balance

$$\frac{w(T_x)}{w(T_y)} = e^{-\beta Q(D_{x \to y})}$$

To exploit it more we next look into the low-temperature asymptotics

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Heat bounds, ordering and blowtorch theorem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Figure:

NESS representation of dynamics

Three complementary ingredients for complete description of NESS:

- 1. stationary occupation probabilities $\rho(x)$
- 2. local currents $j(x, y) = \rho(x)\lambda(x, y) \rho(y)\lambda(y, x)$
- 3. dynamical activity landscape $\gamma(x, y) = \rho(x)\lambda(x, y) + \rho(y)\lambda(y, x)$

Note: Attempts to construct nonequilibrium ensembles without considering the dynamical activity are wrong in general!

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Main issues

Question 1:

What are dominant states and currents, and where to look for dominant dynamical activity in low-temperatures?

Question 2:

What is the low-temperature asymptotics of thermodynamic process? Is there a generalized Nernst theorem for the excess heat?

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Low-temperature asymptotics

Zero-temperature limit of continuous (diffusion) dynamics is a deterministic process

$$rac{dx_t}{dt} = F(x_t) + rac{1}{\sqrt{eta}}$$
"(Gaussian-)noise"

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Freidlin-Wentzell large deviation theory

Discrete stochastic dynamics ill-defined in the limit $\beta \longrightarrow +\infty!$

We can still apply the algebraic representation of NESS!

Low-temperature asymptotics

Modified Arrhenius representation of transition rates

$$\lambda(x,y) = \frac{p(x,y)}{\tau(x)} = a(x,y;\beta) e^{-\beta[\Gamma(x) + U(x,y)]}$$

in terms of

- 1. log-asymptotic escape rate $-\Gamma(x) = \lim_{\beta \to \infty} \frac{1}{\beta} \log \sum_{y} \lambda(x, y)$
 - life-time is asymptotically $\tau(x) \simeq e^{\beta \Gamma(x)}$
- 2. log-asymptotic transition probabilities $U(x, y) = \Gamma(x) \lim_{\beta \to \infty} \frac{1}{\beta} \log \lambda(x, y)$
 - ► transition probabilities are asymptotically $p(x, y) \asymp e^{-\beta U(x, y)}$
 - $U(x, y) \ge 0$ and U(x, y) = 0 defines preferred transitions
 - represented by oriented graph of preferred transitions
- 3. sub-exponential factor $a(x, y) = e^{o(\beta)}$

Low-temperature asymptotics

└─ Stationary distribution

Low-temperature asymptotics

Asymptotic form of stationary distribution

$$ho(x) = rac{1}{Z} {\cal A}(x) \, e^{eta [\Gamma(x) - \Theta(x)]} ig(1 + O(e^{-eta arepsilon}) ig) \,, \qquad arepsilon > 0$$

Up to a correction negligible at low temperatures, it is given in terms of:

- 1. (log-asymptotic) life-time of states $\Gamma(x)$
- 2. accessibility function

$$\Theta(x) = \min_{T} U(T_x), \qquad U(T_x) = \sum_{(y,y') \in T_x} U(y,y') \ge 0$$

3. sub-exponential factor

$$A(x) = \sum_{T \in M(x)} \prod_{(y,y') \in T_x} a(y,y') = e^{o(\beta)}$$

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

where the sum is only over those trees minimizing $U(T_x)$

Dynamical activity

The accessibility function Θ

<u>Recall</u>: The accessibility function measures the minimal "penalization" along trees rooted at state x:

$$\Theta(x) = \min_{T} U(T_x), \qquad U(T_x) = \sum_{(y,y') \in T_x} U(y,y') \ge 0$$

Components, their ordering and attractors

If there is a path $D: x \rightsquigarrow y$ consisting of preferred transitions only, U(D)=0, then

$$\Theta(x) \ge \Theta(y)$$

• natural decomposition of state space Ω into disjoint subsets $\Omega_1, \Omega_2, \ldots$ so that

- each Ω_i is a (maximal) strong component of the graph of preferred transitions = within Ω_i all states are mutually freely accessible
- Θ-function is constant within each component Ω_i
- the components can be partially ordered according to their value Θ_i

$$\Omega_i \rightsquigarrow \Omega_j \Rightarrow \Theta_i \ge \Theta_j$$

▶ the terminal components, i.e. those minimizing Θ-function, are attractors

Low-temperature asymptotics

Dynamical activity

The accessibility function Θ

Figure:

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Nonequilibrium generalization of the Nernst's heat theorem
Low-temperature asymptotics
Dynamical activity

The accessibility function Θ

Result: Algorithm to compute the function Θ

 $\Theta(x) = \min(U(T_x) | \text{ all trees } \mathsf{T} \text{ connecting state } x \text{ with all attractors})$

Corollary: Partial order on states and properties of attractors

1.
$$U(x, y) = 0 \implies \Theta(x) \ge \Theta(y)$$

2. x,
$$y \in \text{Attractor} \Longrightarrow \Theta(x) = \Theta(y)$$

3. U(x,y) = 0 such that $x \notin \text{Attractor}, y \in \text{Attractor} \Longrightarrow \Theta(x) > \Theta(y)$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

4. A -unique attractor $\Longrightarrow \Theta(A)=0$

Nonequilibrium generalization of the Nernst's heat theorem
Low-temperature asymptotics
Dynamical activity

Dynamical interpretation of Θ -function

Local dynamical activity

$$\mathbf{Y}(\mathbf{x}) = \sum_{\mathbf{y}} \rho(\mathbf{x}) \lambda(\mathbf{x}, \mathbf{y})$$

The overall dynamical activity counts the total number of transitions per unit time

$$\sum_{x} \mathbf{Y}(x) = \frac{1}{2} \sum_{x,y} \left[\rho(x) \lambda(x, y) + \rho(y) \lambda(y, x) \right]$$

Low-temperature asymptotics of dynamical activity

$$\Upsilon(x) \asymp \rho(x)\lambda(x,y)|_{U(x,x^*)=0} \asymp \frac{1}{Z} e^{-\beta \Theta(x)}$$

▶ Θ-function provides the exponential asymptotics of local dynamical activity

dominant contribution to (global) dynamical activity comes from an attractor

Dominant states

Dominant states are solutions to the variational problem

$$\Gamma(x) - \Theta(x) = \max$$

- Unique dominant state $\Rightarrow \rho(x^*) = 1 O(e^{-\beta \epsilon})$
 - analogous to non-degenerate ground state in equilibrium
- In degenerate case the sub-expontial factor A(x) is needed to distinguish the "true" mostly populated states
- Possible frustration between (long / short) life-time and (bad / good) accessibility
- Dominant states may lie outside dynamical attractors
 - patological thermodynamic properties

Nonequilibrium generalization of the Nernst's heat theorem
Low-temperature asymptotics
Dominant states

Absolutely dominant states

A remarkable simplification arises when there exists an *absolutely* dominant state x^* such that

- 1. it is maximally accessible, $\Theta(x^*) = 0$;
- 2. it has the maximal life-time among all states, $\Gamma(x^*) = \max_y \Gamma(y)$.

Properties of systems with A. D. states

- all dominant states are *absolutely* dominant
- probability of excitations has the asymptotics

$$\rho(x) \asymp e^{-\beta \left[\Gamma(x^*) - \Gamma(x) + \Theta(x)\right]}, \quad \Theta(x) = \min_{D: x^* \to x} U(D)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

▶ the minimizers correspond to typical excitation paths for x

Asymptotic dynamics

Excursion: Path low-temperature asymptotics

 $P^{\Delta}(D = x_0 x_1 \dots x_n) = \text{probability that starting from } x_0$, the system passes the sequence of states $x_0 \to x_1 \to \dots \to x_n$ within time $e^{\beta\Delta}$.

Result 1: excitation /technical assumptions skipped/

Asymptotically for $\Delta = \Gamma(x^*) - \epsilon$,

$$P^{\Delta}(D = x^* x_1 \dots x_n) \asymp \exp[-\beta I^{\Delta}(D)]$$

with the rate function

$$I^{\Delta}(D) = \Gamma(x^*) - \Gamma(x_n) + U(D)$$

By comparing with the above representation,

$$ho(x) symp_{D: \, x^* \leadsto x} P^\Delta(D)$$
 , $\Delta = \Gamma(x^*) - \epsilon$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Asymptotic dynamics

Excursion: Path large-deviation problem

 $P^{\Delta}(D = x_0 x_1 \dots x_n) =$ probability that starting from x_0 , the system passes the sequence of states $x_0 \to x_1 \to \dots \to x_n$ within time $e^{\beta\Delta}$.

Result 2: relaxation /technical assumptions skipped/

Asymptotically for $\Delta = \Gamma(x^*) - \epsilon$,

$$P^{\Delta}(D = x x_1 \dots x^*) \asymp \exp[-\beta I^{\Delta}(D)]$$

with the rate function

$$I^{\Delta}(D) = U(D)$$

Hence $\max_{D:x \mapsto x^*} P^{\Delta}(D) \asymp 1$ and the maximum is attained for the paths made of preferred transitions

the excitation and relaxation paths may not be the reversal of each other!

Asymptotic dynamics

Heat bounds revisited

Heat function is given as

$$Q(x, y) = \Gamma(y) - \Gamma(x) + U(y, x) - U(x, y)$$

For every state x we have

• excitation paths D_x^+ from x^* to x that minimize U(D)

$$-Q(D_x^+) \leq \Gamma(x^*) - \Gamma(x) + U(D_x^+)$$

▶ relaxation paths D_x^- from x to x^* for which $U(D_x^-) = 0$

$$Q(D_x^-) = \Gamma(x^*) - \Gamma(x) + U([D_x^-]^{\dagger})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Low-temperature asymptotics

Asymptotic dynamics

Heat bounds revisited

Corollary: Improved heat bounds for systems with A. D. states

$$-Q(D_x^+) \leq -\lim_{eta
ightarrow\infty}rac{1}{eta}\log
ho(x)\leq Q(D_x^-)$$

- ▶ if $D_x^- = [D_x^+]^\dagger$ then $Q(D_x^-) = -Q(D_x^+)$ and we obtain the equality!
- immediate consequences for the heat function:
 - $Q(D_x^-) \ge 0$ second law for spontaneous relaxation
 - ▶ $Q(D_x^+) + Q(D_x^-) \ge 0$ second law for typical excitation-relaxation cycles
- An asymptotic equality in terms of heat and penalization function:

$$\rho(x) \asymp e^{-\beta [Q(D_x^-) + U(D_x^+) - U([D_x^-]^+)]}$$

Current asymptotics

Current asymptotics

The low-temperature asymptotics of local currents may not be specified by the attractors and asymptotic occupations only, due to mutual cancellation of dominant terms

$$j(x, y) = \rho(x)\lambda(x, y) - \rho(y)\lambda(y, x)$$

- A finer representation of local currents is needed
- Current is naturally associated with positively dissipative circuits = closed non-intersecting paths such that

$$Q(C) = \sum_{(z,z') \in C} Q(z,z') > 0$$

Low-temperature asymptotics of circuit currents

$$j(C) \asymp e^{-\beta \Theta(C)}$$
, $\Theta(C) = \min_{T_C} U(T_C)$

with the minimum over all in-trees to the (positively dissipative) circuit C

– Low-temperature asymptotics

Current asymptotics

Dissipative versus non-dissipative attractors

Dissipative attractors – contain a circuit C such that Q(C) > 0

$$\frac{J(C)}{Y} \asymp 1$$

Non-dissipative attractors - only trivial circuits

$$rac{J(\mathcal{C})}{Y} symp e^{-eta \epsilon}, \qquad \epsilon > 0$$

Model: Driven lattice gas on the ring

Configurations are $x = (x_1, ..., x_L)$ with $x_k = 0$ (empty) or 1 (occupied). Dynamics is Kawasaki (= particle exchange) with transition rates

$$\lambda(x \rightarrow x^{(k,k+1)}) = \exp\left(\frac{\beta}{2} \left[H(x) - H(x^{(k,k+1)}) + E(x_k - x_{k+1})\right]\right)$$

and the Hamiltonian

$$H(x) = -J\sum_{i} x_{i}x_{i+1} + K\sum_{i} x_{i-1}x_{i+1}, \qquad J > 0$$

- particle number $N = \sum_i x_i$ is a conserved quantity
- dynamics is translation-invariant

Nonequilibrium generalization of the Nernst's heat theorem
Low-temperature asymptotics
Model example

Phase diagram for dynamical activity (N=3)

- sharp transitions only in the zero temperature limit
- "non-structural" (red-line) versus "structural" (blue-line) transitions
- discontinuous transition along the line E = J, K > 2J with the current as an order parameter

Nonequilibrium generalization of the Nernst's heat theorem Low-temperature asymptotics Model example

List of attractors (N=3)

- I dissipative attractor with all particles detached and moving along the ring
- II non-dissipative symmetry-breaking attractor with 2-particle cluster and a single particle separated but attached to the cluster
- III non-dissipative symmetry-breaking attractor with 3-particle cluster
- IIId dissipative attractor with 3-particle cluster as a whole traveling along the ring
- II/III dissipative attractor with 3-particle cluster moving along the ring via separation of a single particle

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Image: Constraint of the state of the

Nonequilibrium generalization of the Nernst's heat theorem
Low-temperature thermodynamics
Ouasistatic heat

Steady-state thermodynamics

The total heat released along a quasistatic process passing a sequence of steady states parametrized by α_t , $0 \le t \le \tau$ has the representation

$$\langle Q \rangle = \underbrace{\int_{0}^{\tau} \langle q(x_{t}; \alpha_{t}) \rangle^{\alpha_{t}} dt}_{steady-state \ heat \ O(\tau)} + \underbrace{\int_{\alpha_{0}}^{\alpha_{\tau}} \langle \nabla_{\alpha} V(x; \alpha) \rangle^{\alpha} \cdot d\alpha}_{geometric ("Berry") \ heat} + \underbrace{O(\tau^{-1})}_{non-quasistatic}$$

Steady-state heat is the integral stationary flux

$$\langle q(x;\alpha)\rangle^{\alpha} = \frac{1}{2}\sum_{x,y}Q^{\alpha}(x,y)j^{\alpha}(x,y) \geq 0$$

 geometric contribution derives from the dissipation function (or "quasipotential") counting heat along relaxation to stationarity

$$V(x; \alpha) = \frac{1}{2} \sum_{y, y'} \int_{0}^{\infty} Q^{\alpha}(y, y') \left[\underbrace{j_{t}^{\alpha}(y, y')}_{relaxation from x} - j^{\alpha}(y, y') \right]$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

non-equilibrium generalization of the energy function

Nonequilibrium generalization of the Nernst's heat theorem Low-temperature thermodynamics

Steady-state thermodynamics

The total heat released along a quasistatic process passing a sequence of steady states parameterized by α_t , $0 \le t \le \tau$ has the representation

$$\langle Q \rangle = \underbrace{\int_{0}^{\tau} \langle q(x_{t}; \alpha_{t}) \rangle^{\alpha_{t}} dt}_{\text{steady-state heat } O(\tau)} + \underbrace{\int_{\alpha_{0}}^{\alpha_{\tau}} \langle \nabla_{\alpha} V(x; \alpha) \rangle^{\alpha} \cdot d\alpha}_{\text{geometric ("Berry") heat}} + \underbrace{O(\tau^{-1})}_{\text{non-quasistatic}}$$

Warm-up: equilibrium process

- $\langle q(x; \alpha) \rangle^{\alpha} = 0 \rightarrow$ no divergences in quasistatic limit
- $V(x; \alpha) = E_{\alpha}(x) \langle E_{\alpha} \rangle^{\alpha}$ and the geometric contribution to the heat is given by the Clausius equality

$$\int_{\alpha_{\mathbf{0}}}^{\alpha_{\tau}} \langle \nabla_{\alpha} V(x;\alpha) \rangle^{\alpha} \cdot d\alpha = - \int_{\alpha_{\mathbf{0}}}^{\alpha_{\tau}} \beta^{-1} dS(\alpha)$$

with (Shannon) entropy

$$S(\alpha) = -\sum_{x} \rho^{\alpha}(x) \log \rho^{\alpha}(x)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Remains true close to equilibrium (up to leading order in nonequilibrium driving)

Nonequilibrium generalization of the Nernst's heat theorem
Low-temperature thermodynamics
Ouasistatic heat

Steady-state thermodynamics

The total heat released along a quasistatic process passing a sequence of steady states parameterized by α_t , $0 \le t \le \tau$ has the representation

$$\langle Q \rangle = \underbrace{\int_{0}^{\tau} \langle q(x_{t}; \alpha_{t}) \rangle^{\alpha_{t}} dt}_{\text{steady-state heat } O(\tau)} + \underbrace{\int_{\alpha_{0}}^{\alpha_{\tau}} \langle \nabla_{\alpha} V(x; \alpha) \rangle^{\alpha} \cdot d\alpha}_{\text{geometric ("Berry") heat}} + \underbrace{O(\tau^{-1})}_{\text{non-quasistatic}}$$

Non-degenarate system with unique A. D. state

The dissipation function is asymptotically the heat released along optimal relaxation path

$$V(x; \alpha) = Q_x^{\alpha, -} + O(e^{-\beta \epsilon}), \qquad V(x^*; \alpha) = O(e^{-\beta \epsilon})$$

► finite positive zero-temperature limit → well-defined effective energy of states! Nonequilibrium generalization of the Nernst's heat theorem
Low-temperature thermodynamics
Steady-state heat capacity

Steady-state heat capacity

The total heat released along a quasistatic process passing a sequence of steady states parameterized by α_t , $0 \le t \le \tau$ has the representation

$$\langle \boldsymbol{Q} \rangle = \underbrace{\int_{0}^{\tau} \langle \boldsymbol{q}(\boldsymbol{x}_{t};\boldsymbol{\alpha}_{t}) \rangle^{\boldsymbol{\alpha}_{t}} \, dt}_{\text{steady-state heat } \boldsymbol{O}(\tau)} + \underbrace{\int_{\boldsymbol{\alpha}_{0}}^{\boldsymbol{\alpha}_{\tau}} \langle \nabla_{\boldsymbol{\alpha}} \boldsymbol{V}(\boldsymbol{x};\boldsymbol{\alpha}) \rangle^{\boldsymbol{\alpha}} \cdot d\boldsymbol{\alpha}}_{\text{geometric}("Berry") heat} + \underbrace{O(\tau^{-1})}_{\text{non-quasistatic}}$$

For slow temperature changes, the geometric heat can be expressed in terms of generalized heat capacity

$$C_{\alpha} = -\left\langle \frac{\partial V}{\partial T} \right\rangle^{\alpha} = \sum_{x} \left\langle V(x; \alpha) \, \frac{d \log \rho(x; \alpha)}{dT} \right\rangle^{\alpha}, \qquad T = \frac{1}{\beta}$$

▶ for equilibrium systems it reduces to the equilibrium heat capacity C = T ∂S/∂T
 ▶ far from equilibrium it can take negative values

Steady-state heat capacity

Steady-state heat capacity (unique A. D. state)

Combing with the stationary distribution

 $\rho(x) \asymp e^{-\beta \, \Psi(x)}\,, \qquad \Psi(x) = \Gamma(x^*) - \Gamma(x) + \textit{U}(\text{typical excitation path to } x)$

the steady-heat capacity is asymptotically

$$C = -\beta^2 \left\langle V \frac{\partial \log \rho}{\partial \beta} \right\rangle^{\alpha} = \beta^2 \rho(x_1) V(x_1) \Psi(x_1) + \text{"exp. damped corrections"}$$

- x_1 the lowest (= the most probable) excitation
- C>0 and it is bounded from above and below by the heat capacity of the equilibrium systems with "generalized energies" V and Ψ, respectively

くロ ト ふ 雪 ト ふ 目 ト く 目 ト く 目 ト ろ ら の

Generalized Nernst law for systems with A. D. states

Steady heat capacity is *positive* and goes *exponentially to zero* in the zero-temperature limit.

but in general not true for non-absolutely dominant states

References

- 1. C. Maes and K. N., Heat bounds and the blowtorch theorem, Ann. Henri Poincaré 14 (2013) 1193.
- C. Maes, K. N., and W. O'Kelly de Galway, Low temperature behavior of nonequilibrium multilevel systems, J. Phys. A: Math. Theor. 47 (2014) 035002.
- 3. C. Maes and W. O'Kelly de Galway, A low temperature analysis of the boundary driven Kawasaki process, J. Stat. Phys.(2013) 153991.
- 4. K. N., and W. O'Kelly de Galway, Geometry of low-temperature steady states, in preparation.

ション ふゆ アメリア メリア しょうくの