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Motivating example
Myosin molecular motor [R. Dean Astumian, Biophysical Journal (2010) 2401]

Figure: Chemical cycle for Myosin V stepping
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General issues

I Many open thermodynamic systems can be modeled as stochastic
(even Markovian) processes

I Lack of general “statistical” theory for far-from-equilibrium processes
I Even the structure of nonequilibrium steady states is to a large

extent unexplored
I Details of dynamics seem to play an essential role
I Need for exact symmetries and simplifying asymptotic schemes
I Link between equilibrium thermodynamic description and

nonequilibrium transport properties still not clear

Praha
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Stochastic models

Markovian dynamics – Master equation

∂ρt (x)

∂t
+ ∑

y

jt (x , y ) = 0, jt (x , y ) = ρt (x)λ(x , y )− ρt (y )λ(y , x)

I constitutive relation between time-dependent occupation
probabilities and local currents

I dynamics encoded in transition rates λ(x , y)

I states x may represent either single-body or many-body discrete
states of system

I linear algebraic problem

∂ρ̂t
∂t

= Ŵ ρ̂t
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Thermodynamic versus kinetic aspects
Local detailed balance principle

I Asymmetry of transition rates ↔ Dissipation along transition channel

λ(y → x) = λ(x → y) e−∆Senv (x→y )

I symmetric factors (= local time-scales) depend on kinetic details
I Kramers theory etc. but no general guiding principle!

Equilibrium systems – global detailed balance

log
λ(x , y)

λ(y , x)
= ∆Senv = βQ(x , y) = β [E (x)− E (y)]

Nonequilibrium – nonpotential structure of dissipation functions

Q(x , y) = E (x)− E (y) +W (x , y), or β(x,y) 6= β
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Thermodynamic versus kinetic aspects

Questions to be discussed

1. What is the role of kinetics in stationary properties of the system?

2. How to describe the NESS in general?

3. How to find low-temperature patterns analogous to ground states in
equilibrium and what would be corresponding phase diagrams?

4. How to compute relevant currents in such a low-temperature asymptotics,
e.g., for the ratchets?

5. How to go beyond stationarity, in particular, how to see quasistatic
responses to changes of thermodynamic parameters (e.g., the steady heat
capacity)?
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Heat bounds, ordering and Blowtorch theorem
Questions:

1. How much the kinetic details actually matter out of equilibrium?

2. What can we say about stationary occupations from the heat function Q(x , y )
alone?

Result: From Boltzmann weights to general heat bounds

exp
[
−β max

D : x→y
Q(D)

]
≤ ρ(x)

ρ(y)
≤ exp

[
−β min

D : x→y
Q(D)

]
I If Q(D) ≥ 0 along all non-intersecting paths D : x → y then ρ(x) ≤ ρ(y)

independently of kinetic details
I partial ordering of states in terms of the heat function alone
I strictly positive dissipation for all D : x → y yields separation of
occupations exponentially in β
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Heat bounds, ordering and blowtorch theorem

We can prove it from the algebraic Matrix-tree theorem which yields the
tree-graph representation of stationary distributions

ρ(x) =
1
Z ∑

T
∏

(y ,y ′)∈Tx

λ(y , y ′)

︸ ︷︷ ︸
w (Tx )

Tx − oriented spanning in-tree to x

with the local detailed balance

w(Tx )

w(Ty )
= e−βQ(Dx→y )

I To exploit it more we next look into the low-temperature asymptotics
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Heat bounds, ordering and blowtorch theorem

Figure:

x

λ(y, y′)
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NESS representation of dynamics

Three complementary ingredients for complete description of NESS:

1. stationary occupation probabilities ρ(x)

2. local currents j(x , y) = ρ(x)λ(x , y)− ρ(y)λ(y , x)

3. dynamical activity landscape γ(x , y) = ρ(x)λ(x , y) + ρ(y)λ(y , x)

Note: Attempts to construct nonequilibrium ensembles without considering the
dynamical activity are wrong in general!
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Main issues

Question 1:

What are dominant states and currents, and where to look for dominant
dynamical activity in low-temperatures?

Question 2:

What is the low-temperature asymptotics of thermodynamic process? Is
there a generalized Nernst theorem for the excess heat?
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Low-temperature asymptotics

Zero-temperature limit of continuous (diffusion) dynamics is a deterministic
process

dxt
dt

= F (xt ) +
1√

β
"(Gaussian-)noise"

I Freidlin-Wentzell large deviation theory

Discrete stochastic dynamics ill-defined in the limit β −→ +∞!

We can still apply the algebraic representation of NESS!
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Low-temperature asymptotics

Modified Arrhenius representation of transition rates

λ(x , y) =
p(x , y)

τ(x)
= a(x , y ; β) e−β[Γ(x)+U(x ,y )]

in terms of

1. log-asymptotic escape rate −Γ(x) = limβ→∞
1
β log∑y λ(x , y )

I life-time is asymptotically τ(x) � eβΓ(x)

2. log-asymptotic transition probabilities U(x , y ) = Γ(x)− limβ→∞
1
β log λ(x , y )

I transition probabilities are asymptotically p(x , y ) � e−βU(x ,y )

I U(x , y ) ≥ 0 and U(x , y ) = 0 defines preferred transitions
I represented by oriented graph of preferred transitions

3. sub-exponential factor a(x , y ) = eo(β)
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Stationary distribution

Low-temperature asymptotics

Asymptotic form of stationary distribution

ρ(x) =
1
Z
A(x) eβ[Γ(x)−Θ(x)]

(
1+O(e−βε)

)
, ε > 0

Up to a correction negligible at low temperatures, it is given in terms of:

1. (log-asymptotic) life-time of states Γ(x)

2. accessibility function

Θ(x) = min
T

U(Tx ) , U(Tx ) = ∑
(y ,y ′ )∈Tx

U(y , y ′) ≥ 0

3. sub-exponential factor

A(x) = ∑
T∈M(x)

∏
(y ,y ′ )∈Tx

a(y , y ′) = eo(β)

where the sum is only over those trees minimizing U(Tx )
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Dynamical activity

The accessibility function Θ
Recall: The accessibility function measures the minimal “penalization” along trees rooted at
state x:

Θ(x) = min
T

U(Tx ) , U(Tx ) = ∑
(y ,y ′ )∈Tx

U(y , y ′) ≥ 0

Components,their ordering and attractors

I If there is a path D : x  y consisting of preferred transitions only, U(D)=0, then

Θ(x) ≥ Θ(y )

I natural decomposition of state space Ω into disjoint subsets Ω1,Ω2, . . . so that
I each Ωi is a (maximal) strong component of the graph of preferred transitions =

within Ωi all states are mutually freely accessible
I Θ−function is constant within each component Ωi
I the components can be partially ordered according to their value Θi

Ωi  Ωj ⇒ Θi ≥ Θj

I the terminal components, i.e. those minimizing Θ−function, are attractors
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Dynamical activity

The accessibility function Θ

Figure:

Attractor I (dissipative)

Attractor II (non-dissipative)
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Dynamical activity

The accessibility function Θ

Result: Algorithm to compute the function Θ

Θ(x) = min(U(Tx ) | all trees T connecting state x with all attractors)

Corollary: Partial order on states and properties of attractors

1. U(x , y ) = 0 =⇒ Θ(x) ≥ Θ(y )

2. x , y ∈ Attractor =⇒ Θ(x) = Θ(y )

3. U(x , y ) = 0 such that x /∈ Attractor, y ∈ Attractor =⇒ Θ(x) > Θ(y )

4. A -unique attractor=⇒Θ(A)=0
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Dynamical activity

Dynamical interpretation of Θ−function
Local dynamical activity

Υ(x) = ∑
y

ρ(x)λ(x , y )

The overall dynamical activity counts the total number of transitions per unit time

∑
x

Υ(x) =
1
2 ∑

x ,y

[
ρ(x)λ(x , y ) + ρ(y )λ(y , x) ]

Low-temperature asymptotics of dynamical activity

Υ(x) � ρ(x)λ(x , y)|U(x ,x∗)=0 �
1
Z

e−βΘ(x)

I Θ−function provides the exponential asymptotics of local dynamical activity
I dominant contribution to (global) dynamical activity comes from an attractor
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Dominant states

Dominant states

Dominant states are solutions to the variational problem

Γ(x)−Θ(x) = max

I Unique dominant state ⇒ ρ(x∗) = 1−O(e−βε)

I analogous to non-degenerate ground state in equilibrium
I In degenerate case the sub-expontial factor A(x) is needed to distinguish

the “true” mostly populated states
I Possible frustration between (long / short) life-time and (bad / good)

accessibility
I Dominant states may lie outside dynamical attractors

I patological thermodynamic properties
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Dominant states

Absolutely dominant states

A remarkable simplification arises when there exists an absolutely dominant
state x∗ such that

1. it is maximally accessible, Θ(x∗) = 0;

2. it has the maximal life-time among all states, Γ(x∗) = maxy Γ(y).

Properties of systems with A. D. states

I all dominant states are absolutely dominant
I probability of excitations has the asymptotics

ρ(x) � e−β
[

Γ(x∗)−Γ(x)+Θ(x)] , Θ(x) = min
D : x∗→x

U(D)

I the minimizers correspond to typical excitation paths for x
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Asymptotic dynamics

Excursion: Path low-temperature asymptotics
P∆(D = x0x1 . . . xn) = probability that starting from x0, the system passes the
sequence of states x0 → x1 → . . .→ xn within time eβ∆.

Result 1: excitation /technical assumptions skipped/

Asymptotically for ∆ = Γ(x∗)− ε,

P∆(D = x∗x1 . . . xn) � exp[−βI∆(D)]

with the rate function

I∆(D) = Γ(x∗)− Γ(xn) +U(D)

I By comparing with the above representation,

ρ(x) � max
D : x∗ x

P∆(D) , ∆ = Γ(x∗)− ε
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Asymptotic dynamics

Excursion: Path large-deviation problem

P∆(D = x0x1 . . . xn) = probability that starting from x0, the system passes the
sequence of states x0 → x1 → . . .→ xn within time eβ∆.

Result 2: relaxation /technical assumptions skipped/

Asymptotically for ∆ = Γ(x∗)− ε,

P∆(D = x x1 . . . x∗) � exp[−βI∆(D)]

with the rate function
I∆(D) = U(D)

Hence maxD : x x∗ P
∆(D) � 1 and the maximum is attained for the paths

made of preferred transitions

I the excitation and relaxation paths may not be the reversal of each other!
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Asymptotic dynamics

Heat bounds revisited

Heat function is given as

Q(x , y) = Γ(y)− Γ(x) +U(y , x)−U(x , y)

For every state x we have

I excitation paths D+
x from x∗ to x that minimize U(D)

−Q(D+
x ) ≤ Γ(x∗)− Γ(x) +U(D+

x )

I relaxation paths D−x from x to x∗ for which U(D−x ) = 0

Q(D−x ) = Γ(x∗)− Γ(x) +U([D−x ]†)
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Asymptotic dynamics

Heat bounds revisited

Corollary: Improved heat bounds for systems with A. D. states

−Q(D+
x ) ≤ − lim

β→∞

1
β
log ρ(x) ≤ Q(D−x )

I if D−x = [D+
x ]† then Q(D−x ) = −Q(D+

x ) and we obtain the equality!
I immediate consequences for the heat function:

I Q(D−x ) ≥ 0 – second law for spontaneous relaxation
I Q(D+

x ) +Q(D−x ) ≥ 0 – second law for typical excitation-relaxation cycles
I An asymptotic equality in terms of heat and penalization function:

ρ(x) � e−β[Q(D−x )+U(D+
x )−U([D−x ]†) ]
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Current asymptotics

Current asymptotics
I The low-temperature asymptotics of local currents may not be specified

by the attractors and asymptotic occupations only, due to mutual
cancellation of dominant terms

j(x , y) = ρ(x)λ(x , y)− ρ(y)λ(y , x)

I A finer representation of local currents is needed
I Current is naturally associated with positively dissipative circuits = closed

non-intersecting paths such that

Q(C ) = ∑
(z,z ′)∈C

Q(z , z ′) > 0

Low-temperature asymptotics of circuit currents

j(C ) � e−βΘ(C ), Θ(C ) = min
TC

U(TC )

with the minimum over all in-trees to the (positively dissipative) circuit C
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Current asymptotics

Dissipative versus non-dissipative attractors
Dissipative attractors – contain a circuit C such that Q(C ) > 0

J(C )

Υ
� 1

Non-dissipative attractors – only trivial circuits

J(C )

Υ
� e−βε, ε > 0

Figure:
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Model example

Model: Driven lattice gas on the ring

Configurations are x = (x1, . . . , xL) with xk = 0 (empty) or 1 (occupied).

Dynamics is Kawasaki (= particle exchange) with transition rates

λ(x → x (k,k+1)) = exp
( β

2
[
H(x)−H(x (k,k+1)) + E (xk − xk+1)

])
and the Hamiltonian

H(x) = −J ∑
i

xixi+1 +K ∑
i

xi−1xi+1, J > 0

I particle number N = ∑i xi is a conserved quantity
I dynamics is translation-invariant
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Model example

Phase diagram for dynamical activity (N=3)
I sharp transitions only in the zero temperature limit
I “non-structural” (red-line) versus “structural” (blue-line) transitions
I discontinuous transition along the line E = J, K > 2J with the current as an

order parameter

Figure:
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Model example

List of attractors (N=3)
I dissipative attractor with all particles detached and moving along the
ring

II non-dissipative symmetry-breaking attractor with 2-particle cluster
and a single particle separated but attached to the cluster

III non-dissipative symmetry-breaking attractor with 3-particle cluster

IIId dissipative attractor with 3-particle cluster as a whole traveling along
the ring

II/III dissipative attractor with 3-particle cluster moving along the ring via
separation of a single particle

Figure:

III, IIID

II, II/III

I
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Quasistatic heat

Steady-state thermodynamics
The total heat released along a quasistatic process passing a sequence of steady states
parametrized by αt , 0 ≤ t ≤ τ has the representation

〈Q〉 =
ˆ τ

0
〈q(xt ; αt )〉αt dt︸ ︷︷ ︸

steady−state heat O(τ)

+

ˆ ατ

α0
〈∇αV (x ; α)〉α · dα︸ ︷︷ ︸

geometric (“Berry”) heat

+ O(τ−1)︸ ︷︷ ︸
non−quasistatic

I Steady-state heat is the integral stationary flux

〈q(x ; α)〉α =
1
2 ∑

x ,y

Qα(x , y ) jα(x , y ) ≥ 0

I geometric contribution derives from the dissipation function (or “quasipotential”)
counting heat along relaxation to stationarity

V (x ; α) =
1
2 ∑

y ,y ′

ˆ ∞

0
Qα(y , y ′) [ jα

t (y , y
′)︸ ︷︷ ︸

relaxation from x

− jα(y , y ′) ]

I non-equilibrium generalization of the energy function
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Quasistatic heat

Steady-state thermodynamics
The total heat released along a quasistatic process passing a sequence of steady states
parameterized by αt , 0 ≤ t ≤ τ has the representation

〈Q〉 =
ˆ τ

0
〈q(xt ; αt )〉αt dt︸ ︷︷ ︸

steady−state heat O(τ)

+

ˆ ατ

α0
〈∇αV (x ; α)〉α · dα︸ ︷︷ ︸

geometric (“Berry”) heat

+ O(τ−1)︸ ︷︷ ︸
non−quasistatic

Warm-up: equilibrium process

I 〈q(x ; α)〉α = 0 → no divergences in quasistatic limit
I V (x ; α) = Eα(x)− 〈Eα〉α and the geometric contribution to the heat is given by

the Clausius equality
ˆ ατ

α0
〈∇αV (x ; α)〉α · dα = −

ˆ ατ

α0
β−1dS(α)

with (Shannon) entropy

S(α) = −∑
x

ρα(x) log ρα(x)

I Remains true close to equilibrium (up to leading order in nonequilibrium driving)
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Quasistatic heat

Steady-state thermodynamics
The total heat released along a quasistatic process passing a sequence of steady states
parameterized by αt , 0 ≤ t ≤ τ has the representation

〈Q〉 =
ˆ τ

0
〈q(xt ; αt )〉αt dt︸ ︷︷ ︸

steady−state heat O(τ)

+

ˆ ατ

α0
〈∇αV (x ; α)〉α · dα︸ ︷︷ ︸

geometric (“Berry”) heat

+ O(τ−1)︸ ︷︷ ︸
non−quasistatic

Non-degenarate system with unique A. D. state

I The dissipation function is asymptotically the heat released along optimal
relaxation path

V (x ; α) = Qα,−
x +O(e−βε) , V (x∗; α) = O(e−βε)

I finite positive zero-temperature limit
→ well-defined effective energy of states!
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Steady-state heat capacity

Steady-state heat capacity

The total heat released along a quasistatic process passing a sequence of steady states
parameterized by αt , 0 ≤ t ≤ τ has the representation

〈Q〉 =
ˆ τ

0
〈q(xt ; αt )〉αt dt︸ ︷︷ ︸

steady−state heat O(τ)

+

ˆ ατ

α0
〈∇αV (x ; α)〉α · dα︸ ︷︷ ︸

geometric (“Berry”) heat

+ O(τ−1)︸ ︷︷ ︸
non−quasistatic

For slow temperature changes, the geometric heat can be expressed in terms of
generalized heat capacity

Cα = −
〈 ∂V

∂T

〉α
= ∑

x

〈
V (x ; α)

d log ρ(x ; α)

dT

〉α
, T =

1
β

I for equilibrium systems it reduces to the equilibrium heat capacity C = T ∂S
∂T

I far from equilibrium it can take negative values
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Steady-state heat capacity

Steady-state heat capacity (unique A. D. state)
Combing with the stationary distribution

ρ(x) � e−β Ψ(x) , Ψ(x) = Γ(x∗)− Γ(x) +U(typical excitation path to x)

the steady-heat capacity is asymptotically

C = −β2
〈
V

∂ log ρ

∂β

〉α
= β2ρ(x1)V (x1)Ψ(x1) + "exp. damped corrections"

I x1− the lowest (= the most probable) excitation
I C>0 and it is bounded from above and below by the heat capacity of the

equilibrium systems with “generalized energies” V and Ψ, respectively

Generalized Nernst law for systems with A. D. states

Steady heat capacity is positive and goes exponentially to zero in the
zero-temperature limit.

I but in general not true for non-absolutely dominant states
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